用户名: 密码: 验证码:
桃红色果肉性状的分子标记及序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于桃世代周期长,利用传统的育种方法培育一个新品种需要10多年的时间,并且树体高大,进行杂交选种时需要占用大量的土地。近年来兴起的分子标记辅助育种技术可以有效缩短育种周期。在桃性状的分子标记方面前人已经做了大量的工作。在桃果实性状分子标记方面,已研究了果实果肉黄色和白色、有毛/无毛、果实非酸/酸性状、和果实成熟期等,对果实中不同部位花青素分布的分子标记还未见报道。SRAP标记技术是一种多态性和信息量丰富的新型分子标记技术,近年来在植物遗传多样性分析、种质鉴定、遗传连锁图的构建以及比较基因组学研究等方面得到广泛应用。我们利用梯度PCR技术,对SRAP-PCR过程中的两步退火温度进行了研究,以期获得较好的退火温度组合。我们利用桃品种的两个杂交群体重阳红×燕红和重阳红×大久保的后代,应用优化后的SRAP反应条件以及利用SSR标记等两种标记方法结合BSA方法对桃果肉不同部分的红色素进行了标记研究,并对获得的与桃果实近核色素紧密连锁的SRAP标记Me07Em02扩增得到的片段进行了回收、测序和分析,并登录桃基因组Peach v1.0进行了比对。研究结果如下:
     1.SRAP-PCR退火温度的优化:根据已有文献设计了8条正向引物和11条反向引物,组合成88对引物,利用梯度PCR仪(型号:MJ200PCR),对SRAP-PCR过程中的两步退火温度进行了研究。通过对第一步前5轮循环的退火温度梯度(37.0℃,37.3℃,38.1℃,39.1℃、40.6℃,42.5℃,44.7℃,46.5℃,48.0℃,49.0℃,49.7℃,50.0℃)的实验,其退火温度可提高到41℃;对第二步后30轮循环的退火温度梯度(50.0℃,50.3℃,50.9℃,51.7℃,52.8℃,54.3℃,56.0℃,57.4℃,58.5℃,59.3℃,60.0℃)的实验,其退火温度可提高到52℃,同时发现不同的退火温度可扩增出不同的条带,并非随着退火温度的提高,可扩增条带减少,有些条带较高退火温度下出现。应用该程序,使用多个SRAP引物组合在桃品种进行扩增验证,均获得了良好的重复性结果。
     2.以“重阳红”与“燕红”两个桃(Prunus persica(L.) Batsch)品种为亲本构建群体,通过对正交F1代果实果肉红色素多年的调查,分别对红色素在皮下、果肉和近核果肉的分布进行统计,在此基础上采用分离群体分组分析(bulked segregate analysis, BSA)法,将果肉红色素在果肉三个部位的分布分别记为“有”和“无”两个基因池,共3对6个基因池。应用优化后的相关序列扩增多态性(SRAP)和简单序列重复(SSR)分子标记技术法筛选与桃果肉红色素不同部位分布性状基因连锁的分子标记。通过对88对SRAP引物组合和分别来自桃属(Prunus persica)和苹果(Malus×domestica)的481对SSR引物组合同时在6个基因池间进行筛选,在各基因池间共筛选出4对SRAP引物组合(Me01Em08、Me05Em03、Me07Em04和Me07Em02)和5对SSR引物(UDP97-402、BPPCT023、UDP96-003、CH04g09、CPPCT028)。经138个单株的验证,该标记稳定出现。采用作图软件Mapmaker和回交群体模型进行标记分群和连锁分析,设定LOD值为3和最大重组值θ为0.50作为可信统计度与最大连锁标记数量之间的最佳组合,通过计算这些标记与桃果肉红色素性状基因的遗传距离。结果表明这些标记分别位于桃参考遗传连锁图谱的G2和G4两个连锁组,并分别与红色素在皮下和果肉的分布以及红色素在近核处果肉的分布相连锁。其中与红色素在近核处果肉的分布的标记为6个(UDP96-003、UDP97-402、Me01Em08、Me07Em02、CH04g09和Me07Em04),与红色素在皮下和果肉的分布的标记3个(BPPCT023、CPPCT028和Me05Em03),其中,SRAP标记Me07Em02与桃果实近核色素的遗传距离为0.0cM。
     3.通过将SRAP引物组合在重阳红×大久保杂交群体中的扩增结果结合调查所得的近核色素数据,利用作图软件Mapmaker和回交群体模型进行计算该标记与桃果肉近核色素性状基因的遗传距离为2.1cM。
     通过对与桃果实近核色素的紧密连锁的SRAP标记Me07Em02扩增片段的5个克隆的回收、T7/SP6双向测序,所测序的5个克隆序列完全一致,其全长110bp,其序列为:TGAGTCCAAACCGGTCCTGCTCAAGTGGAACCACATTGAGAACATGGCGCTCTAGCAGAGTGCAAAATAAGCAACTCTTTCAGTCTGCCATTGCAAATTCGTACGCAGTC(下划线部分序列为引物序列)。通过提交到桃基因组序列网站进行BLASTn比对,该序列在桃基因组序列上是单一拷贝,位于桃基因组序列Peach v1.0的scaffold_4上,应用DNAMAN序列分析软件分析该序列,表明该序列最大ORF框为108个bp,编码36个氨基酸,其氨基酸序列为:SPNRSCSSGTTLRTWRSSRQNKQLFQSAIANSYAV,该蛋白质序列在GenBank蛋白质序列库中没有比对出相似序列。
     克隆了与桃果实果肉连锁的其它SRAP标记序列,其中一个是是桃反转录转座子的部分序列,另一个可能是putative calcium-transportingATPase13的部分序列。
     4.根据获得的桃反转录转座子的部分序列,应用DANMAN和DNASTAR序列分析软件辅助,在桃基因组数据库和GenBank中进行BLASTn比对获得了桃反转录转座子的全基因组序列,位于Peach v1.0基因组的Scaffold-1的9939764bp-9944771bp位置,全长5008bp,其左右两边的LTR完全一致,长度为444bp,其最大ORF框位于该序列的487bp-4545bp,编码1535个氨基酸,将该氨基酸序列提交到GenBank中进行Protein BLAST比对,结果显示该序列也具有典型的copia-like反转录转座子的氨基酸序列特征。同时初步建立了桃反转录转座子标记方法,并对桃的遗传多样性进行了分析。
Peach is an important and a model species for the study on wood fruits in the Rosaceae family.Currently many research efforts have been focused on building saturated genetic linkage maps fromwhich gronomically important traits can be located. Several genetic linkage maps of intraspecific orinterspecific crosses in Prunus L. have been constructed and have been integrated in one T×E map withwith562markers. DNA markers and genome regions that are conserved among species are very usefulin map-based cloning of genes, marker-assisted selection (MAS) in breeding programs, and comparativemapping among related species.
