用户名: 密码: 验证码:
杂交稻骨干亲本“蜀恢527”产量性状及其一般配合力的遗传基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨干亲本在品种培育过程中发挥了至关重要的作用。本研究以籼型杂交稻骨干恢复系蜀恢527为轮回亲本,以高产恢复系ZDZ057、辐恢838和特青为供体,构建3个高代回交产量选择群体。在不同环境下,进行产量及其相关性状表型评价,结合基因型分析,充分发掘供体中优良等位基因。同时,以高代回交群体中的57个产量导入系为父本,与4类核心不育系,即:协青早A(协A,矮败型)、II-32A(IIA,印水型)、冈46A(冈A,冈型)和金23A(金A,野败型)分别测交,剖析产量及其相关性状一般配合力和杂种优势遗传基础。最后,在测交F1组合中,选择与对照组合协A/蜀恢527相比,产量优势表现稳定的极端组合:协A/WD7(低产比较优势杂种)和协A/WD34(高产比较优势杂种)。通过RNA-Seq对这3个杂种及4个亲本进行苗期、分蘖期和幼穗分化期转录组分析,探讨杂种优势形成机理。主要研究结果如下:
     1.在两个环境(安徽和海南)下,3个产量选择群体共检测到94个与产量及其相关性状紧密连锁的QTL,这些位点主要集中在12个QTL簇上。在所有位点中,60.1%QTL有利等位基因来自供体,40%QTL能在不同环境下被重复检测到。
     2.本研究发现,影响每穗实粒数、每穗总粒数和单株产量性状的位点更多是以两个或多个QTL的非随机关联在高性状值导入系中存在。7个位点在不同群体间存在复等位基因,并且复等位基因间存在效应上的差异。
     3.配合力分析发现,产量及其相关性状受基因加性和非加性效应共同影响。而且,除单株产量外,产量相关性状主要受加性效应控制。
     4.两个群体共检测到34个与产量及其相关性状一般配合力紧密连锁的QTL。其中,21个(61.8%)QTL有利等位基因来自骨干亲本蜀恢527。高、低产量一般配合力导入系分组比较分析发现,标记RM508和RM587在8个低产一般配合力导入系中被供体ZDZ057或特青等位基因一致替换,同时,在高产一般配合力导入系WD34、WD36和WD43中,标记RM4584和RM224被ZDZ057等位基因一致导入。根据一般配合力定位结果,这些标记与产量及主要构成因子QTL紧密连锁。由此推断,这些位点可能是引起蜀恢527产量一般配合力变化的重要区段。
     5.应用比较优势(comparative heterosis, HC)和中亲优势(mid-parent heterosis, HMP),在8个测交群体定位到79个与产量及其相关性状杂种优势连锁的QTL。其中,49.4%QTL(39)是以超显性形式存在,特别是对于单株产量和单株有效穗性状;而加性主要是对于每穗实粒数和每穗总粒数。
     6.转录组分析发现,3个时期,杂种协A/WD7与亲本间差异基因最多(3589个),其次是杂种协A/WD34(3146个),最后是协A/蜀恢527(2912个)。除了杂种协A/WD7在分蘖期外,3个杂种在3个时期全部表现为加性表达基因多于非加性,而且无论是加性还是非加性表达基因,都是上调表达基因多于下调表达基因。
     7.对照组合协A/蜀恢527与亲本间差异表达基因GO及代谢途径分析发现,参与光合碳同化和碳水化合物代谢过程中淀粉和蔗糖合成关键基因在杂种中表达明显上调,可能是对照组合协A/蜀恢527杂种优势形成的主要原因。
     8.相对于对照组合,在低产比较优势杂种协A/WD7中参与光合作用光捕获以及转录调控相关基因表达明显下调,这些基因表达下调与其产量优势下降关系密切。另外,在高产比较优势杂种协A/WD34中,生物钟节律相关基因OsTOC1和OsGI表达上调,OsCCA1表达下调,而且大量碳水化合物代谢相关基因表达上调,这些基因表达变化可能最终导致其产量优势提高。由于OsGI过表达导致导入系WD34和杂种协A/WD34抽穗期延迟。
Key parents play an important role in the processing of hybrid breeding. In this study, threeselected advanced backcross populations were constructed using Shuhui527(SH527) as recurrent parent,a key parent of hybrid rice, and three high-yielding cultivars i.e. ZDZ057, Fuhui838(FH838) andTeqing as donors, respectively. Phenotyping and genotyping for these three populations were conductedfor identifying QTL associated with yield and its related traits from donors under different environments.Secondly,228F1combinations were developed by testcrossing57introgression lines (ILs) fromabove-mentioned populations with four types of male sterile lines i.e. XieqingzaoA (XA), II-32A (IIA),Gang46A (GA) and Jin23A (JA), and evaluated for two years in Anhui for detecting on the geneticbases of general combining ability (GCA) and heterosis affecting yield and its related traits. Lastly,tanscriptomic analysis was conducted for two hybrids with high-and low-yielding comparativeheterosis (HC) selected from228testcrossing combinations combing with check combinations (CC)with their parents at three stages for elucidating the mechanism of heterosis. The main resultssummarized as follows:
     1. A total of94QTL controlling yield and its related traits were identified under two environments,and mainly concentrated on12QTL clusters. For these QTL,60.1%QTL had favorable alleles from thedonors and about40%QTL were detected under two environments.
     2. The strong and frequent non-random associations between or among QTL affecting filled grainnumber per panicle (GN), spikelets number per panicle (SN) and grain yield per plant (GY) wereobserved in the ILs with high-trait values. Multi-alleles were found in seven QTL and had differenteffects among populations.
     3. Additive and non-additive gene effects jointly determined the expression of yield and its relatedtraits. Moreover, addictive effects were more important than non-addictive for all traits except GY.
     4. Thirty-four QTL affecting GCA of yield and its related traits were identified in the twopopulations. Of these,61.8%(21) had favorable alleles from key parent, SH527. Markers RM508andRM587, RM4584and RM224were substituted by ZDZ057alleles in eight ILs with Low-yielding GCAand Teqing alleles in the three ILs with high-yielding GCA, respectively. According to the QTLmapping results, these markers tightly associated with yield and key components, which can be inferredthat these loci probably played a key role in controlling yield GCA of SH527.
