用户名: 密码: 验证码:
长白山牛皮杜鹃的遗传多样性与分子亲缘地理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛皮杜鹃(Rhododendron aureum Georgi或者Rhododendron chrysanthumPall),为多年生常绿小灌木,属杜鹃花科(Ericaceae),常绿杜鹃亚属,主要分布于长白山高山苔原带及岳桦林下,是长白山苔原生态系统的优势种。由于长白山特殊的地理条件,一定的海拔梯度和历史上的火山活动,为探讨牛皮杜鹃当今遗传变异分布格局及其成因,长白山特殊的地质历史活动对牛皮杜鹃进化历史及当今该物种的地理分布格局的研究提供了条件。
     本论文采用ISSR和RAPD分子标记技术揭示长白山海拔梯度造成的生境差异对牛皮杜鹃遗传多样性和遗传结构的影响。同时利用cpDNA trnL-trnF片段的序列变异研究火山活动对牛皮杜鹃进化历史及地理分布的影响。
     主要结果如下:
     1.利用ISSR和RAPD分子标记研究了长白山北坡4个不同海拔的牛皮杜鹃自然居群的遗传多样性及遗传结构。分别用10个ISSR引物和7个RAPD引物扩增66个牛皮杜鹃个体的DNA。10个ISSR引物共检测到183个位点,多态位点百分数(PPB)达到87.43%,Shannon's信息指数(I)为0.4593;7个RAPD引物共检测到124个位点,多态位点百分数(PPB)达到95.16%,Shannon's信息指数(I)为0.4794。两种分子标记方法都揭示该物种具有较高的遗传多样性水平,且随着海拔梯度由低到高而增大。Nei's遗传结构(GST,0.3652in ISSR和0.2511in RAPD)和分子变异分析(AMOVA)的结果均表明大部分的遗传变异分布在居群内(61.96%in ISSR和70.23%in RAPD),小部分的遗传变异分布在居群间,不同海拔居群间出现了一定程度的遗传分化。通过遗传分化系数GST估计的基因流分别为0.8690(ISSR)and1.4910(RAPD)。基于ISSR和RAPD分子标记的UPGMA聚类分析结果表明来自于同一居群的所有个体都聚在一起,来自于中海拔的2个居群(TYD2a和YHLa)总是聚在一起。为了进一步研究海拔梯度对牛皮杜鹃居群的影响,利用ISSR分子标记技术,分别比较了来自3组相同海拔的各2个牛皮杜鹃居群,发现它们之间具有相似的遗传多样性水平和较低水平的遗传分化。如来自2,300米海拔的两个居群TYD2a和TYD2b,多态位点百分数(PPB)分别为68.31%和69.40%,Shannon's信息指数(I)分别为0.3619和0.3642;其遗传分化系数GST为0.1263,远低于海拔间的居群(GST为0.3652)。位于2,000米海拔的两个居群YHLa和YHLb间遗传分化水平更低(GST为0.0814),且不同海拔居群间的遗传分化水平虽海拔而增高。所有实验数据表明,除了繁殖策略之外,长白山当地的地理环境对牛皮杜鹃居群遗传多样性和遗传结构的塑造起了重要的作用。恶劣的高山环境可能赋予牛皮杜鹃居群更高的遗传多样性,同时高水平的遗传变异增强了牛皮杜鹃适应环境变化的能力。
     2.在长白山北坡采集10个牛皮杜鹃自然居群共135个个体,扩增cpDNA的trnL-trnF片段并进行双向测序,比对后的序列长度为909bp,一共检测出9个多态位点,鉴定出5个cpDNA单倍型(Hap A-Hap E)。其中单倍型Hap A为古老单倍型,96%的牛皮杜鹃个体都享有此单倍型,其在长白山的低、中和高海拔地区都广泛存在。单倍型Hap B和Hap C是高海拔居群的特有单倍型;单倍型Hap D分布在中低海拔;Hap E只出现在低海拔地区。在物种水平上,牛皮杜鹃叶绿体核苷酸多样性和单倍型多样性水平普遍较低,平均水平分别为0.2×10-3和0.087。AMOVA分析结果表明94.79%的变异发生在居群内,5.21%的变异发生在居群间,群体间的遗传分化处于较低的水平(FST=0.05206, P <0.001)。单倍型的系统发育分析结果显示5个单倍型聚为一支,这可能是由于火山活动,使牛皮杜鹃经历的种内分化时间较短,还没有足够的时间形成各自的支系,但是在同一支系中,分支的长短不同,说明各单倍型分化时间有差异。在10个居群划分的三个地理组中,低海拔组具有相对高的单倍型多样性,且中低海拔组除了共享单倍型Hap A之外,还共享单倍型Hap D,由此推断低海拔地区可能是长白山千年大喷发后北坡牛皮杜鹃的起源。较低的单倍型和核苷酸多态性,Tajima’s D值,Fu’s D*和F*值均为显著的负值以及星状的单倍型网络图都支持这样一个北坡牛皮杜鹃的群体进化历史:在火山喷发后其经历了从低海拔向高海拔的近期扩张过程,在此过程中可能遭遇了瓶颈效应。
Rhododendron aureum Georgi (syn. R. chrysanthum Pall.), a family ofEricaceae, is a perennial evergreen dwarf shrub inhabiting the alpine tundra and theBetula ermanii population ecotone of Changbai Mountain. It has become thedominant species of the tundra ecosystem in this area. Based on the rich geographicvariation from the low to high elevations on Changbai mountain, we discussed theinfluence of the altitudinal gradient (environmental stress) on the spatial distributionof genetic variations and the genetic structure of this species using ISSR and RAPDmarkers. Based on the special history of volcanic eruption, we discussed theinfluence of volcanic events on the evolutionary processes and geographicaldistribution of R. aureum located on the north slope using the genealogicalinformation obtained from cpDNA trnL-trnF sequences.