     Prunus persica (L.) Batsch has a long life cycle. It takes more than10years to cultivate a newvariety by using traditional breeding methods. In addition, P. persica (L.) Batsch trees are very tall, so itneeds to take up a lot of land for hybrid selection. In recent years, molecular marker-assisted breedingtechnology has attracted increasing attention, which can effectively shorten the breeding cycle of P.persica (L.) Batsch. A large number of researches were conducted on the molecular markers forcharacters of P. persica (L.) Batsch. In molecular markers for peach flesh characters, to be specific,yellow/white flesh, hairy/hairless, non-sour/sour tasteand fruit ripening characters had been studied.However, no research has been reported on molecular markers for the distribution of anthocyanins indifferent parts of fruit.
     In this study, SRAP and SSR markers combining with the BSA method were used for selection ofmolecular markers linked with the distribution of anthocyanins in different parts of fruit.. The resultswere shown as follows:
     1.SRAP is a new molecular marker which could provide high polymorphism and plentifulinformation. It is simple and has not the specie-specific character. It had been widely used for geneticdiversity, comparing genome analysis and map construction. The annealing temperature which affect theSRAP-PCR reactions was optimized in order to establish the SRAP molecular marker systemintemperatre fruits. The optimum system was as follows: the annealing temperature in the first5cycleswas41℃. the annealing temperature in the following30cycles was52℃. Amplications of this systemwere carriyed out with4primers on4varieties of peach. The results showed that the system was steadyand reliable.
     2.The distribution of anthocyanin in the fruit flesh of peach is different and the genetic mechanismis complex. The distribution of anthocyanin in the different local of fruit flesh of peach such as fleshunder the skin, middle flesh and flesh around the stone was investigated from the cross Chongyanghong ×Yanhong for years. Based on the results, the sequence-related amplified polymorphism (SRAP) andSimple Sequence Repeats(SSR) by the way of bulked segregate analysis (BSA) were applied toconstruct a local genetic linkage map for the gene determined the distribution of anthocyanin in the fruitflesh of peach. This map, comprising four SRAP markers, five SSR markers and the anthocyanindensity loci. Four dominant SRAP markers (Me01Em08、Me05Em03、Me07Em02and Me07Em04) andfive dominant SSR markers (UDP97-402、BPPCT023、UDP96-003、CH04g09、CPPCT028) linked tothe locus of the gene determined the distribution of anthocyanin in the flesh. One dominant SRAPmarkers (Me07Em02) linked to the loci of the gene determined the color around the stone(Cs) atdistances of0.0cM,. These markers would provide an effective tool for marker assisted selection for thetrait of the anthocyanin intensity in the fresh of peach.
     3. The molecular marker of Me07Em02linked to the Cs locus was tested in another progeniesfrom the cross of chongyanghong×Okubao, this marker linked to the Cs at a genetic distance of2.1cM.
     Extraction of the fragment amplified with the SRAP primer of Me07Em02and sequencing5clones with T7/SP6, the result showed that the fragment length is110bp. The sequence as follows(primer sequences underlined):TGAGTCCAAACCGGTCCTGCTCAAGTGGAACCACATTGAGAACATGGCGCTCTAGCAGAGTGCAAAATAAGCAACTCTTTCAGTCTGCCATTGCAAATTCGTACGCAGTC
     The result of BLASTn with the sequence of Peach v1.0showed that this sequence is a single copysequence located on scaffold_4of Peach v1.0. The analysis result using the software of DNAMANindicated that the maximum ORF is108bp, coding36amino acid, the amino acid sequence isSPNRSCSSGTTLRTWRSSRQNKQLFQSAIANSYAV and no similar sequence was found in theprotein database of GenBank
     The sequences of marker of Me01Em08, Me05Em03and Me07Em04were also obtained. Thesequence of Me01Em08is the copia-like retrotransposon of peach, the other, Me05Em03may bethe gene of putative calcium-transporting ATPase13.
     4. The whole sequence of peach copia-like retratranposon was obtained located on the Peach v1.0genome of Scaffold-1. The whole sequence is5008bp and codes1535amino acid. The LTR length is444bp. The molecular marker based on the retrotransposon was obtained and application to the analysisof the diversity on peach.
引文
[1] Monet R, Guye A, Roy M, Dachary N. Peach Mendelian genetics: a short review and new results[J].Agronomie,1996,16:321–329.
    [2] Jelenkovic G, Harrington E. Morphology of the pachytene chromosomes in Prunus persica[J]. Can JGenet Cytol.,1972,14:317–324.
    [3] Baird WV, Estager AS, Wells J. Estimating nuclear DNA content in peach and related diploid speciesusing laser flow cytometry and DNA hybridization[J]. J Am Soc Hort Sci,1994,119:1312–1316.
    [4] Arumuganathan K, Earle E. Nuclear DNA content of some important plant species[J]. Plant MolBiol Report,1991,9:208–218.
    [5] Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, Laigret F, MoingA.Development of a second generation genetic linkage map for peach [Prunus persica (L.) Batsch]and characterization of morphological traits affecting flower and fruit[J]. Tree Genet Genome,2006,3:1–13.
    [6] Cheng HY, Yang WC, Hsiao JY. Genetic diversity and relationship among peach cultivars based onrandom amplified microsatellite polymorphism(RAMP)[J].Bot Bull Acad Sin,2001,42:201-206.
    [7]程中平,陈志伟,胡春根,邓秀新,罗正荣.亲缘关系相近的桃品种的RAPD分析[J].湖北农业科学,2001,(3):41-44.
    [8]杨新国,张开春,秦岭,王永熙.桃种质亲缘演化关系的RAPD分析[J].果树学报,2001,18:276-279
    [9]杨英军,张开春,林珂.常见李属植物RAPD多态性及亲缘关系分析[J].河南农业大学学报,2002,36:187-190.
    [10]袁政,罗来水,肖德兴,张大兵.利用RAPD技术对桃种内种质的分析[J].江西农业大学学报(自然科学版),2002,24:172-175.
    [11]宗成文,曹后男,赵成日,朴日子,朱波.应用RAPD标记对桃品种间亲缘关系的分析[J].延边大学农学学报,2005,27:77-82
    [12]俞明亮,马瑞娟,许建兰,沈志军,章镇.桃种间亲缘关系的SSR鉴定[J].果树学报,2004,21:106-112.
    [13]Quarts R, Dettori MT,Verde I. Characterization and evaluation of genetic diversity in peachgermplasm using RAPD and RFL P markers[J]. Acts Hort.,2001,546:489-496.
    [14]Warburton ML, Bliss FA. Genetic diversity in peach [Prunus persica (L.) Batch] revealed randomlyamplified polymorphic DNA(RAPD) markers and compared to inbreeding coefficients[J]. J AmerSoc Hort.,1996,121:1012-1019.
    [15]Badenes L, Martine-calvo J, LIacer G. Analysis of peach germplasm from Spain[J]. ActaHortieulturae,1998,465:243-250.
    [16]Augusto M, Sergio L, Yael J, Manuel T, Rosa M, Manuel L, Daniela S. DNA isolation and AFLPfingerprinting of nectarine and peach varieties (Prunus persica)[J]. Plant Molecular BiologyReporter,1999,17:255-267.
    [17]Aranzana M J,Arus P,Carbo J, King GL. AFLP and SSR markers for genetic diversity analysis andcultivar identification in peach[Prunus persica(L.)Batsch.][J]. Acta Horticulturae,2001,546:367-370.