     5. Seventy-nine QTL associated with heterosis of yield and its related traits were identified usingcomparative heterosis (HC) and mid-parent heterosis (HMP) values in the eight testcrossing populations.Of these,49.4%QTL present overdominance, especially for panicle number (PN) and GY, andconversely, additivity for GN and SN.
     6. The great numbers of differential expression genes (DGEs) were found between XA/WD7withits parents (3589) at three stages by transcriptomic analysis, second is XA/WD34with XA and WD34(3146), and last is XA/SH527and its parents (2912). Except XA/WD7at tillering stage, three hybrids had more additive expression genes than non-additive at three stages, furthermore, the number ofup-regulated genes were always more than down-regulated whether or not additive and non-additiveexpression genes.
     7. In comparison with parents XA and SH527, a lot of up-regulated genes related to carbonassimilation in photosynthesis and starch and sucrose biosynthesis in carbohydrate metabolism wereobserved in hybrid XA/SH527, which probably resulted in that XA/SH527had strong yield vigor thanits parents.
     8. Comparing with the check combination, numerous down-regulated genes associated withlight-harvesting in photosynthesis and regulation of transcription exsited in XA/WD7. In addition,expression changes related to circadian rhythm (CCA1, TOC1and GI) and carbohydrate metabolismwere observed in hybrid XA/WD34. These DGEs could play an important role in affecting yieldheterosis in XA/WD7and XA/WD34. Furthermore, Heading dates (HD) of WD34and XA/WD34weredelayed due to the overexpression of OsGI gene.
引文
1.樊叶杨,王凯,庄杰云,程式华.水稻产量性状QTL的克隆研究及育种应用进展.中国稻米,2010,16(6):1-5.
    2.金善宝.中国小麦品种及其系谱.北京:农业出版社,1983:213-265.
    3.黎志康.我国水稻分子育种的策略.分子植物育种,2005,3(5):603-608.
    4.刘怀年,王世全,邓其明,李双成,郑爱萍,王玲霞,陈春霞,梁越洋,谢培,李平.水稻骨干亲本蜀恢527产量相关性状关键区段分析.农业生物技术学报,2011,19(3):393-406.
    5.倪中福,孙其信,吴利民,解超杰.普通小麦不同优势杂交种及其亲本苗期根系基因的差异表达.植物学报,2002,44(4):457-462.
    6.倪中福,孙其信,吴利民,解超杰,孟凡荣.小麦种间与品种间杂交种及其亲本之间基因差异表达比较研究.农业生物技术学报,2001,9(4):366-370.
    7.佟屏亚.20世纪中国玉米品种改良的历程和成就.中国科技史料,2001,22:113-117.
    8.王镜岩,朱圣庚,徐长法主编.生物化学(第三版)下部.北京:高等教育出版社,2002:197-229.
    9.吴为人,李维明,卢浩然.建立一个重组自交系群体所需的自交代数(英文).福建农业大学学报,1997,26(2):129-132.
    10.袁定阳,段美娟,谭炎宁,易自力,袁隆平,辛世文.共转化法获得无筛选标记的转PEPC、PPDK基因水稻恢复系纯合体.杂交水稻,2007,22(2):57-63.
    11.张天真主编.植物育种学总论.北京:中国农业出版社,2005:156-157.
    12. Abe M., Yoshikawa T., Nosaka M., Sakakibara H., Sato Y., Nagato Y., Itoh J.I. WAVY LEAF1, anortholog of Arabidopsis HEN1, regulates shoot development by maintaining microRNA andtrans-acting small interfering RNA accumulation in rice. Plant Physiology2010,154(3):1335-1346.
    13. Ahuja S.L., Dhayal L.S. Combining ability estimates for yield and fiber quality traits in4×13line×tester crosses of Gossypium hirsutum. Euphytica2007,153:87-98.
    14. AlabadíD., Oyama T., Yanovsky M.J., Harmon F.G., Más P., Kay S.A. Reciprocal regulationbetween TOC1and LHY/CCA1within the Arabidopsis circadian clock. Science2001,293(5531):880-883.
    15. Ali A.J., Xu J.L., Ismail A.M., Fu B.Y., Vijaykumar C.H.M., Gao Y.M., Domingo J., Maghirang R.,Yu S. B., Gregorio G., Yanaghihara S., Cohen M., Carmen B., Mackill D., Li Z.K. Hidden diversityfor abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcrossbreeding program. Field Crops Research2006,97:66-76.
    16. Arite T., Umehara M., Ishikawa S., Hanada A., Maekawa M., Yamaguchi S., Kyozuka, d14, astrigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant and CellPhysiology2009,50(8):1416-1424.
    17. Ashikari M., Sakakibara H., Lin S., Yamamoto T., Takashi T., Nishimura A., Angeles E.R., QianQ., Kitano H., Matsuoka M. Cytokinin oxidase regulates rice grain production. Science2005,309(741):741-745.
    18. Aubry S., Brown N.J., Hibberd J. M. The role of proteins in C3plants prior to their recruitment intothe C4pathway. Journal of Experimental Botany2011,62(9):3049-3059.
    19. Audic S., Claverie J.M. The significance of digital gene expression profiles. Genome Research1997,7:986-995.
    20. Bao J.Y., Lee S.Y., Chen C., Zhang X.Q., Zhang Y., Liu S.Q., Clark T., Wang J., Cao M.L., YangH.M., Wang S.M., and Yu J. Serial analysis of gene expression study of a hybrid rice strain (LYP9)and its parental cultivars. Plant Physiology2005,138(3):1216-1231.
    21. Bao Y.G., W S., Wang X.Q., WangY.H., Li X.F.,Wang L., Wang H.G. Heterosis and combiningability for major yield traits of a new wheat germplasm shannong0095derived from Thinopyrumintermedium. Agricultural Sciences in China2009,8(6):753-760.