     The main results are listed as following:
     1. We used ISSR and RAPD markers to describe the diversity and geneticstructure within and among four natural populations located at different altitudes onnorth slope of Changbai Mountain. DNA from66individuals was amplified with tenISSR markers and seven RAPD markers. Ten ISSR primers generated183bandswith87.43%(160) polymorphic fragments. Seven RAPD primers produced124bands. Among the total number of bands,95.16%(118) were polymorphicfragments. Shannon's information index (I) was0.4593in ISSR and0.4794inRAPD. High genetic diversity was observed by these two techniques at the specieslevel. The genetic diversity of populations increased with altitudinal gradients fromlow to high. The coefficient of gene differentiation (GST,0.3652in ISSR and0.2511 in RAPD) and AMOVA analysis revealed that most genetic diversity wasdistributed within populations (61.96%in ISSR and70.23%in RAPD). The estimateof gene flow based on GSTwas0.8690in ISSR and1.4910in RAPD. The UPGMAclustering results using ISSR and RAPD showed that all individuals from the samealtitude were gathered together, and the two populations (TYD2a and YHLa) frommiddle altitudes always clustered together. Compared with populations fromdifferent altitudes, similar genetic diversity and low genetic differentiation wereobtained from populations at the same altitudes, as revealed by ISSR markers. Forinstance, two indexes of I and PPB indicated that the two populations at the2,300maltitude had similar genetic variation (0.3619and68.31%in TYD2a;0.3642and69.40%in TYD2b). The two populations (TYD2a and TYD2b) at the same altitudeexhibited a higher Nm (3.4595) and a lower differentiation (GST,0.1263). Thegenetic differentiation of populations increased with altitudinal gradients from lowto high (GST,0.0814,0.1263and0.1771). In addition to the reproductive strategy ofR. aureum, these data highlight that local environmental conditions may play animportant role in shaping the diversity and genetic structure of this species. Thegeneral increase in genetic diversity coincided with environmental stress. Themaintenance of genetic variation subject to environmental stress is of primeimportance in maintaining genetic diversity in natural populations because differentgenotypes display varying fitness under different environmental stresses. Highgenetic diversity can serve as the internal driving force allowing R. aureum toimprove its ecological tolerance and facilitate its adaptation along altitudinalgradients.
     2. We examined135individuals from10populations of R. aureum via thesequencing of the trnL-trnF region of chloroplast DNA (cpDNA). A total of909base pairs (bp), including9polymorphic sites, were sequenced, and5haplotypeswere identified. The ancestral haplotype A was the most common haplotype and wasshared in all populations (96%of R. aureum share the same haplotype A). Privatehaplotypes B and C were fixed in populations from high altitudes. Haplotype D were shared in populations from low and middle altitudes. Haplotype E was occurred onlyin population from low altitude. The nucleotide diversity and the haplotype diversityof cpDNA were generally low at the species level. The population differentiationwas relatively low in this species (FST=0.05206, P <0.001), as revealed by ananalysis of molecular variance (AMOVA). The results of the construction of aneighbor-joining tree showed that5haplotypes did not form lineages that weredistinct from each other due to the short evolutionary history related to the eruptions.The haplotype diversity was slightly higher in R. aureum occurring at low altitudesthan at the middle and high altitudes. A low-altitude area could represent the originalcolonization site of R. aureum following a volcanic eruption on the north slope. Oneprobable demographic historical scenario is that R. aureum might undergone recentpopulation expansion from low altitudes to high altitudes following bottleneckevents influenced by volcanic activity of Changbai Mountain. This conclusion wassupported by the combined findings of low haplotype diversity, low nucleotidediversity, significant Tajima’s D and Fu and Li’s D*values, and a star-likephylogeny of haplotypes.
引文
[1] AVISE J C, ARNOLD J, BALL R M, et al. Intraspecific phylogeography: themitochondrial DNA bridge between population genetics and systematics[J].Annual Review of Ecology and Systematics1987,18:489-522.
    [2] AVISE J C. Phylogeography: the history and formation of species[M]. Boston:Harvard University Press,2000.
    [3] AVISE J C. The history and purview of phylogeography: a personal reflection[J].Molecular Ecology,1998,7(4):371-379.
    [4] MORITZ C, FAITH D P. Comparative phylogeography and the identification ofgenetically divergent areas for conservation[J]. Molecular Ecology,2002,7(4):419-429.
    [5] NEWTON A, ALLNUTT T, GILLIES A, et al. Molecular phylogeography,intraspecific variation and the conservation of tree species[J]. Trends inEcology&Evolution,1999,14(4):140-145.
    [6] GRASSI F, LABRA M, IMAZIO S, et al. Phylogeographical structure andconservation genetics of wild grapevine[J]. Conservation genetics,2006,7(6):837-845.
    [7] LIAO P-C, HAVANOND S, HUANG S. Phylogeography of Ceriops tagal(Rhizophoraceae) in Southeast Asia: the land barrier of the Malay Peninsulahas caused population differentiation between the Indian Ocean and SouthChina Sea[J]. Conservation genetics,2007,8(1):89-98.
    [8] HUDSON R R. Estimating the recombination parameter of a finite populationmodel without selection[J]. Genetical research,1987,50(03):245-250.
    [9] MCDONALD J H, KREITMAN M. Adaptive protein evolution at the Adh locusin Drosophila[J]. Nature,1991,351(6328):652-654.
    [10] HILL R E, HASTIE N D. Accelerated evolution in the reactive centre regionsof serine protease inhibitors[J]. Nature,1987,326(6108):96-99.
    [11] TAJIMA F. Evolutionary relationship of DNA sequences in finitepopulations[J]. Genetics,1983,105(2):437-460.
    [12] FU Y X. Statistical tests of neutrality of mutations against population growth,hitchhiking and background selection[J]. Genetics,1997,147(2):915-925.
    [13] TEMPLETON A R, ROUTMAN E, PHILLIPS C A. Separating populationstructure from population history: a cladistic analysis of the geographicaldistribution of mitochondrial DNA haplotypes in the tiger salamander,Ambystoma tigrinum[J]. Genetics,1995,140(2):767-782.
    [14] TEMPLETON A R. Nested clade analyses of phylogeographic data: testinghypotheses about gene flow and population history[J]. Molecular Ecology,1998,7(4):381-397.
    [15]田欣,李德铢. DNA序列在植物系统学研究中的应用[J].云南植物研究,2002,24(2):170-184.
    [16] CLEGG M T, GAUT B S, LEARN G H, et al. Rates and patterns of chloroplastDNA evolution[J]. Proceedings of the National Academy of Sciences of theUnited States of America,1994,91(15):6795-6801.
    [17] SCHAAL B, HAYWORTH D, OLSEN K, et al. Phylogeographic studies inplants: problems and prospects[J]. Molecular Ecology,2002,7(4):465-474.
    [18] áLVAREZ I, WENDEL J F. Ribosomal ITS sequences and plant phylogeneticinference[J]. Molecular Phylogenetics and Evolution,2003,29(3):417-434.
    [19] EIDESEN P B, ALSOS I G, POPP M, et al. Nuclear vs. plastid data: complexPleistocene history of a circumpolar key species[J]. Molecular Ecology,2007,16(18):3902-3925.
    [20] HOLDEREGGER R, ABBOTT R J. Phylogeography of the Arctic-AlpineSaxifraga oppositifolia (Saxifragaceae) and some related taxa based on cpDNAand ITS sequence variation[J]. American journal of botany,2003,90(6):931-936.