    [18]Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arus P, Laigret F.Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use ingenetic diversity analysis in peach and sweet cherry[J].TheorAppl Genet.2002,105:127-138.
    [19]Aranzana MJ,Carbo J, Arus P. Using amplified fragment length polymorphisms (AFLPs) to identifypeach cultivars[J]. J Amer Soc Hort.,2003,128:672-677.
    [20]Aranzana MJ, Carbo J, Arus P. Microsatellite variability in peach [Prunus persica(L.) Batsch]:cultivar identification, marker mutation, pedigree inferences and population structure[J]. Theor ApplGenet.,2003,106:1341-1352.
    [21]金勇丰,张耀洲,陈大明,张上隆.桃早熟芽变品种大观一号的RAPD分析及其特异片段的克隆[J].果树科学,1998,15:103-106.
    [22]冉辛拓,冯志红,于丽辰,韩继成,王广鹏,张新忠.利用RAPD方法确认重阳红桃及其芽变[J].园艺学报,2005,(4):593.
    [23]孙淑霞,陈栋,李靖,涂美艳,谢红江,江国良.北京28号桃芽变株系的ISSR和SSR鉴定[J].果树学报,2012,29:24~28.
    [24]Yamamoto T,Mochida k,Hayashi T. Shanghai suimitsuto,one of the origins of Japanese peachcultivar[J]. Journal of the Japanese Society for Horticultural Science,2003,72:116-121.
    [25] Chaparro JX, Werner DJ, O'Malley D, Sederoff RR.Targeted mapping and linkage analysis ofmorphological isozyme, and RAPD markers in peach[J]. Theor Appl Genet,1994,87:805–815.
    [26] Rajapakse S, Bethoff LE, He G, Estager AE, Scorza R, Verde I, Ballard RE, Baird WV, Callahan A,Monet R, Abbott AG. Genetic linkage mapping in peach using morphological, RFLP and RAPDmarkers[J].Theor Appl Genet,1995,90:503–510.
    [27] Mnejja M, Garcia-Mas J, Audergon JM, Arús P. Prunus microsatellite marker transferabilityacross rosaceous crops[J].Tree Genet Genome,2010,6:689–700.
    [28] Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, KocsisneGM, Mydin KK. An expanded genetic linkage map of Prunus based on an interspecific crossbetween almond and peach[J]. Genome,2002,45:520–529.
    [29] Joobeur T, Viruel MA, de Vicente MC, Jáuregui B, Ballester J, Dettori MT, Verde I, Truco MJ,Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arús P. Construction of a saturated linkage map forPrunus using an almond×peach F2progeny[J]. Theor Appl Genet,1998,97:1034–1041.
    [30] Jáuregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, Arús P. A reciprocaltranslocation between ‘Garfi’ almond and ‘Nemared’ peach[J]. Theor Appl Genet,2001,102:1169–1176.
    [31] Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P.Comparative mapping and marker-assisted selection in Rosaceae fruit crops[J]. Proc Natl Acad SciUSA,2004,101:9891–9896.
    [32]Clarke JB, Sargent DJ, Boskovic RI, Belaj A, Tobutt KR. A cherry map from the inter-specific crossPrunus avium ‘Napoleon’ x P. nipponica based on microsatellite, gene-specific and isoenzymemarkers[J].Tree Genet Genome,2009,5:41–51.
    [33]Olukolu BA, Trainin T, Fan SH, Kole C, Bielenberg DG, Reighard GL, Abbott AG, Holland D.Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot(Prunus armeniaca L.)[J]. Genome,2009,52:819–828.
    [34]Illa E, Lambert P, Quilot B, Audergon JM, Dirlewanger E, Howad W, Dondini L, Tartarini S, LainO, Testolin R, Bassi D, Arús P. Linkage map saturation, construction, and comparison in fourPrunus populations[J].J Hortic Sci Biotech, ISAFRUIT special issue,2009,168-175.
    [35]Sánchez-Pérez R, HowadW, Garcia-Mas J, Arús P, Martínez-Gómez P, Dicenta F. Molecularmarkers for kernel bitterness in almond[J].Tree Genet Genome,2010,6:237–245.
    [36]Rubio M, Pascal T, Bachellez A, Lambert P. Quantitative trait loci analysis of plum pox virusresistance in Prunus davidiana P1908: new insights on the organization of genomic resistanceregions[J].Tree Genet Genome,2010,6:291–304.
    [37]Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG.Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloomdate in peach [J]. New Phytol,2010,185:917–930.
    [38]Arús P, Yamamoto T, Dirlewanger E, Abbott AG. Synteny in the Rosaceae[M]. Wiley, Hoboken,2005.
    [39]Pozzi C, Vecchietti A. Peach structural genomics[M]. New York: Springer,,2009.
    [40] Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L,Abbott AG, Arús P. Mapping with a few plants: using selective mapping for microsatellite saturationof the Prunus reference map[J].Genetics,2005,171:1305–1309.
    [41] Ogundiwin EA, Peace CP, Gradziel TM, Parfitt DE, Bliss FA, Crisosto CH. A fruit quality genemap of Prunus[J]. BMC Genom,2009,10:587.
    [42] Illa E, Eduardo I, Audergon JM, Barale F, Dirlewanger E, Gao ZS, Moing A, Lambert P, Le DantecL, Li XW, Po ssel JL, Pozzi C, Rossini L, Vecchietti A, Arús P, Howad W.Saturating the Prunus(stone fruits) genome with candidate genes for fruit quality[J].Mol Breed,2011,28:667–682.
    [43] Cabrera A, Kozik A, Howad W, Arús P, Iezzoni AF, van der Knaap E. Development and binmapping of a Rosaceae Conserved Ortholog Set (COS) of markers[J]. BMC Genom,2009,10:562.
    [44]乔飞,王力荣,范崇辉,朱更瑞,方伟超.利用RAPD标记评价桃种间杂交一代群体的分离方式[J].果树学报,2003,20:310-312.
    [45]乔飞,王力荣,范崇辉,朱更瑞,方伟超.利用AFLP和RAPD标记构建桃的遗传连锁图谱[J].果树学报,2006,23:766-769.
    [46]吴俊,束怀瑞,张开春,姜立杰,周晓航,辛翠花.桃分子连锁图谱的构建与分析[J].园艺学报,2004,31:593-597.
    [47]高妍,韩明玉,赵彩平,宋健.桃分子连锁图谱的构建[J].果树学报,2008,25:478-484.
    [48] Zhang HB,Wing RA. Physical mapping of the rice genome with BACs[J]. Plant Mol Biol,1997,35:115–127.
    [49] Zhang HB, Wu C. BAC as tools for genome sequencing[J]. Plant Physiol Biochem,2001,39:195–209.
    [50]Green ED. Strategies for the systematic sequencing of complex genomes[J]. Nat Rev Genet,2001,2:573–583[51]She X, Jiang Z, Clark RA, Liu G, Cheng Z, Tuzun E, Church DM, Sutton G, HalpernAL, Eichler EE.Shotgun sequence assembly and recent segmental duplications within the humangenome[J]. Nature,2004,431:927–930.