    22. Bhatnagar S., Betra F.J., Rooney L.W. Combining abilities of quality protein maize inbreds. CropScience2004,44:1997-2005.
    23. Bricker T.M. The structure and function of CPa-1and CPa-2in Photosyntem II.PHOTOSYNTHESIS RESEARCH1990,24(1):1-13.
    24. Borghi B., Perenzin M. Diallel analysis to predict heterosis and combining ability for grain yield,yield components and bread-making quality in bread wheat (T. aestivum). Theoretical and AppliedGenetics1994,89:975-981.
    25. Brondani C., Rangel N., Brondani V., Ferreira E. QTL mapping and introgression of yield-relatedtraits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers.Theoretical and Applied Genetics2002,104:1192-1203.
    26. Brown R.H., Bassett C.L., Cameron R.G., Evans P.T., Bouton J.H., Black C.C., Sternberg L.R.,Deniro M.J. Photosynthesis of F1hybrids between C4and C3-C4species of Flaveria. PlantPhysiology1986,82:211-217.
    27. Carlborg., Haley C.S. Epistasis: Too often neglected in complex trait studies? Nature ReviewsGenetics2004,5:618-625.
    28. Chen M.Y., Ali J., Fu B.Y., Xu J.L., Zhao M.F., Jiang Y.Z., Zhu L.H., Yao D.N., Gao Y.M., LiZ.K. Detection of drought-related loci in rice at reproductive stage using selected introgressed lines.Agricultural Sciences in China2011,10:1-8.
    29. Chen Y.N., Fan X.R., Song W.J., Zhang Y.L., Xu G.H. Over-expression of OsPIN2leads toincreased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. PlantBiotechnology Journal2012,10(2):139-149.
    30. Cherry J.H., Hageman R.H., Rutger J.N., Jones I.B. Acid soluble nucleotides and ribonucleic acidof different cron inbreds and single-cross hybrids. Crop Science1961,1:133-137
    31. Cho Y., Scott R.A. Combining ability of seed vigor and seed yield in soybean. Euphytica2000,112:145-150.
    32. Damerval C., Hebert Y., Venne D. Is the polymorphism of protein amounts related to phenotypicvariability: A comparison of two-dimensional electrophoresis data with morphological traits in ma-ize. Theoretical and Applied Genetics1987,74:194-202.
    33. Dhaliwal H.S., Gill A.S. Studies of heterosis, combining ability and inheritance of yield and yieldcomponents in a diallel cross of bengal gram (Cier arietinum L.). Theoretical Applied Genetics1973,43:381-386.
    34. Dodd A.N., Salathia N., Hall A., Kévei E., Tóth R., Nagy F., Hibberd J.M., Millar A.J., Webb A.A.R.Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.Science2005,309(5734):630-633.
    35. Du Z., Zhou X., Ling Y., Zhang Z., Su Z. agriGO: a GO analysis toolkit for the agriculturalcommunity. Nucleic Acids Research2010,38(2): W64-W70.
    36. Duan Y.L., Diao Z.J., Liu H.Q., Cai M.S., Wang F., Lan T., Wu W.R. Molecular cloning andfunctional characterization of OsJAG gene based on a complete-deletion mutant in rice (Oryzasativa L.). Plant Molecular Biology2010,74(6):605-615.
    37. Eom J.S., Cho J.I., Reinders A., Lee S.W., Yoo Y., Tuan P.Q., Choi S.B., Bang G., Park Y.I., ChoM.H., Bhoo S.H., An G., Hahn T.R., Ward J.M., Jeon J.S. Impaired function of thetonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reservesucrose and affects plant growth. Plant Physiology2011,157(1):109-119.
    38. Fan C., Xing Y., Mao H., Lu T., Han B., Xu C., Li X., Zhang Q. GS3, a major QTL for grain lengthand weight and minor QTL for grain width and thickness in rice, encodes a putative transmembraneprotein. Theoretical and Applied Genetics2006,112(6):1164-1171.
    39. Fu C., Yang X.O., Chen X., Chen W., Ma Y., Hu J., Li S. OsEF3, a homologous gene ofArabidopsis ELF3, has pleiotropic effects in rice. Plant Biology2009,11(5):751-757.
    40. Fu Q., Zhang P.J., Tan L.B., Zhu Z.F., Ma D., Fu Y.C., Zhan X.C., Cai H.W., Sun C.Q. Analysis ofQTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.). Journal ofGenet Genomics2010,37:147-157.
    41. Gao Z.Y., Qian Q., Liu X.H., Yan M.X., Feng Q., Dong G.J., Liu J., Han B. Dwarf88, a novelputative esterase gene affecting architecture of rice plant. Plant Molecular Biology2009,71(3):265-276.
    42. Haddadi M.H., Eesmaeilof M., Choukan R., Rameeh V. Combining ability analysis of days tosilking, plant height, yield components and kernel yield in maize breeding lines. African Journal ofAgricultural Research2012,7(36):5153-5159.
    43. Hayama R., Izawa T., Shimamota K. Isolation of rice gens possibly involved in the photoperiodiccontrol of flowering by a fluorescent differential display method. Plant Cell Physiology2002,43(5):494-504.
    44. Hayama R., Yokoi S., Tamaki S., Yano M., Shimamoto K. Adaptation of photoperiodic controlpathways produces short-day flowering in rice. Nature2003,422(17):719-722.
    45. He G.M., Luo X.J., Tian F., Li K.G., Zhu Z.F., Su W., Qian X.Y., Fu Y.C., Wang X.K., Sun C.Q.,Yang J.S. Haplotype variation in structure and expression of a gene cluster associated with aquantitative trait locus for improved yield in rice. Genome Research2006,16(5):618-626.
    46. He Y.X., Zheng T.Q., Hao X.B., Wang L.F., Gao Y.M., Hua Z.T., Xu J.L., Zhu L.H., Li Z.K. Yieldperformances of japonica introgression lines selected for drought tolerance in a BC breedingprograme. Plant breeding2010,129:167-175.