    [21] KROPF M, KADEREIT J W, COMES H P. Late Quaternary distributionalstasis in the submediterranean mountain plant Anthyllis montana L.(Fabaceae)inferred from ITS sequences and amplified fragment length polymorphismmarkers[J]. Molecular Ecology,2002,11(3):447-463.
    [22] JEANDROZ S, ROY A, BOUSQUET J. Phylogeny and Phylogeography of theCircumpolar Genus Fraxinus (OLEACEAE) Based on Internal TranscribedSpacer Sequences of Nuclear Ribosomal DNA[J]. Molecular Phylogenetics andEvolution,1997,7(2):241-251.
    [23] IKEDA H, FUJII N, SETOGUCHI H. Application of the isolation withmigration model demonstrates the Pleistocene origin of geographicdifferentiation in Cardamine nipponica (Brassicaceae), an endemic Japanesealpine plant[J]. Molecular Biology and Evolution,2009,26(10):2207-2216.
    [24] BANU S, BHAGWAT R, KADOO N, et al. Understanding the geneticstructure of Symplocos laurina Wall. Populations using nuclear gene markers[J].Genetica,2010,138(2):197-210.
    [25] BARTISH I V, KADEREIT J W, COMES H P. Late Quaternary history ofHippopha rhamnoides L.(Elaeagnaceae) inferred from chalcone synthaseintron (Chsi) sequences and chloroplast DNA variation[J]. Molecular Ecology,2006,15(13):4065-4083.
    [26] EMSHWILLER E, DOYLE J J. Chloroplast-Expressed Glutamine Synthetase(ncpGS): Potential Utility for Phylogenetic Studies with an Example fromOxalis (Oxalidaceae)[J]. Molecular Phylogenetics and Evolution,1999,12(3):310-319.
    [27] ALBACH D C, VON STERNBURG M, SCALONE R, et al. Phylogeneticanalysis and differentiation of Veronica subgenus Stenocarpon in the BalkanPeninsula[J]. Botanical Journal of the Linnean Society,2009,159(4):616-636.
    [28] LIAO P-C, KUO D-C, LIN C-C, et al. Historical spatial range expansion and avery recent bottleneck of Cinnamomum kanehirae Hay.(Lauraceae) in Taiwaninferred from nuclear genes[J]. BMC evolutionary biology,2010,10(1):124.
    [29] YOCKTENG R, NADOT S. Phylogenetic relationships among Passifloraspecies based on the glutamine synthetase nuclear gene expressed inchloroplast (ncpGS)[J]. Molecular Phylogenetics and Evolution,2004,31(1):379-396.
    [30] LI G D, YUE L L, SUN H, et al. Phylogeography of Cyananthus delavayi(Campanulaceae) in Hengduan Mountains inferred from variation in nuclearand chloroplast DNA sequences[J]. Journal of Systematics and Evolution,2012,50(4):305-315.
    [31] GE X J, HSU T W, HUNG K H, et al. Inferring Multiple Refugia andPhylogeographical Patterns in Pinus massoniana Based on NucleotideSequence Variation and DNA Fingerprinting[J]. PLos One,2012,7(8): e43717.
    [32] INDA L A, PIMENTEL M, CHASE M W. Chalcone synthase variation andphylogenetic relationships in Dactylorhiza (Orchidaceae)[J]. Botanical Journalof the Linnean Society,2010,163(2):155-165.
    [33] KOCH M A, KIEFER C, EHRICH D, et al. Three times out of Asia Minor: thephylogeography of Arabis alpina L.(Brassicaceae)[J]. Molecular Ecology,2006,15(3):825-839.
    [34] HUANG CC, HUNG KH, WANG WK, et al. Evolutionary rates of commonlyused nuclear and organelle markers of Arabidopsis relatives (Brassicaceae)[J].Gene,2012,499(1):194-201.
    [35] HIGASHI H, IKEDA H, SETOGUCHI H. Population fragmentation causesrandomly fixed genotypes in populations of Arabidopsis kamchatica in theJapanese Archipelago[J]. Journal of Plant Research,2012,125(2):223-233.
    [36] MCKINNON G E, POTTS B M, STEANE D A, et al. Population andphylogenetic analysis of the cinnamoyl coA reductase gene in Eucalyptusglobulus (Myrtaceae)[J]. Australian journal of botany,2006,53(8):827-838.
    [37] VOLZ S M, RENNER S S. Phylogeography of the ancient Eurasian medicinalplant genus Bryonia (Cucurbitaceae) inferred from nuclear and chloroplastsequences[J]. Taxon,2009,58(2):550-560.
    [38] TOMARU N, TAKAHASHI M, TSUMURA Y, et al. Intraspecific variationand phylogeographic patterns of Fagus crenata (Fagaceae) mitochondrialDNA[J]. American journal of botany,1998,85(5):629-629.
    [39] BURBAN C, PETIT R. Phylogeography of maritime pine inferred withorganelle markers having contrasted inheritance[J]. Molecular Ecology,2003,12(6):1487-1495.
    [40] WANG H W, GE S. Phylogeography of the endangered Cathaya argyrophylla(Pinaceae) inferred from sequence variation of mitochondrial and nuclearDNA[J]. Molecular Ecology,2006,15(13):4109-4122.
    [41] DU F K, PETIT R J, LIU J Q. More introgression with less gene flow:chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, andcomparison with other Conifers[J]. Molecular Ecology,2009,18(7):1396-1407.
    [42]熊延,刘翠敏,王淑芳,等.叶绿体基因组与叶绿体基因表达的调节[J].植物生理学通讯,2002,38(3):264-269.
    [43]蒋达和.叶绿体基因组的结构研究进展[J].生物化学与生物物理进展,1990,17(001):10-14.
    [44] STANFORD A M, HARDEN R, PARKS C R. Phylogeny and biogeography ofJuglans (Juglandaceae) based on matK and ITS sequence data[J]. Americanjournal of botany,2000,87(6):872-882.
    [45] OHSAKO T, OHNISHI O. Intra-and interspecific phylogeny of wildFagopyrum (Polygonaceae) species based on nucleotide sequences ofnoncoding regions in chloroplast DNA[J]. American journal of botany,2000,87(4):573-582.
    [46] XIANG Q Y, CRAWFORD D J, WOLFE A D, et al. Origin and biogeographyof Aesculus L.(Hippocastanaceae): a molecular phylogenetic perspective[J].Evolution1998,52(4):988-997.
    [47] MATSUMOTO S, KOUCHI M, YABUKI J, et al. Phylogenetic analyses of thegenus Rosa using the mat K sequence: molecular evidence for the narrowgenetic background of modern roses[J]. Scientia Horticulturae,1998,77(1):73-82.