    [52]Warren RL, Varabei D, Platt D, Huang X, Messina D, Yang SP, Kronstad JW, Krzywinski M,Warren WC, Wallis JW, Hillier LW, Chinwalla AT, Schein JE, Siddiqui AS, Marra MA, Wilson RK,Jones SJM. Physical map-assisted whole-genome shotgun sequence assemblies[J]. GenomeRes,2006,16:768–775.
    [53]Nelson W, Soderlund C.Integrating sequence with FPC fingerprint maps[J]. Nucleic Acids Res,2009,37:e36.
    [54]Marra M, Kucaba T, Sekhon M, Hillier L, Martienssen R, Chinwalla A, Crokett J, Fedele J, GroverH, Gund C, McCombie WR, McDonaldK, McPherson J,Mudd N, Parnell L, Schein J, Seim R,Shelby P, Waterston R, Wilson R.A map for sequence analysis of the Arabidopsis thalianagenome[J]. Nat Genet,1999,22:269–270.
    [55]Hoskins RA, Nelson CR, Berman BP, Laverty TR, George RA, Ciesiolka L, Naeemuddin M,Arenson AD, Durbin J, David RG et al.BAC-based physical map of the major autosomes ofDrosophila melanogaster[J]. Science,2000,287:2271–2274.
    [56] Georgi LL, Wang Y, Yverggniaux D, Ormsbee T, Inigo M, Reighard GL, Abbott AG. Constructionof a BAC library and its application to the identification of simple sequence repeats in peach
    [Prunus persica (L.) Batsch][J]. Theor Appl Genet,2000,105:1151–1158.
    [57]Sulston J, Mallett F, Durbin R, Horshnell T.Image analysis of restriction enzyme fingerprintautoradiograms[J]. Comput Appl Biosci,1998,13:101–106.
    [58]Zhebentyayeva TN, Horn R, Mook J, Lecouls A, Georgi L, Abbott AG, Reighard GL, Swire-Clark G,Baird WV. A physical framework for the peach genome[J]. Acta Hortic,2006,713:83–88.
    [59]Horn R, Lecouls AC, Callahan A, Dandekar A, Garay L, McCord P, Howad W, Chan H, Verde I,Ramaswamy K et al. Candidate gene database and transcript map for peach, a model species forfruit trees[J]. Theor Appl Genet,2005,110:1419–1428.
    [60]Jung S, Main D, Staton M, Cho I, Zhebentyayeva T, Arús P, Abbott A. Synteny conservationbetween the Prunus genome and both the present and ancestral Arabidopsis genomes[J]. BMCGenom,2006,7:81.
    [61] Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt VD,Reighard GL, Abbott AG. Identification and mapping of resistance gene analogs (RGAS) in Prunus:a resistance map for Prunus[J]. Theor Appl Genet,2005,111:1504–1513.
    [62] Zhebentyayeva TN, Swire-Clark G, Georgi LL, Garay L, Jung S, Forrest S, Blenda AV, BlackmonB, Mook J, Horn R, Howad W, Arús P, Main D, Tomkins JP, Sosinski B, Baird WV, Reighard GL,Abbott AG. A framework physical map for peach, a model Rosaceae species[J]. Tree GenetGenome,2008,4:745–756.
    [63]Peace CP, Crisosto CH, Gradziel TM. Endopolygalacturonase: a candidate gene for Freestone andMelting flesh in peach[J]. Mol Breed,2005,16:21–31.
    [64] Zhebentyayeva TN, Jiwan D, Jun JH, Lalli DA, Forrest S, Duncan JA, Reighard GL, Main D,Callahan A, Scorza R, Abbott AG. Exploitation of the structural and functional genomics databasesfor gene identification in peach[J]. Acta Hortic,2007,738:711–717.
    [65] Ruiz EMV, Soriano JM, Romero C, Zhebentyayeva T, Terol J, Zuriaga E, Llácer G, Abbott AG,Badenes ML. Narrowing down the apricot Plum pox virus resistance locus and comparative analysiswith the peach genome syntenic region[J]. Mol Plant Pathol,2011,12:535–547.
    [66] Soriano JM, Vera-Ruiz EM, Vilanova S, Martínez-Calvo J, Llácer G, Badenes ML, Romero C.Identification and mapping of a locus conferring plum pox virus resistance in two apricotimprovedlinkage maps[J]. Tree Genet Genome,2208,4:391–402.
    [67] Trainotti L, Bonghi C, Ziliotto F, Zanin D, Rasori A, Casadoro G, Ramina A, Tonutti P. The use ofmicroarray μPEACH1.0to investigate transcriptome changes during transition from preclimactericto climacteric phase in peach fruit[J]. Plant Sci,2006,170:606–613.
    [68] Dardick CD, Callahan AM, Chiozzotto R, Schaffer RJ, Piagnani MC, Scorza R. Stone formation inpeach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity toArabidopsis dehiscence[J]. BMC Biol,2010,8:13.
    [69] Ziliotto F, Begheldo M, Rasori A, Bonghi C, Tonutti P. Transcriptome profiling of ripeningnectarine (Prunus persica L. Batsch) fruit treated with1-MCP[J]. J Exp Bot,2008,59:2781–2791.
    [70]Ziosi V, Bonghi C, Bregoli AM, Trainotti L, Biondi S, Sutthiwal S, Kondo S, Costa G, Torrigiani P.Jasmonate-induced transcriptional changes suggest a negative interferencewith the ripeningsyndrome in peach fruit[J]. J Exp Bot,2008,59:563–573.
    [71]Pe a-Cortés H, Barrios P, Dorta F, Polanco V, Sánchez C, Sánchez E, Ramírez I. Involvement ofjasmonic acid and derivatives in plant responses to pathogens and insects and in fruit ripening[J]. JPlant Growth Regul,2005,23:246–260.
    [72]Wasternack C. Jasmonates, an update on biosynthesis, signal transduction and action in plant stressresponse, growth and development[J]. Ann Bot,2007,100:681–697.
    [73]González-Agüero M, Pavez L, Ibá ez F, Pacheco I, Campos-Vargas R, Meisel LA, Orellana A,Retamales J, Silva H, González M, Cambiazo V. Identification of woolliness response genes inpeach fruit after post-harvest treatments[J]. J Exp Bot,2008,59:1973-1986.
    [74]Ogundiwin EA, Martí C, Forment J, Pons C, Granel A, Gradziel TM, Peace CP, Crisosoto CH.Development of ChillPeach genomic tools and identification of cold-response genes in peachfruit[J]. Plant Mol Biol,2008,68:379–397.
    [75]Vizoso P, Meisel LA, Tittarelli A, Latorre M, Saba J, Caroca R, Maldonado J, Cambiazo V,Campos-Vargas R, González M, Orellana A, Silva H. Comparative EST transcript profiling of peachfruits under different post-harvest conditions reveals candidate genes associated with peach fruitquality[J]. BMC Genom,2009,10:423.
    [76]Renaut J, Hausman J, Bassett C, Artlip T, Cauchie H, Witters E, Wisniewski M.Quantitativeproteomic analysis of short photoperiod and low-temperature responses in bark tissues of peach(Prunus persica L. Batsch)[J]. Tree Genet Genome,2008,4:589–600.