    47. Heang D., Sassa H. Antagonistic actions of HLH/bHLH proteins are involved in grain length andweight in rice. PLoS ONE2012,7(2): e31325.
    48. Hirose T., Takano M., Terao T. Cell wall invertase in developing rice caryopsis: molecular cloningof OsCIN1and analysis of its expression in relation to its role in grain filling. Plant and CellPhysiology2002,43(4):452-459.
    49. Hittalmani H., Huang N., Courtois B., Venuprasad R., Shashidhar H.E., Zhuang J.Y., Zheng K.L.,Liu G.F., Wang G.C., Sidhu J.S., Srivantaneeyakul S., Singh V.P., Bagali P.G., Prasanna H.C.,McLaren G., Khush G.S. Identification of QTL for growth-and grain yield-related traits in riceacross nine locations of Asia. Theoretical and Applied Genetics2003,107:679-690.
    50. Hoh J., Ott J. Mathematical multi-locus approaches to localizing complex human trait genes. NatureReviews Genetics2003,4:701-709.
    51. Hong Z., Ueguchi-Tanaka M., Fujioka S., Takatsuto S., Yoshida S., Hasegawa Y., Ashikari M.,Kitano H., Matsuok M. The rice brassinosteroid-deficient dwarf2mutant, defective in the ricehomolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulatedalternative bioactive brassinosteroid, dolichosterone. Plant Cell2005,17(8):2243-2254.
    52. Hua J.P., Xing Y.Z., Wu W.R., Xu C.G., Sun X.L., Yu S.B., Zhang Q.F. Single-locus heteroticeffects and dominance by dominance interactions can adequately explain the genetic basis ofheterosis in an elite rice hybrid. Proceeding of the National Academy of Sciences of the UnitedStates of America2003,100:2574-2579.
    53. Hua J.P., Xing Y.Z., Xu C.G., Sun X.L., Yu S.B., Zhang Q.F. Genetic dissection of an elite ricehybrid revealed that heterozygotes are not always advantageous for performance. Genetics2002,162:1885-1895.
    54. Huang X.Q., Jiao D.M., Chi W., Ku M.S.B. Characteristics of CO2exchange and chlorophyllfluorescence of transgenic rice with C4genes. Acta Botanica Sinica2002,44(4):405-412.
    55. Huang X.Z, Qian Q., Liu Z.B., Sun H.Y., He S.Y., Luo D., Xia G.M., Chu C.C., Li J.Y., Fu X.D.Natural variation at the DEP1locus enhances grain yield in rice. Nature Genetics2009,41(4):494-497.
    56. Ikeda K., Ito M., Nagasawa N., Kyozuka J., Nagato Y. Rice ABERRANT PANICLEORGANIZATION1, encoding an F-box protein, regulates meristem fate. Plant Journal2007,51(6):1030-1040.
    57. Ishimaru Y., Bashir K., Nakanishi H., Nishizawa N. K. OsNRAMP5, a major player for constitutiveiron and manganese uptake in rice. Plant Signaling&Behavior2012,7(7):763-766.
    58. Izawa T., Mihara M., Suzuki Y., Gupta M., Itoh H., Nagano A.J. Motoyama R., Sawada Y., YanoM., Hirai M.Y., Makino A., Nagamura Y. Os-GIGANTEA Confers Robust Diurnal Rhythms on theGlobal Transcriptome of Rice in the Field. Plant Cell2011,23(5):1741-1755.
    59. Jensen P.E., Bassi R., Boekema E.J., Dekke J.P., Jansson S., Leister D., Robinson C., Scheller H.V.Structure, function and regulation of plant photosystem I. Biochimica et Biophysica Acta2007,1767:335-352.
    60. Jansen R.C. Studying complex biological systems using multifactorial perturbation. NatureReviews Genetics2003,4:145-151.
    61. Jeon J.S., Ryoo N., Hahn T.R., Walia H., Nakamura Y. Starch biosynthesis in cereal endosperm.Plant Physiology and Biochemistry2010,48(6):383-392.
    62. Jeong J.S., Kim Y.S., Baek K.H., Jung H., Ha S.H., Choi Y.D., Kim M.K., Reuzeau C., Kim J.K.Root-specific expression of OsNAC10improves drought tolerance and grain yield in rice underfield drought conditions. Plant Physiology2010,153(1):185-197.
    63. Jia H.F., Ren H.Y., Gu M., Zhao J.N., Sun S.B., Chen J.Y., Wu P., Xu G.H. The phosphatetransporter gene OsPht1;8is involved in phosphate homeostasis in rice. Plant Physiology2011,156(3):1164-1175.
    64. Jiao D.M., Kuang T.Y., Li X., Ge Q.Y., Huang X.Q., Hao N.B., Bai K.Z. Physiologicalcharacteristics of the primitive CO2concentrating mechanism in PEPC transgenie rice. Science inChina Series2003,46:438-446.
    65. Jiao Y.Q., Wang Y.H., Xue D.W., Wang J., Yan M.X., Liu G.F., Dong G.J., Zeng D.L., Lu Z.F., ZhuX.D., Qian Q., Li J.Y. Regulation of OsSPL14by OsmiR156defines ideal plant architecture in rice.Nature Genetics2010,42(6):541-544.
    66. Jin J., Huang W., Gao J.P., Yang J., Shi M., Zhu M.Z., Luo D., Lin H.X. Genetic control of riceplant architecture under domestication. Nature Genetics2008,40(11):1365-1369.
    67. Kenga R., A Kanehisa M., Goto S., Kawashima S., Okuno Y. Hattori M. The KEGG resource fordeciphering the genome. Nucleic Acids Research2004a,32: D277–D280.
    68. Kenga R., Alabi S.O., Gupt S.C. Combining ability studies in tropical sorghum (Sorghum bicolor(L.) Moench). Field Crops Research2004b,88:251-260.
    69. Khan N.U., Hassan G., Kumbhar M.B., Marwat K.B., Khan M.A., Parveen A., Aiman U., Saeed M.Combining ability analysis to identify suitable parents for heterosis in seed cotton yield, itscomponents and lint%in upland cotton. Industrial Crops and Products2009,29:108-115.