    [48] STEANE D A, WILSON K L, HILL R S. Using mat K sequence data tounravel the phylogeny of Casuarinaceae[J]. Molecular Phylogenetics andEvolution,2003,28(1):47-59.
    [49] KRESS W J, PRINCE L M, HAHN W J, et al. Unraveling the evolutionaryradiation of the families of the Zingiberales using morphological and molecularevidence[J]. Systematic Biology,2001,50(6):926-944.
    [50] SCHNABEL A, WENDEL J F. Cladistic biogeography of Gleditsia(Leguminosae) based on ndhF and rpl16chloroplast gene sequences[J].American journal of botany,1998,85(12):1753-1765.
    [51] SMALL R L. Phylogeny of Hibiscus sect. Muenchhusia (Malvaceae) based onchloroplast rpL16and ndhF, and nuclear ITS and GBSSI sequences[J].Systematic Botany,2004,29(2):385-392.
    [52] LONDO J P, CHIANG Y C, HUNG K H, et al. Phylogeography of Asian wildrice, Oryza rufipogon, reveals multiple independent domestications ofcultivated rice, Oryza sativa[J]. Proceedings of the National Academy ofSciences of the United States of America,2006,103(25):9578-9583.
    [53] TAN B, LIU K, YUE X L, et al. Chloroplast DNA variation andphylogeographic patterns in the Chinese endemic marsh herb Sagittariapotamogetifolia[J]. Aquatic Botany,2008,89(4):372-378.
    [54] CANNON C H, MANOS P S. Phylogeography of the Southeast Asian stoneoaks (Lithocarpus)[J]. Journal of Biogeography,2003,30(2):211-226.
    [55]李恩香.黄精叶钩吻属的亲缘地理学及其近缘类群的系统进化研究[D].杭州:浙江大学生命科学学院,2006.
    [56]万莹.东亚草木菝葜的物种分化和亲缘地理学研究[D].杭州:浙江大学生命科学学院,2011.
    [57] WANG L, WU Z Q, BYSTRIAKOVA N, et al. Phylogeography of theSino-Himalayan fern Lepisorus clathratus on “The Roof of the World”[J]. PLosOne,2011,6(9): e25896.
    [58] HWANG S Y, LIN T P, MA C S, et al. Postglacial population growth ofCunninghamia konishii (Cupressaceae) inferred from phylogeographical andmismatch analysis of chloroplast DNA variation[J]. Molecular Ecology,2003,12(10):2689-2695.
    [59] SHIH F L, HWANG S Y, CHENG Y P, et al. Uniform genetic diversity, lowdifferentiation, and neutral evolution characterize contemporary refugepopulations of Taiwan fir (Abies kawakamii, Pinaceae)[J]. American Journal ofBotany,2007,94(2):194-202.
    [60] WU S H, HWANG C Y, LIN T P, et al. Contrasting phylogeographical patternsof two closely related species, Machilus thunbergii and Machilus kusanoi(Lauraceae), in Taiwan[J]. Journal of Biogeography,2006,33(5):936-947.
    [61] GUTIéRREZ-RODRíGUEZ C, ORNELAS J F, RODRíGUEZ-GóMEZ F.Chloroplast DNA phylogeography of a distylous shrub (Palicourea padifolia,Rubiaceae) reveals past fragmentation and demographic expansion in Mexicancloud forests[J]. Molecular Phylogenetics and Evolution,2011,61:603-615.
    [62] ZHANG Q, CHIANG T Y, GEORGE M, et al. Phylogeography of the Qinghai‐Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred fromchloroplast DNA sequence variation[J]. Molecular Ecology,2005,14(11):3513-3524.
    [63] LU H P, CAI Y W, CHEN X Y, et al. High RAPD but no cpDNA sequencevariation in the endemic and endangered plant, Heptacodium miconioidesRehd.(Caprifoliaceae)[J]. Genetica,2006,128(1):409-417.
    [64] LI C, SHIMONO A, SHEN H, et al. Phylogeography of Potentilla fruticosa, analpine shrub on the Qinghai-Tibetan Plateau[J]. Journal of Plant Ecology,2010,3(1):9-15.
    [65] HODGINS K A, BARRETT S C H. Population structure and genetic diversityin tristylous Narcissus triandrus: insights from microsatellite and chloroplastDNA variation[J]. Molecular Ecology,2007,16(11):2317-2332.
    [66] HUANG S F, HWANG S Y, WANG J C, et al. Phylogeography ofTrochodendron aralioides (Trochodendraceae) in Taiwan and its adjacentareas[J]. Journal of Biogeography,2004,31(8):1251-1259.
    [67] CUN Y Z, WANG X Q. Plant recolonization in the Himalaya from thesoutheastern Qinghai-Tibetan Plateau: Geographical isolation contributed tohigh population differentiation[J]. Molecular Phylogenetics and Evolution,2010,56(3):972-982.
    [68] LU S-Y, PENG C-I, CHENG Y-P, et al. Chloroplast DNA phylogeography ofCunninghamia konishii (Cupressaceae), an endemic conifer of Taiwan[J].Genome,2001,44(5):797-807.
    [69] RODRíGUEZ‐SáNCHEZ F, GUZMáN B, VALIDO A, et al. Late Neogenehistory of the laurel tree (Laurus L., Lauraceae) based on phylogeographicalanalyses of Mediterranean and Macaronesian populations[J]. Journal ofBiogeography,2009,36(7):1270-1281.
    [70] NACIRI Y, GAUDEUL M. Phylogeography of the endangered Eryngiumalpinum L.(Apiaceae) in the European Alps[J]. Molecular Ecology,2007,16(13):2721-2733.
    [71] QIU Y-X, QI X-S, JIN X-F, et al. Population genetic structure, phylogeography,and demographic history of Platycrater arguta (Hydrangeaceae) endemic toEast China and South Japan, inferred from chloroplast DNA sequencevariation[J]. Taxon,2009,58(4):1226-1241.
    [72] REJZKOVA E, FéR T, VOJTA J, et al. Phylogeography of the forest herbCarex pilosa (Cyperaceae)[J]. Botanical Journal of the Linnean Society,2008,158(1):115-130.
    [73] SAEKI I, DICK C W, BARNES B V, et al. Comparative phylogeography ofred maple (Acer rubrum l.) and silver maple (Acer saccharinum l.): Impacts ofhabitat specialization, hybridization and glacial history[J]. Journal ofBiogeography,2011,38(5):992-1005.