    [77]Chan Z, Qin G, Xu X, Li B, Tian S. Proteome approach to characterize proteins induced byantagonist yeast and salicylic acid in peach fruit[J]. J Proteome Res,2007,6:1677–1688.
    [78]Borsani J, Budde CO, Porrini L, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, DrincovichMF, Lara MV.Carbon metabolism of peach fruit after harvest: changes in enzymes involved inorganic acid and sugar level modifications[J]. J Exp Bot,2009,60:1823–1837.
    [79]Lara MV, Borsani J, Budde CO, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, DrincovichMF. Biochemical and proteomic analysis of ‘Dixiland’ peach fruit (Prunus persica) upon heattreatment[J]. J Exp Bot,2009,60:4315–4333.
    [80] Nilo R, Saffie C, Lilley K, Baeza-Yates R, Cambiazo V, Campos-Vargas R,GonzálezM,Meisel LA,Retamales J, SilvaH, Orellana A. Proteomic analysis of peach fruit mesocarp softening and chillinginjury using difference gel electrophoresis (DIGE)[J]. BMC Genomic,2010,11:43.
    [81]Pascal T, Pfeiffer F, Kervella J. Powdery mildew resistance in the peach cultivar Pamirskij5isgenetically linked with the Gr gene for leaf color[J]. Hortscience,2010,45:150–152.
    [82] Yamamoto Y, Yamaguchi M, Hayashi T. An integrated genetic linkage map of peach by SSR, STS,AFLP and RAPD[J]. J Jpn Soc Hortic Sci,2005,74:204–213.
    [83]Foulongne M, Pascal T, Pfeiffer F, Kervella J.QTL for powdery mildew resistance in peach×Prunus davidiana crosses: consistency across generations and environments[J]. Mol Breed,2003,12:33–50.
    [84]Abbott AG, Arús P, Scorza R. Peach. In: Kole C (ed) Genome mapping and molecular breeding inplants[M]. Berlin: Springer,2007.
    [85]Warburton ML, Becerra-Velasquez VL, Goffreda JC, Bliss FA.Utility of RAPD markers inidentifying genetic linkages to genes of economic interest in peach[J]. Theor Appl Genet,1996,93:920–925.
    [86]杨英军,张开春,李荣旗.桃果实有毛/无毛、白肉/黄肉性状得RAPD分子标记[J].华北农学报,2000,15(3):6-9.
    [87]俞明亮,马瑞娟,沈志军,章镇.桃果肉颜色、果皮茸毛和花粉育性性状的分子标记[J].园艺学报,2006,33(3):511-517.
    [88] Wang Y, Georgi LL, Reighard GL, Scorza R, Abbott AG. Genetic mapping of the evergrowing genein peach (Prunus persica (L.) Batsch)[J]. J Hered,2002,93:352–358.
    [89] Verde I, Quarta R, Cerdrola C, Dettori MT. QTL analysis of agronomic traits in a BC1peachpopulation[J]. Acta Hortic,2002,592:291–297.
    [90]Jauregui B,d e Vicente M C,Messeguer R,Felipe A,Bonnet A,Salesses G,Arus P. A reciprocaltranslocation between Garfi almond and Nemared peach[J]. Theoretical and AppliedGenetics,2001,102:1169-1176.
    [91]Decroocq V, Foulongne M, Lambert P, Le Gall P, Mantin C, Pascal T, Schurdi-Levraud V, KervellaJ. Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunusdavidiana[J]. Mol Genet Genom,2005,272:680–689.
    [92]Marandel G, Pascal T, Candresse T, Decroocq V. Quantitative resistance to Plum pox virus inPrunus davidiana P1908linked to components of the eukaryotic translation initiation complex[J].Plant Pathol,2009,58:425–435.
    [93]Claverie M, Bosselut N, Lecouls AC, Voisin R, Lafargue B, Poizat C, Kleinhentz M, Laigret F,Dirlewanger E, Esmenjaud D. Location of independent root-knot nematode resistance genes in plumand peach[J]. Theor Appl Genet,2004,108:765–773.
    [94]Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, MatsutaN,Yamaguchi M, Hayashi T.Characterization of morphological traits based on a genetic linkage map in peach[J]. Breed Sci,2001,51:271–278.
    [95]Lu ZX, Reighard GL, Nyczepir AP, Beckman TG, Ramming DW. Inheritance of resistance toroot-knot nematodes in peach rootstocks[J]. Acta Hortic,1998,465:111–116.
    [96]Verde I, Lauria M, Dettori MT, Vendramin E, Balconi C, Micali S, Wang Y, Marrazzo MT, CiprianiG, Hartings H, Testolin R, Abbott AG, Motto M, Quarta R. Microsatellite and AFLP markers in the
    [Prunus persica (L.) Batsch]×P. ferganensis BC1linkage map: saturation and coverageimprovement[J]. Theor Appl Genet,2005,111:1013–1021.
    [97]张桂粉,韩明玉,赵彩平,高妍,宋健.桃熟性性状的SSR标记[J].西北农业学报,2007,16:112~115.
    [98]宋立琴,张立彬,张吉军,于凤鸣,肖啸.一个与桃成熟期QTL连锁的SSR标记[J].园艺学报,2011,38(3):535-540.
    [99]宋立琴,张立彬,张吉军,于凤鸣,肖啸.桃果实成熟期主效基因的SSR标记定位[J].农业生物技术学报,2012,20:636-641.
    [100]Scorza R, Melnicenco L, Dang P, Abbott AG. Testing a microsatellite marker for selection ofcolumnar growth habit in peach (Prunus persica (L.) Batsch)[J]. Acta Hortic,2002,592:285–289.
    [101]Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, Moreau K.QTL analysis of quality traits inan advanced backcross between Prunus persica cultivars and the wild relative species P.davidiana[J]. Theor Appl Genet,2004,109:884–897.
    [102] Han Jicheng, Liu Guojian, Chang Ruifeng, Zhang Xinzhong. Study on SSR Markers Linked toFlesh Color around the Stone of Prunus persica (L.) Batsch[J]. Agricultural Science&Technology,2012,13(5):962-964.
    [103] Han Jicheng, Liu Guojian2, Chang Ruifeng, Zhang Xinzhong.The sequence-related amplifiedpolymorphism (SRAP) markers linked to the color around the stone (Cs) locus of peach fruit[J].African Journal of Biotechnology,2012,11:9911-9914.
    [104]Viruel MA, Madur D, Dirlewanger E, Pascal T, Kervella J.Mapping quantitative trait locicontrolling peach leaf curl resistance[J]. Acta Hortic,1998,465:79–87.
    [105]Abbott AG, Rajapakse S, Sosinski B, Lu ZX, Sossey-Alaoui K, Gannavarapu M, Reighard G,Ballard RE, BairdWV SR, Callahan A. Construction of saturated linkage maps of peach crossessegregating for characters controlling fruit quality, tree architecture and pest resistance[J]. ActaHortic,1998,465:41–49.
    [106]Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Dumas LS, Cosson P, Pronier V, Monet R,Dirlewanger E. Candidate genes and QTL for sugar and organic acid content in peach (Prunuspersica (L.) Batsch)[J]. Theor Appl Genet,2002,105:145–159.