    70. Khan T.M., Idris M.A. Inheritance of boll weight, boll number and yield of seed cotton in uplandcotton (Gossypium hirsutum L.). Sarhad Journal of Agriculture1995,11:599-605.
    71. Khush G.S. Green revolution: the way forward. Nature Reviews Genetics2001,2:815-822.
    72. Khush G.S. What will it take to feed5.0billion rice consumers in2030? Plant Molecular Biology2005,59:1-6.
    73. Kim E.H., Kim Y.S., Park S.H., Koo Y.J., Choi Y.D., Chung Y.Y., Lee I.J., Kim J.K. Methyljasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice. PlantPhysiology2009,149(4):1751-1760.
    74. Kobayashi Y., Kaya H., Goto K., Iwabuchi M., Araki T. A pair of related genes with antagonisticroles in mediating flowering signals. Science1999,286(5446):1960-1962.
    75. Kojima S., Takahashi Y., Kobayashi Y., Momma L, Sasaki T., Araki T., Yano M. Hd3a, a riceortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1undershort-day conditions. Plant&Cell Physiology2002,43(10):1096-1105.
    76. Ku M.S.B., Agarie S., Nomura M., Fukayama H., Tsuchida H., Ono K., Hirose S., Toki S., MiyaoM., Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylasein transgenicrice plants. Nature Biotechnology1999,17(1):76-80.
    77. Kumar M., Basha P.O., Puri A., Rajpurohit D., Randhawa G.S., Sharma T.R., Dhaliwal H.S. Acandidate gene OsAPC6of anaphase-promoting complex of rice identified through T-DNAinsertion. Functional&Integrative Genomics2010,10(3):349-358.
    78. Kumaresan D., Senthilkumar P., Ganesan J. Combining ability studies for quantitative traits incotton (Gossypium hirsutum L.). Madras Agricultural Journal1999,18:430-432.
    79. Lafitte H.R., Li Z.K., Vijayakumar C.H.M., Gao Y.M., Shi Y., Xu J.L., Fu B.Y., Yu S.B., Ali A.J.,Domingo J., Maghirang R., Torres R., Mackill D. Improvement of rice drought tolerance throughbackcross breeding: Evaluation of donors and selection in drought nurseries. Field Crops Research2006,97:77-86.
    80. Li B., Zhang D.F., Jia G.Q., Dai J.R., Wang S.C. Genome-wide comparisons of gene expression foryield heterosis in maize. Plant Molecular Biology Reporter2009a,27:162-176.
    81. Li J., Chu H.W., Zhang Y.H, Mou T.M., Wu C.Y., Zhang Q.F., Xu J. The rice HGW gene encodesa ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight. PLoSONE2012,7(3): e34231.
    82. Li M., Tang D., Wang K.J., Wu X.R., Lu L.L., Yu H.X., Gu M.H., Yan C.J., Cheng Z.K. Mutationsin the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yieldin rice. Plant Biotechnology Journal2011a,9(9):1002-1013.
    83. Li S.B., Qian Q., Fu Z.M., Zeng D.L., Meng X.B., Kyozuka J., Masahiko M., Zhu X.D., Zhang Jl,Li J.Y., Wang Y.H. Short panicle1encodes a putative PTR family transporter and determines ricepanicle size. Plant Journal2009b,58(4):592-605.
    84. Li X., Qian Q., Fu Z., Wang Y., Xiong G., Zeng D., Wang X., Liu X., Teng S., Hiroshi F., Yuan M.,Luo D., Han B., Li J. Control of tillering in rice. Nature2003a,422(6932):618-621.
    85. Li Y.B., Fan C.C., Xing Y.Z., Jiang Y.H., Luo L.J., Sun L., Shao D., Xu C.J., Li X.H., Xiao J.H., HeY.Q., Zhang Q.F. Natural variation in GS5plays an important role in regulating grain size and yieldin rice. Nature Genetics2011b,43(12):1266-1269.
    86. Li Z.K., Fu B.Y., Gao Y.M., Xu J.L., Ali A.J., Lafitte H.R., Jiang Y.Z,. Rey D., Vijayakumar C.H.M.,Maghirang R., Zheng T.Q., Zhu L.H. Genome-wide introgression lines and their use in genetic andmolecular dissection of complex phenotypes in rice. Plant Molecular Biology2005,59:33-52.
    87. Li Z.K., Luo L.J., Mei H.W., Wang D.L., Shu Q.Y., Tabien R., Zhong D.B., Ying C.S., Stanse J.W.,Khush G.S., Paterson A.H. Overdominant epistatic loci are the primary genetic basis of inbreedingdepression and heterosis in rice. I. Biomass and grain yield. Genetics2001,158:1737-1753.
    88. Li Z.K., Yu S.B., Lafitte H.R., Huang N., Courtois B., Hittalmani S., Vijayakumar C.H.M., Liu G.F.,Wang G.C., Shashidhar H.E., Zhuang J.Y., Zheng K.L., Singh V.P., Sidhu, J.S., Srivantaneeyakul S.,Khush G.S. QTL×environment interactions in rice. I. Heading date and plant height. Theoreticaland Applied Genetics2003b,108:141-153.
    89. Li X., Yang Y., Yao J., Chen G., Li X., Zhang Q., Wu C. FLEXIBLE CULM1encoding acinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant MolecularBiology2009c,69(6):685-697.
    90. Li X.H., Wei Y.L., Nettleton D., Brummer E.C. Comparative gene expression profiles betweenheterotic and non-heterotic hybrids of tetraploid Medicago sativa. BMC Plant Biology2009d,9:107.
    91. Liang F., Xin X.Y., Hu Z.J., Xu J.D., Wei G., Qian X.Y., Yang J.S., He H.H., Luo X.J. Geneticanalysis and fine mapping of a novel semidominant dwarfing gene LB4D in rice. Journal ofIntegrative Plant Biology2011,53(4):312-323.