    [74] FERREIRA R C, PIREDDA R, BAGNOLI F, et al. Phylogeography andconservation perspectives of an endangered Macaronesian endemic: Picconiaazorica (Tutin) Knobl.(Oleaceae)[J]. European Journal of Forest Research,2011,130(2):181-195.
    [75] HUANG S S, HWANG S Y, LIN T P. Spatial pattern of chloroplast DNAvariation of Cyclobalanopsis glauca in Taiwan and East Asia[J]. MolecularEcology,2008,11(11):2349-2358.
    [76] KUO D-C, LIN C-C, HO K-C, et al. Two genetic divergence centers revealedby chloroplastic DNA variation in populations of Cinnamomum kanehiraeHay[J]. Conservation genetics,2010,11(3):803-812.
    [77] ARTYUKOVA E, KOZYRENKO M, KHOLINA A, et al. High chloroplasthaplotype diversity in the endemic legume Oxytropis chankaensis may resultfrom independent polyploidization events[J]. Genetica,2011,139(2):221-232.
    [78] CIRES E, PRIETO J A F. The Iberian endemic species Ranunculus cabrerensisRothm.: an intricate history in the Ranunculus parnassiifolius L. polyploidcomplex[J]. Plant Systematics and Evolution,2012,298(1):121-138.
    [79] ANDREW KING R, FERRIS C. Chloroplast DNA phylogeography of Alnusglutinosa (L.) Gaertn[J]. Molecular Ecology,2002,7(9):1151-1161.
    [80] SHEN L, CHEN X, ZHANG X, et al. Genetic variation of Ginkgo bilobaL.(Ginkgoaceae) based on cpDNA PCR-RFLPs: inference of glacial refugia[J].Heredity,2004,94(4):396-401.
    [81] AHMAD D, KIKUCHI A, JATOI S, et al. Genetic variation of chloroplastDNA in Zingiberaceae taxa from Myanmar assessed by PCR–restrictionfragment length polymorphism analysis[J]. Annals of Applied Biology,2009,155(1):91-101.
    [82] HODGINS K A, STEHLIK I, WANG P, et al. The development of eightmicrosatellite loci in the wild daffodil Narcissus triandrus (Amaryllidaceae)[J].Molecular Ecology Notes,2006,7(3):510-512.
    [83] AFZAL‐RAFII Z, DODD R S. Chloroplast DNA supports a hypothesis ofglacial refugia over postglacial recolonization in disjunct populations of blackpine (Pinus nigra) in western Europe[J]. Molecular Ecology,2006,16(4):723-736.
    [84] TERRAB A, TALAVERA S, ARISTA M, et al. Genetic diversity at chloroplastmicrosatellites (cpSSRs) and geographic structure in endangered WestMediterranean firs (Abies spp., Pinaceae)[J]. Taxon,2007,56(2):409-416.
    [85] LEMES M R, DICK C W, NAVARRO C, et al. Chloroplast DNAmicrosatellites reveal contrasting phylogeographic structure in mahogany(Swietenia macrophylla King, Meliaceae) from Amazonia and CentralAmerica[J]. Tropical Plant Biology,2010,3(1):40-49.
    [86] GE X J, LIU M, WANG W K, et al. Population structure of wild bananas,Musa balbisiana, in China determined by SSR fingerprinting and cpDNA PCR‐RFLP[J]. Molecular Ecology,2005,14(4):933-944.
    [87] KURODA Y, KAGA A, TOMOOKA N, et al. Population genetic structure ofJapanese wild soybean (Glycine soja) based on microsatellite variation[J].Molecular Ecology,2006,15(4):959-974.
    [88] HEUERTZ M, FINESCHI S, ANZIDEI M, et al. Chloroplast DNA variationand postglacial recolonization of common ash (Fraxinus excelsior L.) inEurope[J]. Molecular Ecology,2004,13(11):3437-3452.
    [89] GóMEZ A, VENDRAMIN G G, GONZáLEZ-MARTíNEZ S C, et al. Geneticdiversity and differentiation of two Mediterranean pines (Pinus halepensis Mill.and Pinus pinaster Ait.) along a latitudinal cline using chloroplast microsatellitemarkers[J]. Diversity and Distributions,2005,11(3):257-263.
    [90] PARDO C, CUBAS P, TAHIRI H. Genetic variation and phylogeography ofStauracanthus (Fabaceae, Genisteae) from the Iberian Peninsula and northernMorocco assessed by chloroplast microsatellite (cpSSR) markers[J]. Americanjournal of botany,2008,95(1):98-109.
    [91] DAWN MARSHALL H, NEWTON C, RITLAND K. Chloroplastphylogeography and evolution of highly polymorphic microsatellites inlodgepole pine (Pinus contorta)[J]. TAG Theoretical and Applied Genetics,2002,104(2):367-378.
    [92] JAKOB S S, IHLOW A, BLATTNER F R. Combined ecological nichemodelling and molecular phylogeography revealed the evolutionary history ofHordeum marinum (Poaceae)—niche differentiation, loss of genetic diversity,and speciation in Mediterranean Quaternary refugia[J]. Molecular Ecology,2007,16(8):1713-1727.
    [93] CUENCA A, ESCALANTE A, PI ERO D. Long‐distance colonization,isolation by distance, and historical demography in a relictual Mexican pinyonpine (Pinus nelsonii Shaw) as revealed by paternally inherited genetic markers(cpSSRs)[J]. Molecular Ecology,2003,12(8):2087-2097.
    [94]李珊.金钱槭属植物保护遗传学与分子亲缘地理学研究[D].西安:西北大学生命科学学院,2004.
    [95]曹东伟.李属樱亚属植物分子亲缘地理学研究[D].西安:西北大学生命科学学院,2006.
    [96] POCK TSY J M L, LUMARET R, MAYNE D, et al. Chloroplast DNAphylogeography suggests a West African centre of origin for the baobab,Adansonia digitata L.(Bombacoideae, Malvaceae)[J]. Molecular Ecology,2009,18(8):1707-1715.
    [97] SCH NSWETTER P, TRIBSCH A, STEHLIK I, et al. Glacial history of highalpine Ranunculus glacialis (Ranunculaceae) in the European Alps in acomparative phylogeographical context[J]. Biological Journal of the LinneanSociety,2004,81(2):183-195.
    [98] ORTIZ M á, TREMETSBERGER K, TALAVERA S, et al. Populationstructure of Hypochaeris salzmanniana DC.(Asteraceae), an endemic species tothe Atlantic coast on both sides of the Strait of Gibraltar, in relation toQuaternary sea level changes[J]. Molecular Ecology,2007,16(3):541-552.