    [107]Wang D, Karle R, Iezzoni A F. QTL analysis of flower and fruit traits in sour cherry[J]. Theoreticaland Applied Genetics,2000,100:535-544.
    [108]Cantín CM, Crisosto CH, Ogundiwin EA, Gradziel T, Torrents J,Moreno MA, Gogorcena Y.Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Batsch] progeny[J].Postharvest Biol Technol,2010,58:79–87.
    [109]Dirlewanger E, Pronier V, Parvery C, Rothan C, Guye A, Monet R. Genetic linkage map of peach
    [Prunus persica (L.) Batsch] using morphological and molecular markers[J]. Theor ApplGenet,1998,97:888–895.
    [110]Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R.Mapping QTL controlling fruit quality in peach (Prunus persica (L.) Batsch)[J]. Theor ApplGenet,1999,98:18–31.
    [111]沈志军,马瑞娟,俞明亮,蔡志翔,许建兰.油蟠桃组合遗传连锁图谱构建及糖酸性状QTL分析[J].园艺学报,2010,37(11):1735~1744.
    [112]Dettori MT, Quarta R, Verde I.A peach linkage map integrating RFLPs, SSRs, RAPDs, andmorphological markers[J]. Genome,2001,44:783–790.
    [113] Chen L, Zhang SM, Illa E, Song LJ, Wu SD, Howad W, Arús P, van de Weg E, Chen KS, Gao ZS.Genomic characterization of putative allergen genes in peach/almond and their synteny withapple[J]. BMC Genom,2008,9:543.
    [114] Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, BhatnagarSK, Troggio M, Pruss D et al. The genome of the domesticated apple (Malus×domestica Borkh.).Nat Genet,2010,42:833–839.
    [115]Illa E, Sargent DJ, Lopez Girona E, Bushakra J, Cestaro A, Crowhurst R, Pindo M, Cabrera A, Vander Knapp E, Iezzoni A, Gardiner S, Velasco R, Arús P, Chagné D, Troggio M. Comparativeanalysis of rosaceous genomes and the reconstruction of a putative ancestral genome for thefamily[J]. BMC Evol Biol,2010,11:9.
    [116]Vilanova S, Sargent DJ, Arús P, Monfort A. Synteny conservation between two distantly-relatedRosaceae genomes: Prunus (the stone fruits) and Fragaria (the strawberry)[J]. BMC PlantBiol,2008,8:67.
    [117]Dominguez I, Graziano E, Gebhardt C, Barakat A, Berry S, Arús P, Delseny M, Barnes S. Plantgenome archeology: evidence for conserved ancestral chromosome segments in dicotyledonousplant species[J]. Plant Biotechnol J,2003,1:91–99.
    [118] Jung S, Jiwan D, Cho I, Lee T, Abbott A, Sosinski B, Main D. Synteny of Prunus and other modelplant species[J]. BMC Genom,2009,10:76.
    [119] Moore MJ, Bell CD, Soltis PS, Soltis DE. Using plastid genome scale data to resolve enigmaticrelationships among basal angiosperms[J]. Proc Natl Acad Sci USA,2007,104:19363–8
    [120]Deleu W, González V, Monfort A, Bendahmane A, Puigdomenech P, Arús P, Garcia-MasJ.Structure of two melon regions reveals high microsynteny with sequenced plant species[J]. MolGenet Genom,2007,278:611–622.
    [121]Jung S, Jesudurai C, Staton M, Du Z, Ficklin S, Cho I, Abbott A, Tomkins J, Main D.GDR(Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and geneticsresearch[J]. BMC Bioinforma,2004,5:130.
    [122]Jung S, Staton M, Lee T, Blenda A, Svancara R, Abbott A, Main D. GDR (Genome Database forRosaceae): integrated Webdatabase for Rosaceae genomics and genetics data[J]. Nucleic Acids Res,2008,36(Database Issue):1034–1040.
    [123]Jung S, Abbott A, Jesudurai C, Tomkins J, Main D.Frequency, type, distribution and annotation ofsimple sequence repeats in Rosaceae ESTs[J]. Funct Integr Genom,2005,5:136–43.
    [124]Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R,Abbott A, King GJ, Iezzoni AF, Arús P.A set of simple-sequence repeat (SSR) markers covering thePrunus genome[J]. Theor Appl Genet,2003,106:819–825.
    [125] Lazzari B, Caprera A, Vecchietti A, Stella A, Milanesi L, Pozzi C. ESTree db: a tool for peachfunctional genomics[J]. BMC Bioinforma6(Suppl4),2005,:S16, PMID:16351742.
    [126] Folta KM, Gardiner SE. Genetics and genomics of Rosaceae[M]. New York: Springer,2009.
    [127] Peace CP, Crisosto CH, Garner D, Dandekar AM, Gradziel TM, Bliss FA.Genetic control ofinternal breakdown in peach[J]. Acta Hortic,2006,713:489–496.
    [128] Peace CP, Callahan A, Ogundiwin EA, Potter D, Gradziel TM, Bliss FA, Crisosto CH.Endopolygalacturonase genotypic variation in Prunus[J]. Acta Hortic,2007,738:639–646.
    [129] Boudehri K, Bendahmane A, Cardinet G, Troadec C, Moing A, Dirlewanger E. Phenotypic andfine genetic characterization of the D locus controlling fruit acidity in peach[J]. BMC PlantBiol,2009,9:59.
    [130] Tanksley SD. Mapping polygenes[J]. Annu Rev Genet,1993,27:205–233.
    [131] Tuberosa R, PhillipsRL, Gale M. Proceedings of the international congress: in the wake of thedouble helix: from the green revolution to the gene revolution[M]. Bologna: Avenue Media,2003.
    [132] Ogundiwin EA, Peace CP, Gradziel TM, Dandekar AM, Bliss FA, Crisosto CH.Molecular geneticdissection of chilling injury in peach fruit[J]. Acta Hortic,2007,738:633–638.
    [133] Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, MockaitisK, Liston A, Mane SP. The genome of wood land strawberry (Fragaria vesca). Nat Genet,2011,43:109–116.
    [134] Aranzana MJ, Abbassi el-K, Howard W, Arús P. Genetic variation, population structure andlinkage disequilibrium in peach commercial varieties[J]. BMC Genet,2010,11:69.
    [135] Iezzoni A,Weebadde C, Luby J, Yue CY, van deWeg E, Fazio G, Main D, Peace CP, Bassil NV,McFerson J. RosBREED: enabling marker-assisted breeding in Rosaceae[J]. Acta Hortic,2010,859:389–394.
    [136] Martínez-García PJ, Fresnedo-Ramírez J, Parfitt DE, Thomas M. Gradziel TM,Crisosto CH.Effect prediction of identified SNPs linked to fruit quality and chilling injury in peach [Prunuspersica (L.) Batsch][J].Plant Molecular Biology,2013,81:161-174.
    [137] Ahmad R, Parfitt DE, Fass J, Ogundiwin E, Dhingra A, Gradziel TM, Lin D, Joshi NA,Martínez-García PJ, Crisosto CH. Whole genome sequencing of peach (Prunus persica L.) for SNPidentification and selection[J]. BMC Genomics,2011,12:569-575.