    92. Lin H., Wang R.X., Qian Q., Yan M.X., Meng X.B., Fu Z.M, Yan C.Y., Jiang B., Su Z., Li J.Y.,Wang Y.H. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones,regulates rice tiller bud outgrowth. Plant Cell2009,21(5):1512-1525.
    93. Lin Q.B., Wang D., Dong H., Gu S.H., Cheng Z.J., Gong J., Qin R.Z., Jiang L., Li G., Wang J.L.,Wu F.Q., Guo X.P., Zhang X., Lei C.L., Wang H.Y., Wan J.M. Rice APC/CTEcontrols tillering bymediating the degradation of MONOCULM1. Nature Communications2012,3:752.
    94. Lippman Z., Gendrel A.V., Black M., Vaughn M.W., Dedhia N., McCombie W.R., Lavine K., MittalV., May B., Kasschau K.D., Carrington J.c., Doerge R.W., Colot V., Martienssen R. Role oftransposable elements in heterochromatin and epigenetic control. Nature2004,430:471-476.
    95. Liu G.F., Zhang Z.M., Zhu H.T., Zhao F.M., Ding X.H., Zeng R.Z., Li W.T., Zhang G.Q. Detectionof QTLs with additive effects and additive-by-environment interaction effects on panicle number inrice (Oryza sativa L.) with single-segment substitution lines. Theoretical and Applied Genetics2008,116:923-931.
    96. Livak K.J., Schmettgen T.D. Analysis of relative gene expression data using real-time quantitativePCR and the2ΔΔCtmethod. Methods2001,25(4):402-408.
    97. Luan W.J., Liu Y.Q., Zhang F.X., Song Y.L., Wang Z.Y., Peng Y.K., Sun Z.X. OsCD1encodes aputative member of the cellulose synthase-like D sub-family and is essential for rice plantarchitecture and growth. Plant Biotechnology Journal2011,9(4):513-524.
    98. Lukonge E.P., Labuschagne M.T., Liezel H. Combining ability for yield and fiber characteristics inTanzanian cotton germplasm. Euphytica2008,161:383-389.
    99. Luo L.J., Li Z.K., Mei H.W., Wang D.L., Shu Q.Y., Tabien R., Zhong D B., Ying C.S., Stanse J.W.,Khush G.S., Paterson A.H. Overdominant epistatic loci are the primary genetic basis of inbreedingdepression and heterosis in rice. II. Grain yield components. Genetics2001,158:1755-1771.
    100. Makanda I., Tongoona P., Derera J., Sibiya J., Fato P. Combining ability and cultivar superiority ofsorghum germplasm for grain yield across tropical low-and mid-altitude environments. Field CropsResearch2010,116:75-85.
    101. Makumbi D., Betrán J.F., B nziger M., Ribaut J.M. Combining ability, heterosis and geneticdiversity in tropical maize (Zea mays L.) under stress and non-stress conditions. Euphytica,2011,180:143-162.
    102. Más P. Circadianclock function in Arabidopsis thaliana: time beyond transcription. Trends in CellBiology2008,18(6):273-281.
    103. McClung C. R. Plant Circadian Rhythms Plant Cell2006,18(4):792-803
    104. Meng F.R., Ni Z.F., Wu L.M., Sun Q.X. Differential gene expression between cross-fertilizedandself-fertilized kernels during the early stages of seed development in maize. Plant Science2005,168:23-28.
    105. Michael T.P., SaloméP. A., Yu H.J., Spencer T.R., Sharp E.L., McPeek M.A., Alonso J.M., EckerJ.R., McClung C.R. Enhanced fitness conferred by naturally occurring variation in the circadianclock. Science2003,302(5647):1049-1053.
    106. Minakuchi K., Kameoka H., Yasuno N., Umehara M., Luo1L., Kobayashi K., Hanada A., Ueno K.,Asami T., Yamaguchi S., Kyozuka J. FINE CULM1(FC1) works downstream of strigolactones toinhibit the outgrowth of axillary buds in rice. Plant and Cell Physiology2010,51(7):1127-1135.
    107. Mirarab M., Ahmadikhah A., Pahlavani M.H. Study on combining ability, heterosis and geneticparameters of yield traits in rice. African Journal of Biotechnology2011,10(59):12512-12519.
    108. Mizoguchi T., Wheatley K., Hanzawa Y., Wright L., Mizoguchi M., Song H.R., Carré I.A.,Coupland G. LHY and CCA1Are Partially RedundantGenes Required to Maintain CircadianRhythms in Arabidopsis. Development Cell2002,2(5):629–641.
    109. Miura K., Ikeda M., Matsubara A., Song X.J., Ito M., Asano K., Matsuoka M., Kitano H., AshikariM. OsSPL14promotes panicle branching and higher grain productivity in rice. Nature Genetics2010,42(6):545-549.
    110. Moncada P., Martinez C.P., Borrero J., Chatel M., Gauch H., Guimaraes E., Tohme J., McCouchS.R. Quantitative trait loci for yield and yield components in an Oryza sativa-Oryza rufipogonBC2F2population evaluated in an upland environment. Theoretical and Applied Genetics2001,102:41-52.
    111. Moritoh S., Eun C.H., Ono A., Asao H., Okano Y., Yamaguchi K., Shimatani Z., Koizumi A.,Terada R. Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE2,OsDRM2, impairs the growth of rice plants by abnormal DNA methylation. Plant Journal2012,71(1):85-98.
    112. Mortazavi A., Willams B.A., McCue K., Schaeffer L., Wold B. Mapping and quantifyingmammalian transcriptomes by RNA-Seq. Nature Methods2008,5:621-628.
    113. Murakami M, Tago Y, Yamashino T, Mizuno T: Characterization of the rice circadianclock-associated pseudo-response regulators in Arabidopsis thaliana. Biosci Biotechnol Biochem2007a,71:1107-1110.
    114. Murakami M., Tago Y., Yamashino T., Mizumo T. Comparative overviews of clock-associatedgenes of Arabidopsis thaliana and Oryza sativa. Plant Cell Physiology2007b,48(1):110-121.