    [99] JUAN A, FAY M F, PASTOR J, et al. Genetic structure and phylogeography inJuniperus oxycedrus subsp. macrocarpa around the Mediterranean and Atlanticcoasts of the Iberian Peninsula, based on AFLP and plastid markers[J].European Journal of Forest Research,2012,131(3):845-856.
    [100] SOMMER R, NADACHOWSKI A. Glacial refugia of mammals in Europe:evidence from fossil records[J]. Mammal Review,2006,36(4):251-265.
    [101]龚维.孑遗植物银杏的分子亲缘地理学研究[D].杭州:浙江大学生命科学学院,2007.
    [102] CHENG Y P, HWANG S Y, LIN T P. Potential refugia in Taiwan revealed bythe phylogeographical study of Castanopsis carlesii Hayata (Fagaceae)[J].Molecular Ecology,2005,14(7):2075-2085.
    [103] SEWELL M M, PARKS C R, CHASE M W. Intraspecific chloroplast DNAvariation and biogeography of North American LiriodendronL.(Magnoliaceae)[J]. Evolution,1996,50(3):1147-1154.
    [104]胡琳贞,方明渊.中国植物志(第五十七卷第二分册)[M].北京:科学出版社,1994.
    [105]严仲凯,李万林.中国长白山药用植物彩色图志[M].北京:人民卫生出版社,1997.
    [106]祝廷成.中国长白山高山植物[M].北京:科学出版社,1999.
    [107]张继有,严仲凯,李海日,等.长白山植物药志[M].长春:吉林人民出版社,1982.
    [108]唐宇丹,赵英浩.长白山保护区稀有濒危植物考察[J].中国植物园,1995,(2):147-154.
    [109]汪松,解焱.中国物种红色名录[M].北京:高等教育出版社,2004.
    [110]魏晶,吴钢,邓红兵.长白山高山冻原植被生物量的分布规律[J].应用生态学报,2004,15(11):1999-2004.
    [111]丁洪玲,宫宇,李美善,等.牛皮杜鹃植株解剖结构的研究[J].延边大学农学学报,2008,(02):90-97.
    [112]杨志勇.牛皮杜鹃遗传多样性的研究[D].长春:吉林大学生命科学学院,2009.
    [113]于盼盼.牛皮杜鹃对环境变化的响应及基因表达差异的初步研究[D].长春:吉林大学生命科学学院,2011.
    [114]顾地周,孙忠林,何晓燕,等.牛皮杜鹃的组培快繁及种质试管保存技术[J].园艺学报,2008,(04):603-606.
    [115]顾地周,丛小力,姜海智,等.牛皮杜鹃的组织培养与快速繁殖[J].植物生理学通讯,2008,44(2):300.
    [116]李玉梅,姜云天,孙智慧.基于均匀设计优化牛皮杜鹃嫩叶直接再生芽苗及植株再生体系[J].安徽农业科学,2009,37(2):678-680.
    [117]王艳萍,顾地周,卢存福.均匀设计法优化牛皮杜鹃腋芽丛生芽苗及高频植株再生体系研究[J].湖北农业科学,2010,49(002):279-282.
    [118]丁洪玲.牛皮杜鹃组织培养及植株解剖学研究[D].延吉:延边大学农学院,2008.
    [119]宫宇.牛皮杜鹃组织培养及生物多样性分析[D].延吉:延边大学农学院,2010.
    [120]徐颖,金灿,宗成文,等.长白山牛皮杜鹃组培快繁及初步驯化栽培研究[J].江苏农业科学,2010,(02):47-49.
    [121]陈刚,金慧子,李雪峰,等.杜鹃花属植物的化学成分及药理研究进展[J].药学实践杂志,2008,26(4):255-257.
    [122]戴胜军,于德泉.烈香杜鹃中的三萜类化合物[J].中国天然药物,2006,3(6):347-349.
    [123]张均田.若干中草药药理和化学研究(一)[J].中国医学科学院学报,1979,1(1):41-50.
    [124]范一菲,孔德虎,陈志武,等.杜鹃花总黄酮对心肌缺血损伤的保护作用[J].安徽医科大学学报,2006,41(2):157-160.
    [125] KLOCKE J A, MEI-YING H, SHIN-FOON C, et al. Grayanoid diterpeneinsect antifeedants and insecticides from Rhododendron molle[J].Phytochemistry,1991,30(6):1797-1800.
    [126]汪礼权,秦国伟.杜鹃花科木藜芦烷类毒素的化学与生物活性研究进展[J].天然产物研究与开发,1997,9(4):82-89.
    [127]任茜,李强,李万波,等.十种秦岭杜鹃的抗菌作用研究[J].陕西林业科技,1990,8(3):30-31.
    [128] KASHIWADA Y, YAMAZAKI K, IKESHIRO Y, et al. Isolation ofrhododaurichromanic acid B and the anti-HIV principles rhododaurichromanicacid A and rhododaurichromenic acid from Rhododendron dauricum[J].Tetrahedron,2001,57(8):1559-1563.
    [129]程东美,胡美英.黄杜鹃的研究进展[J].天然产物研究与开发,1999,11(5):109-113.
    [130]许鹏翔,贾卫民,毕良武,等.长白山野杜鹃花精油化学成分的研究[J].厦门大学学报:自然科学版,2003,42(3):348-351.
    [131] GORSHKOV A, MURASHKINA I, VERESHCHAGIN A, et al. QuantitativeHPLC determination of biologically active components of the Rhododendronaureum Georgi plant[J]. Pharmaceutical chemistry journal,2000,34(12):658-660.
    [132]于秋艳.牛皮杜鹃组培快繁技术及有效成分研究[D].延吉:延边大学农学院,2010.
    [133]周繇.长白山区珍稀濒危植物优先保护序列的研究[J].林业科学研究,2006,19(06):740-749.
    [134] SCHNELLER J, LIEBST B. Patterns of variation of a common fern(Athyrium filix-femina; Woodsiaceae): population structure along and betweenaltitudinal gradients[J]. American journal of botany,2007,94(6):965-971.
    [135] ST CKLIN J, KUSS P, PLUESS A R. Genetic diversity, phenotypic variationand local adaptation in the alpine landscape: case studies with alpine plantspecies[J]. Botanica Helvetica,2009,119(2):125-133.
    [136] GRAM W K, SORK V L. Association between environmental and geneticheterogeneity in forest tree populations[J]. Ecology,2001,82(7):2012-2021.
    [137] GUSTAVSSON B A. Genetic variation in horticulturally important traits offifteen wild lingonberry Vaccinium vitis-idaea L. populations[J]. Euphytica,2001,120(2):173-182.
    [138] OHSAWA T, IDE Y. Global patterns of genetic variation in plant speciesalong vertical and horizontal gradients on mountains[J]. Global Ecology andBiogeography,2008,17(2):152-163.