    [138] Aranzana MJ, Illa E, Howad W. A first insight into peach [Prunus persica (L.) Batsch] SNPvariability. Tree Genet Genomes,2012,8:1359-1369.
    [139] Duran C, Appleby N, Edwards D, Batley J.Molecular genetic markers: discovery, applications,data storage and visualization[J]. Curr Bioinform,2009,4:16–27.
    [140] Brookes AJ.The essence of SNPs[J]. Gene,1999,234:177–186.
    [141] Appleby N, Edwards D, Batley J.New technologies for ultrahigh throughput genotyping inplants[J]. Methods Mol Biol,2009,513:19–39.
    [142] Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheletti D, Rosyara UR,Cattonaro F, Vendramin E, Main D, Aramini V, Blas AL, Mockler TC, Bryant DW, Wilhelm L,Troggio M, Sosinski B, Aranzana MJ, Arus P, Iezzoni A, Morgante M, Peace C.Development andevaluation of a9K SNP array for peach by internationally coordinated SNP detection and validationin breeding germplasm[J]. PLoS ONE,2012,7(4):e35668. doi:10.1371/journal.pone.0035668.
    [143] Castle JC. SNPs occur in regions with less genomic sequence conservation[J]. PLoSONE,2011,6(6). doi:10.1371/journal.pone.0020660.
    [144] Mackay TFC, Stone EA, Ayroles JF.The genetics of quantitative traits: challenges and prospects[J].Nat Rev Genet,2009,10:565–577.
    [145] van Tienderen PH, de Haan AA, van der Linden CG, Vosman B. Biodiversity assessment usingmarkers for ecologically important traits[J]. Trends Ecol Evol,2002,17(12):577–582.
    [146] Connors CH. Some notes on the inheritance of unit characters in the peach[J]. Proc. Amer. Soc.Hort. Sci.,1920,16:24-36.
    [147] Blake MA.The J H Hale as a parent in peach crosses[J]. Proc. Amer.Soc. Hort.Sci.,1932,29:131-136.
    [148] Lesley JW.A genetic study of inbreeding and of crossing inbred lines in peaches[J]. Proc. Amer.Soc. Hort. Soc. Hort. Sci,1957,70:93-103.
    [149] Goff SA. Cone KC, Fromm ME, Identification of functional domains in the maize transcriptionalactivator C1: Commparison of wild-type and dominant inhibitor proteins[J]. Genes Development,1991,5:298.
    [150] Georgi LL,Wang Y,Reighard GL.Comparison of peach and Arabidopsis genomic sequences:fragmentary conservation of gene neighborhoods[J]. Genome,2003,46:268–276.
    [151] Wang Y,Garay L,Reighard GL,et al. Development of bacterial artificial chromosome contigs inthe evergrowing gene region in peach[J]. Acta Horticulturae,2002,592:183-189.
    [152] Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG.Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals acluster of six MADS-box transcription factors as candidate genes for regulation of terminal budformation[J]. Tree Genet Genome,2008,4:495–507.
    [153] Bielenberg DG, Wang Y, Fan S. A deletion affecting several gene candidates is present in theevergrowing peach mutant[J]. Journal of Heredity,2004,95:436–444.
    [154]Eldredge L,Ballard R,Baird W V.Application of RFLP analysis to genetic linkage mapping inpeach[J]. Hortscience,1992,27(2):160-163.
    [155] Sosinski B,sossey-Alaoui K,Lu ZX,et al. Use of AFLP and RFLP markers to create a combinedlinkage map in peach[Prunes peasica (L.) Batsch] for use in marker assisted selection[J]. ActaHort.1998,465:61-89.
    [156]吴俊,束怀瑞,张开春,张学宁,姜立杰,魏振林.桃果实非酸/酸性状AFLP标记的筛选[J].果树学报,2004,21(4):298-301.
    [157] Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), A new marker system basedon a simple PCR reaction: its application to mapping and gene tagging in Brassica[J]. Theor. Appl.Genet.,2001,103:455-461.
    [158] Michelmore R W, Paranand I, Kessali R V. Identification of markers linked to disease resistancegene by bulked segregant analysis: a rapid method to detect marders in specific genomic regionsusing segregation populations[J]. Proc.Nat.Aca.Sci.,1991,88:9829-9832.
    [159] Ferriol M, Pico B M, Nuez F. Genetic diversity of some accessions of Cucurbita maxima fromSpain using RAPD and SBAP markers[J]. Genetic Resources and Crop Evolution,2003,50:227-238.
    [160]邱文武,孙伟生,窦美安.基于PCR的新型分子标记SRAP研究进展[J].江西农业学报,2007,19(8):26-28.
    [161]郭大龙,罗正荣.部分柿属植物SRAP-PCR反应体系的优化[J].果树学报,2006,23(1):138-141.
    [162]马明,杨克强,刘晓菊,孙明高,郭起荣.核桃(Juglans regia) SRAP标记反应体系建立的研究[J].山东农业大学学报(自然科学版),2007,38(2):189-192.
    [163]姜帆,高慧颖,陈秀萍,郑少泉.龙眼SRAP-PCR反应体系的优化[J].福建林业科技,2007,34(4):20-24.
    [164]张妤艳,吴俊,张绍铃.梨SRAP-PCR反应体系的建立与优化[J].农业生物技术学报,2007,15(5):909-910.
    [165]吴鑫,雷天刚,何永睿,刘小丰,许兰珍,彭爱红,陈善春.柑桔SRAP和ISSR分子标记技术体系的建立与优化[J].分子植物育种,2008,6(1):170-176.
    [166]乔燕春,林顺权,刘成明,杨向晖. SRAP分析体系的优化及在枇杷种质资源研究上的应用[J].果树学报,2008,25(3):348-352.
    [167]郭凌飞,邹明宏,杜丽清,曾辉,陆超忠.均匀设计优化澳洲坚果SRAP反应体系[J].果树学报,2008,25(2):250-353.
    [168]李莉,彭建营,郑宝强.枣SRAP-PCR体系的正交优化[J].农业生物技术学报,2008,16(2):361-362.
    [169]王珍,方宣钧.植物DNA分离[J].分子植物育种,2003,1(2):281-288.
    [170] Cipriani G, Lot G, Huang W-G, Marrazo MT, Peterlunger E, Testolin R.AC/GT and AG/CTmicrosatellite repeats in peach [Prunus persica (L.) Batsch]: isolation, characterisation andcross-species amplification in Prunus[J]. Theor Appl Genet,1999,99:65-72.
    [171] Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV,Ballard RE, Abbott AG.Characterisation of microsatellite markers in peach [Prunus persica (L.)Batsch][J]. Theor Appl Genet,2000,101:421–428.
    [172] Testolin R, Marrazo MT, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, SansaviniS.Microsatellite DNA in peach [Prunus persica (L.) Batsch] and its use in fingerprinting and testingthe genetic origin of cultivars[J]. Genome,2000,43:512–520.
    [173] Aranzana MJ, Garcia-Mas J, Carbo J, Arus P. Development and variability analysis ofmicrosatellite markers in peach[J]. Plant Breeding,2002,121:87–92.