    115. Nakagawa H., Tanaka A., Tanabata T., Ohtake M., Fujioka S., Nakamura H., Ichikawa H., Mori M.SHORT GRAIN1decreases organ elongation and brassinosteroid response in rice. Plant Physiology2012,158(3):1208-1219.
    116. Ni J., Wang G.H., Zhu Z.X., Zhang H.H., Wu Y.R., Wu P. OsIAA23-mediated auxin signalingdefines postembryonic maintenance of QC in rice. Plant Journal2011,68(3):433-442.
    117. Ni Z., Kim E., Ha M., Lackey E., Liu J., Zhang Y., Sun Q., Chen Z.J. Altered circadian rhythmsregulate growth vigour in hybrids and allopolyploids. Nuture Genetics2009457(15):327-331.
    118. Ni Z., Sun Q., Liu Z., Wu L., Wang X. Identification of a hybrid-specific expressed gene encodingnovel RNA-binding protein in wheat seedling leaves using differential display of mRNA. Molecularand General Genetics2000,263:934-938.
    119. Ookawa T., Hobo T., Yano M., Murata K., Ando T., Miura H., Asano K., Ochiai Y., Ikeda M.,Nishitani R., Ebitani T., Ozaki H., Angeles E.R., Hirasawa T., Matsuoka M., New approach for riceimprovement using a pleiotropic QTL gene for lodging resistance and yield. NatureCommunications2010,1:132.
    120. Paterson A.H., Damon S., Hewitt J.D., Zamir D., Rabinowitch H.D., Lincoln S.E., Lander E.S.,Tanksley S.D. Mendelian factors underlying quantitative traits in tomato: comparison acrossspecies, generations and environments. Genetics1991,127:181-197.
    121. Paul P., Awasthi A., Rai A.K., Gupta S.K., Prasad R., Sharma T. R., Dhaliwal H. S. Reducedtillering in Basmati rice T-DNA insertional mutant OsTEF1associates with differential expressionof stress related genes and transcription factors. Functional&Integrative Genomics2012,12(2):291-304.
    122. Plaxton W.C. The organization and regulation of plant glycolysis. Annual Review Plant PhysiololyPlant Molecular Biology1996,47:185-214.
    123. Poroyko V., Hejlek L.G., Spollen W.G., Springer G.K., Nguyen H.T., Sharp R.E., Bohnert H.J.The maize root transcriptome by serial analysis of gene expression. Plant Physiology,2005,138(3):1700-1710.
    124. Putterill J., Robson F., Lee K., Simon U., Coupland G. The CONSTANS gene of Arabidopsispromotes flowering and encodes a protein showing similarities to zinc finger transcription factors.Cell1995,80(6):847-857.
    125. Qi H.H., Huang J., Zheng Q., Huang Y.Q., Shao R.X., Zhu L.Y., Zhang Z.X., Qiu F.Z., Zhou G.C.,Zheng Y.L., Yue B. Identification of combining ability loci for five yield-related traits in maizeusing a set of testcrosses with introgression lines. Theoretical and Applied Genetics2012(online)
    126. Qi W.W., Sun F., Wang Q.J., Chen M.L., Huang Y.Q., Feng Y.Q., Luo X.J., Yang J.S. Riceethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating agibberellin biosynthetic gene. Plant Physiology2011,157(1):216-228.
    127. Qiao Y.L., Piao R.H., Shi J.X., Lee S.I., Jiang W.Z., Kim B.K., Lee J., Han L.Z., Ma W.B., KohH.J. Fine mapping and candidate gene analysis of dense and erect panicle3, DEP3, which confershigh grain yield in rice (Oryza sativa L.). Theoretical and Applied Genetics2011,122(7):1439-1449.
    128. Qu Z., Li L.Z., Luo J.Y., Wang P., Yu S.B., Mou T.M., Zheng X.F. and Hu Z.L. QTL mapping ofcombining ability and heterosis of agronomic traits in rice backcross recombinant inbred lines andhybrid crosses. PLoS ONE2011,7(1): e28463.
    129. Ragot M., Sisco P.H., Hoisington D.A., Stuber C.W. Molecular-marker-mediated characterizationof favorable exotic alleles at quantitative trait loci in maize. Crop Sciences1995,35:1306-1315.
    130. Romagnoli S., Maddaloni M., Livini C., Motto M., Relationship between gene expression andhybrid vigor in primary root tips of young maize (Zea mays L.) plantlets, Theoretical and AppliedGenetics1990,80:767-775.
    131. Romanus K.G., Hussein S., Mashela W.P. Combining ability analysis and association of yield andyield components among selected cowpea lines. Euphytica2008,162:205-210.
    132. Ruiz de Galarreta J.I., Ezpeleta B., Pascualena J., Ritter E. Combining ability and correlations foryield components in early generations of potato breeding. Plant Breeding2006,125:183-186.
    133. Salem A.H., Ali M.A. Combining ability for sunflower yield contributing characters and oilcontent over different water supply environments. Journal of American Science2012,8(9):227-233.
    134. Sawa M., Nusinow D.A., Kay S.A., Imaizumi T. FKF1and GIGANTEA complex formation isrequired for day-length measurement in Arabidopsis. Science2007,318(5848):261-265.
    135. Septiningsih E.M., Prasetiyono J., Lubis E., Tai T.H., Tjubaryat T., Moeljopawiro S., McCouch S.R.Identification of quantitative trait loci for yield and yield components in an advanced backcrosspopulation derived from the Oryza sativa variety IR64and the wild relative O. rufipogon.Theoretical and Applied Genetics2003,107:1419-1432.
    136. Shakeel A., Khan I.A., Azhar F.M. Study pertaining to the estimation of gene action controllingyield and related traits in upland cotton. Journal of Biological Sciences2001,1:67-70.
    137. Shomura A., Izawa T., Ebana K., Ebitani T., Kanegae H., Konishi S., Yano M. Deletion in a geneassociated with grain size increased yields during rice domestication. Nature Genetics2008,40(8):1023-1028.