    [139] BYARS S G, PARSONS Y, HOFFMANN A A. Effect of altitude on thegenetic structure of an Alpine grass, Poa hiemata[J]. Annals of Botany,2009,103(6):885-899.
    [140] RUNIONS C J, GEBER M A. Evolution of the self-pollinating flower inClarkia xantiana (Onagraceae). I. Size and development of floral organs[J].American journal of botany,2000,87(10):1439-1451.
    [141] YEH F, YANG R, BOYLE T, et al. POPGENE, the user friendly sharewarefor population genetic analysis[J]. Molecular Biology and BiotechnologyCenter, University of Alberta, Edmonton,1997.
    [142] LEWONTIN R C. The apportionment of human diversity[J]. EvolutionaryBiology,1972,6(38):381-398.
    [143] NEI M. Analysis of gene diversity in subdivided populations[J]. Proceedingsof the National Academy of Sciences of the United States of America,1973,70(12):3321-3323.
    [144] MCDERMOTT J M, MCDONALD B A. Gene flow in plant pathosystems[J].Annual Review of Phytopathology,1993,31(1):353-373.
    [145] EXCOFFIER L. AMOVA: Analysis of molecular variance (version1.55)[J].Genetics and Biometry Laboratory, University of Geneva,1993.
    [146] ROHLF F. NTSYSpc: numerical taxonomy and multivariate analysis system,version2.02[J]. Exeter Software, Setauket, NY,1998.
    [147] NYBOM H, BARTISH I V. Effects of life history traits and samplingstrategies on genetic diversity estimates obtained with RAPD markers inplants[J]. Perspectives in Plant Ecology, Evolution and Systematics,2000,3(2):93-114.
    [148] HAMRICK J, GODT M. Effects of life history traits on genetic diversity inplant species[J]. Philosophical Transactions of the Royal Society B-BiologicalSciences,1996,351(1345):1291-1298.
    [149] HIRAO A S, KAMEYAMA Y, OHARA M, et al. Seasonal changes inpollinator activity influence pollen dispersal and seed production of the alpineshrub Rhododendron aureum (Ericaceae)[J]. Molecular Ecology,2006,15(4):1165-1173.
    [150] RAFII Z A, DODD R S. Genetic diversity among coastal and Andean naturalpopulations of Araucaria araucana (Molina) K. Koch[J]. BiochemicalSystematics and Ecology,1998,26(4):441-451.
    [151] OWUOR E D, FAHIMA T, BEILES A, et al. Population genetic response tomicrosite ecological stress in wild barley, Hordeum spontaneum[J]. MolecularEcology,1997,6(12):1177-1187.
    [152] FRANKHAM R. Relationship of genetic variation to population size inwildlife[J]. Conservation Biology,1996,10(6):1500-1508.
    [153] GODT M J W, JOHNSON B R, HAMRICK J. Genetic diversity andpopulation size in four rare southern Appalachian plant species[J].Conservation Biology,1996,10(3):796-805.
    [154] ELLSTRAND N C, ELAM D R. Population genetic consequences of smallpopulation size: implications for plant conservation[J]. Annual Review ofEcology and Systematics,1993,24:217-242.
    [155] LANDE R, LANDWEBERG L, DOBSON A. Extinction risks fromanthropogenic, ecological, and genetic factors[M]. Princeton, New Jersey:Princeton University Press,1999.
    [156] SLATKIN M. Gene flow and the geographic structure of naturalpopulations[J]. Science,1987,236(4803):787-792.
    [157] HERRERA C M, BAZAGA P. Adding a third dimension to the edge of aspecies' range: altitude and genetic structuring in mountainous landscapes[J].Heredity,2008,100(3):275-285.
    [158] HADADO T, RAU D, BITOCCHI E, et al. Adaptation and diversity along analtitudinal gradient in Ethiopian barley(Hordeum vulgare L.) landraces revealedby molecular analysis[J]. BMC Plant Biology,2010,10(1):121-140.
    [159] NEVO E. Evolution of genome-phenome diversity under environmentalstress[J]. Proceedings of the National Academy of Sciences of the United Statesof America,2001,98(11):6233-6240.
    [160] NEVO E. Molecular evolution and ecological stress at global regional andlocal scales: The Israeli perspective[J]. Journal of Experimental Zoology,1998,282(1-2):95-119.
    [161] PREMOLI A C. Isozyme polymorphisms provide evidence of clinal variationwith elevation in Nothofagus pumilio[J]. Journal of Heredity,2003,94(3):218-226.
    [162]李丹,彭少麟.三个不同海拔梯度马尾松种群的遗传多样性及其与生态因子的相关性[J].生态学报,2001,21(03):415-421.
    [163] LENOIR J, GEGOUT J C, MARQUET P A, et al. A significant upward shiftin plant species optimum elevation during the20th century[J]. Science,2008,320(5884):1768-1771.
    [164] WALTHER G R, BEI NER S, BURGA C A. Trends in the upward shift ofalpine plants[J]. Journal of Vegetation Science,2005,16(5):541-548.
    [165] GRABHERR G, GOTTFRIED M, PAULI H. Climate effects on mountainplants[J]. Nature,2009,369(6480):448-448.
    [166] GRACE J, BERNINGER F, NAGY L. Impacts of climate change on the treeline[J]. Annals of Botany,2002,90(4):537-544.
    [167] PALMA-SILVA C, LEXER C, PAGGI G, et al. Range-wide patterns ofnuclear and chloroplast DNA diversity in Vriesea gigantea (Bromeliaceae), aneotropical forest species[J]. Heredity,2009,103(6):503-512.
    [168] SCH NSWETTER P, TRIBSCH A, BARFUSS M, et al. Several Pleistocenerefugia detected in the high alpine plant Phyteuma globulariifolium Sternb.&Hoppe (Campanulaceae) in the European Alps[J]. Molecular Ecology,2008,11(12):2637-2647.
    [169] YANG F S, QIN A L, LI Y F, et al. Great Genetic Differentiation amongPopulations of Meconopsis integrifolia and Its Implication for Plant Speciationin the Qinghai-Tibetan Plateau[J]. Plos One,2012,7(5): e37196.
    [170] NAGAMITSU T, OGAWA M, ISHIDA K, et al. Clonal diversity, geneticstructure, and mode of recruitment in a Prunus ssiori population establishedafter volcanic eruptions[J]. Plant Ecology,2004,174(1):1-10.
    [171] GüBITZ T, THORPE R S, MALHOTRA A. The dynamics of genetic andmorphological variation on volcanic islands[J]. Proceedings of the RoyalSociety of London Series B-Biological Sciences,2005,272(1564):751-757.