    [174]Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R. Microsatellites inMalus domestica (apple): abundance, polymorphism and cultivar identification[J]. Theor ApplGenet,1997,94:249-254.
    [175]Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C. Simple sequence repeats for thegenetic analysis of apple[J]. Theor Appl Genet,1998,96:1069–1076.
    [176] Hokanson SC, Szewc-MCFadden AK, Lamboy WF, MCFerson JR. Microsatellite (SSR) markersreveal genetic identities, genetic diversity and relationships in a Malus domestica Borkh core subsetcollection[J] Theor Appl Genet,1998,97:671–683.
    [177]郑景生,吕蓓. PCR技术及实用方法[J].分子植物育种,2003,1:381-394.
    [178] Lander, E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. Mapmaker:an interactive computer package for constructing primary genetic linkage maps of experimental andnatural populations[J]. Genomics,1987,1:174-181.
    [179]刘仁虎,孟金陵. MapDraw,在Excel中绘制遗传连锁图的宏[J].遗传,2003,25:317-321.
    [180]刘立军,蒙祖庆,邢秀龙,彭定祥.苎麻基因组SRAP扩增体系的优化研究[J].分子植物育种,2006,4(5):726-730.
    [181]俞明亮.桃性状遗传评价和分子标记技术研究[D].南京:南京农业大学,2004.
    [182] Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics,biochemistry, cellbiology, and biotechnology [J]. Plant Physiology,2001,126:485–493.
    [183] Espley R V, Hellens R P, Putterill J, Stevenson D E, Kutty-Amma S, Allan1A C. Red colourationin apple fruit is due to the activity of the MYB transcription factor, MdMYB10[J].The PlantJournal,2007,49:414–427.
    [184] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual[M].北京:科学出版社,1999.
    [185] Kumar A,Bennetzen JL. Plant retrotransposons[J]. Annu Rev of Genet,1999,33:479-532
    [186] Boeke JD, Garfinkel DJ, Styles CA, Fink GR. Ty elements transpose through an RNAintermediate [J].1985, Cell40,491-500.
    [187] Doolittle RF, Feng DF, Johnson MS, McClure MA. Origins and evolutionary relationships ofretroviruses[J]. Q. Rev. Biol.,1989,64:1-30.
    [188] Xiong Y, Eickbush TH. Origin and evolution of retroelements based upon their reversetranscriptase sequences[J]. EMBO J.,1990,9:3353-3362.
    [189] Voytas DF, Ausubel FM. A copia-like transposable element family in Arabidopsis thaliana[J].Nature,1988,336:242-244.
    [190] Berg DE, Howe MM. Mobile DNA[M], Washington: Am. Soc. Microbiol.,1989.
    [191] Mount SM, Rubin GM. Complete nucleotide sequence of the Drosophila transposable elementcopia: homology between copia and retroviral proteins[J]. Mol. Cell. Biol.,1985,5:1630-1638.
    [192] Fourcade-Peronnet F, d'Auriol L, Becker J, Galibert F, Best-Belpomme M. Primary structure andfunctional organization of Drosophila1731retrotransposon[J]. Nucleic Acids Res.1988,16:6113-6125.
    [193] Konieczny A, Voytas DF, Cummings MP, Ausubel FM. A superfamily of Arabidopsis thalianaretrotransposons[J]. Genetics,1991,1:801-809.
    [194] Grandbastien MA, Spielmann A, Caboche M. Tnt1, a mobile retroviral-like transposable elementof tobacco isolated by plant cell genetics[J]. Nature,1989,337:376-380.
    [195] Camirand A, Brisson N. The complete nucleotide sequence of the Tst1retrotransposon ofpotato[J]. Nucleic Acids Res.,1990,18:4929.
    [196] Moore G, Lucas H, Batty N, Flavell R B. A family of retrotransposons and associated variation inwheat[J]. Genomics,1991,10:461-468.
    [197] Rothnie HM, McCurrach KJ, Glover LA, Hardman N. Retrotransposon-like nature of Tp1elements: implications for the organisation of highly repetitive, hypermethylated DNA in thegenome of Physarum polycephalum[J]. Nucleic Acids Res.,1991,19:279-286.
    [198] Voytas DF, Cummings MP, Konieczny AJ, Ausubel FM.copia-like retrotransposons are ubiquitousamong plants[J]. Proc. Natl. Acad. Sci. USA,1992,89:7124-7128.
    [199]唐益苗,马有志.植物逆转座子及其在功能基因组学中的应用[J].植物遗传资源学报,2005:221-225.
    [200]高燕会,祝水金,李润植.基于逆转座子的植物分子标记技术及其应用[J].生物技术通讯,2003:5-11.
    [201]韦杰.柑橘类植物逆转座子的鉴定及相关分子标记的建立[D].武汉:华中农业大学,2007.
    [202]赵桂玲.苹果基因组中Ty1-copia反转录转座子的分离鉴定及S-SAP标记体系的建立[D].沈阳:沈阳农业大学,2008.
    [203]贾怀志,刘艳红,渠慎春,高志红,王昆,章镇.苹果IRAP技术体系的建立及优化[J].果树学报,2009,26:254-257.
    [204]孙俊,房经贵,王飞,孙其宝,章镇,王昆.苹果Ty1-copia类逆转座子LTR10序列及其在苹果属植物中的遗传多样性分析[J].南京农业大学学报,2010,33:43-48.
    [205] Guo DL, Zhang HQ, Luo ZR. Genetic relationships of Diospyros kaki Thunb. and related speciesrevealed by IRAP and REMAP analysis[J]. Plant Sci,2006,170:528-533.
    [206]马跃.草莓基因组中LTR反转录转座子的分离和鉴定[D].沈阳:沈阳农业大学,2008.
    [207] Armstrong JS, Gibbs AJ, Peakall R,Weiller G.1994.The RAPDistance Package/version2.00(CP/OL).John.Armsrong@anu.edu.au.
    [208] Felsenstein J,2004. PHILIP, Phylogeny Inference Package3.6(CP/OL). http://evolution.gs.Washington.edu/phylip. html.
    [209] Flavell AJ, Smith DB, Kumar A. Extreme heterogeneity of Ty1-copia group retrotransposons inplants[J]. Mol. Gen.Genet.,1992,231:233-242.
    [210] Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S. Extreme heterogeneity ofTy1-copia group retrotransposons in plants[J]. Science,1982,215:1577-1585.
    [211] Hu WS, Temin HM. Retroviral recombination and reverse transcription[J]. Science,1990,25:1227-1232.
    [212] Dombroski B A, Mathias S L, Nanthekumar E, Scott AF, Kazian HHJr. Isolation of an activehuman transposable element[J]. Science,1991,254:1805-1808.
    [213] Voytas DF, Konieczny A, Cummings MP, Ausubel FM. The structure, distribution and evolutionof the Ta1retrotransposable element family of Arabidopsis thaliana[J].Genetics,1990,126:713-721.
    [214] Atcheley WR, Fitch WM. Gene trees and the origins of inbred strains of mice[J]. Science,1991,254:554-558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700