    [172] VANDERGAST A G, GILLESPIE R G, RODERICK G K. Influence ofvolcanic activity on the population genetic structure of Hawaiian Tetragnathaspiders: fragmentation, rapid population growth and the potential foraccelerated evolution[J]. Molecular Ecology,2004,13(7):1729-1743.
    [173] SHAO G, SHUGART H H, ZHAO G, et al. Forest cover types derived fromLandsat Thematic Mapper imagery for Changbai Mountain area of China[J].Canadian Journal of Forest Research,1996,26(2):206-216.
    [174] QIAN H. Alpine tundra of Mt. Changbai:phytotaxonomy, florology andphytoecology[D]. Shenyang: Institute of Applied Ecology, Chinese Academyof Sciences,1989.
    [175]周奕华,侯丙凯,石东乔,等.杨树叶绿体3′rps12基因, rps7基因和ndhB基因片段的克隆及序列分析[J].中国生物化学与分子生物学报,200117(5):606-616.
    [176] TABERLET P, GIELLY L, PAUTOU G, et al. Universal primers foramplification of three non-coding regions of chloroplast DNA[J]. PlantMolecular Biology,1991,17(5):1105-1109.
    [177] DEMESURE B, SODZI N, PETIT R. A set of universal primers foramplification of polymorphic non‐coding regions of mitochondrial andchloroplast DNA in plants[J]. Molecular Ecology,1995,4(1):129-134.
    [178] LU G, MORIYAMA E N. Vector NTI, a balanced all-in-one sequenceanalysis suite[J]. Briefings in Bioinformatics,2004,5(4):378-388.
    [179] THOMPSON J D, HIGGINS D G, GIBSON T J. CLUSTAL W: improvingthe sensitivity of progressive multiple sequence alignment through sequenceweighting, position-specific gap penalties and weight matrix choice[J]. NucleicAcids Research,1994,22(22):4673-4680.
    [180] LIBRADO P, ROZAS J. DnaSP v5: a software for comprehensive analysis ofDNA polymorphism data[J]. Bioinformatics,2009,25(11):1451-1452.
    [181] EXCOFFIER L, LISCHER H E L. Arlequin suite ver3.5: a new series ofprograms to perform population genetics analyses under Linux and Windows[J].Molecular Ecology Resources,2010,10(3):564-567.
    [182] TAJIMA F. Statistical method for testing the neutral mutation hypothesis byDNA polymorphism[J]. Genetics,1989,123(3):585-595.
    [183] KUMAR S, TAMURA K, NEI M. MEGA3: integrated software for molecularevolutionary genetics analysis and sequence alignment[J]. Briefings inBioinformatics,2004,5(2):150-163.
    [184] CLEMENT M, POSADA D, CRANDALL K A. TCS: a computer program toestimate gene genealogies[J]. Molecular Ecology,2000,9(10):1657-1659.
    [185] HUELSENBECK J P, RONQUIST F. MRBAYES: Bayesian inference ofphylogenetic trees[J]. Bioinformatics,2001,17(8):754-755.
    [186] RONQUIST F, HUELSENBECK J P. MrBayes3: Bayesian phylogeneticinference under mixed models[J]. Bioinformatics,2003,19(12):1572-1574.
    [187] LARGET B, SIMON D L. Markov chain Monte Carlo algorithms for theBayesian analysis of phylogenetic trees[J]. Molecular Biology and Evolution,1999,16(6):750-759.
    [188] CHUNG J D, LIN T P, CHEN Y L, et al. Phylogeographic study reveals theorigin and evolutionary history of a Rhododendron species complex inTaiwan[J]. Molecular Phylogenetics and Evolution,2007,42(1):14-24.
    [189] ALSOS I, ENGELSKJ N T, GIELLY L, et al. Impact of ice ages oncircumpolar molecular diversity: insights from an ecological key species[J].Molecular Ecology,2005,14(9):2739-2753.
    [190] PROVAN J, WATTIER R A, MAGGS C A. Phylogeographic analysis of thered seaweed Palmaria palmata reveals a Pleistocene marine glacial refugium inthe English Channel[J]. Molecular Ecology,2005,14(3):793-803.
    [191] NORDBORG M, INNAN H. Molecular population genetics[J]. CurrentOpinion in Plant Biology,2002,5(1):69-73.
    [192] ECHT C, DEVERNO L, ANZIDEI M, et al. Chloroplast microsatellites revealpopulation genetic diversity in red pine, Pinus resinosa Ait[J]. MolecularEcology,1998,7(3):307-316.
    [193] ARIS-BROSOU S, EXCOFFIER L. The impact of population expansion andmutation rate heterogeneity on DNA sequence polymorphism[J]. MolecularBiology and Evolution,1996,13(3):494-504.
    [194] LIU Y F, XING M, ZHAO W, et al. Genetic diversity analysis ofRhododendron aureum Georgi (Ericaceae) located on Changbai Mountainusing ISSR and RAPD markers[J]. Plant Systematics and Evolution,2012,298(5):921-930.
    [195] SEARS B B. Elimination of plastids during spermatogenesis and fertilizationin the plant kingdom[J]. Plasmid,1980,4(3):233-255.
    [196] KAUNDUN S S, MATSUMOTO S. Molecular evidence for maternalinheritance of the chloroplast genome in tea, Camellia sinensis (L.) O.Kuntze[J]. Journal of the Science of Food and Agriculture,2011,91(14):2660-2663.
    [197] ZHANG Y, FANG Z, WANG Q, et al. Chloroplast Subspecies-Specific SNPDetection and Its Maternal Inheritance in Brassica oleracea L. by Using adCAPS Marker[J]. Journal of Heredity,2012,103(4):606-611.
    [198] AUSTERLITZ F, MARIETTE S, MACHON N, et al. Effects of colonizationprocesses on genetic diversity: differences between annual plants and treespecies[J]. Genetics,2000,154(3):1309-1321.
    [199] LATTA R G, MITTON J B. A comparison of population differentiation acrossfour classes of gene marker in limber pine (Pinus flexilis James)[J]. Genetics,1997,146(3):1153-1163.
    [200] MORTIMER E, VAN VUUREN B J, MEIKLEJOHN K I, et al.Phylogeography of a mite, Halozetes fulvus, reflects the landscape history of ayoung volcanic island in the sub-Antarctic[J]. Biological Journal of the LinneanSociety,2012,105(1):131-145.
    [201] EMERSON B. Evolution on oceanic islands: molecular phylogeneticapproaches to understanding pattern and process[J]. Molecular Ecology,2002,11(6):951-966.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700