    138. Shukla S.K., Pandey M.P. Combining ability and heterosis over environments for yield and yieldcomponents in two-line hybrids involving thermosensitive genic male sterile lines in rice (Oryzasativa L.). Plant Breeding2008,127:28-32.
    139. Shull G. H. The composition of a field of maize. American Breeders Association Reports1908,4:296-301.
    140. Shull G. H. Duplicated genes for capsule form in Bursa bursa pastoris. Molecular and GeneralGenetics1914,12:97-149.
    141. Sibiya J., Tongoona P., Derera J., Rij N.V., Makanda I. Combining ability analysis forPhaeosphaeria leaf spot resistance and grain yield in tropical advanced maize inbred lines. FieldCrops Research2011,120:86-93.
    142. Song G.S., Zhai H.L., Peng Y.G., Zhang L., Wei G., Chen X.Y., Xiao Y.G., Wang L., Chen Y.J.,Wu B., Chen B., Zhang Y., Chen H., Feng X.J., Gong W.K., Liu Y., Yin Z.J., Wang F., Liu G.Z.,Xu H.L., Wei X.L., Zhao X.L., Ouwerkerk P.B.F., Hankemeier T., Reijmers T., Heijden R., LuC.M., Wang M., Greef J., Zhu Z. Comparative transcriptional profiling and preliminary study onheterosis mechanism of super-hybrid rice. Molecular Plant2010,3(6):1012-1025.
    143. Song S.H., Qu H.Z., Chen C., Hu S.N., Yu J. Differential gene expression in an elite hybrid ricecultivar (Oryza sativa, L) and its parental lines based on SAGE data. BMC Plant Biology2007,7:49.
    144. Song X.J., Huang W., Shi M., Zhu M.Z., Lin H.X. A QTL for rice grain width and weight encodesa previously unknown RING-type E3ubiquitin ligase. Nature Genetics2007,39:623-630.
    145. Stubern C.W., Lincoln T.E., Wolff D.W., Helentjaris T., Lander E.S. Identification of geneticfactors contributing to heterosis in a hybrid from two elite maize inbred lines using molecularmarkers. Genetics1992,132:823-839.
    146. Stupar R.M., Gardiner J.M., Oldre A.G., Haun W.J., Chandler V.J., Springer N.M. Gene expressionanalyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biology2008,8:33.
    147. Suárez-López P., Wheatley K., Robson F., Onouchi H., Valverde F., Coupland G. CONSTANSmediates between the circadian clock and the control of flowering in Arabidopsis. Nature2001,401:1116-1120.
    148. Sun F.L., Zhang W.P., Xiong G.S., Yan M.X., Qian Q., Li J.Y., Wang Y.H. Identification andfunctional analysis of the MOC1interacting protein1. Journal of genetics and genomics2010,37(1):69-77.
    149. Su’udi M., Cha J.Y., Jung M.H. Ermawati N., Han C. D., Kim M.G., Woo Y.M., Son D. Potentialrole of the rice OsCCS52A gene in endoreduplication. Biomedical and Life Sciences2012,235(2):387-397.
    150. Swanson-Wagner R.A., Jia Y., DeCook R., Borsuk L.A., Nettleton D., Schnable P.S. All possiblemodes of gene action are observed in a global comparison of gene expression in a maize F1hybridand its inbred parents. Proceeding of National Academy of United states of America2006,103(18):6805-6810.
    151. Swanson-Wagner R.A., DeCook R., Jia Y., Bancroft T., Ji T., ZhaoX., NettletonD., SchnableP.S.Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids. Science2009,326:1118-1119.
    152. Tabuchi H., Zhang Y., Hattori S., Omae M., Shimizu-Sato S., Oikawa T., Qian Q., Nishimura M.,Kitano H., Xie H., Fang X.H., Yoshida H., Kyozuka J., Chen F., Sato Y. LAX PANICLE2of riceencodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell2011,23(9):3276-3287.
    153. Tabuchi M., Sugiyama K., Ishiyama K., Inoue E., Sato T., Takahashi H., Yamaya T. Severereduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutaminesynthetase1;1. Plant Journal2005,42(5):641-651.
    154. Taguchi-Shiobara F., Kawagoe Y., Kato H., Onodera H., Tagiri A., Hara N., Miyao A., HirochikaH., Kitano H., Yano M., Toki S. A loss-of-function mutation of rice DENSE PANICLE1causessemi-dwarfness and slightly increased number of spikelets. Breeding Science2011,61(1):17-25.
    155. Takeda T., Suwa Y., Suzuki M., Kitano H., Ueguchi-Tanaka M., Ashikari M., Matsuoka M.,Ueguchi C. The OsTB1gene negatively regulates lateral branching in rice. Plant Journal2003,33(3):513-520.
    156. Tamura W., Kojima S., Toyokawa A., Watanabe H., Tabuchi-Kobayashi M., Hayakawa T.,Yamaya T. Disruption of a novel NADH-glutamate synthase2gene caused marked reduction inspikelet number of rice. Frontiers in Plant Nutrition2011,2:57. DOI:10.3389/fpls.2011.00057.
    157. Tan L.B., Liu F.X., Xue W., Wang G.J., Ye S., Zhu Z.F., Fu Y.C., Wang X.K., Sun C.Q.Development of Oryza rufipogon and O. sativa introgression lines and assessment for yield-relatedquantitative trait loci. Journal of Integrative Plant Biology2007,49:871-884.
    158. Tan L.B., Zhang P.J., Liu F.X., Wang G.J., Ye S., Zhu Z.F., Fu Y.C., Cai H.W., Sun C.Q.Quantitative trait loci underlying domestication and yield-related traits in Oryza rufipogon×Oryzasativa advanced backcross population. Genome2008,51:692-704.
    159. Taniguchi Y, Ohkawa H, Masumoto C, Fukuda T., Tamai T., Lee K., Sudoh S., Tsuchida H.,Sasaki H., Fukayama H., Miyao M. Overproduction of C4photosynthetic enzymes in transgenicrice plants: an approach to introduce the C4-like photosynthetic pathway into rice. Journal ofExperimental Botany2008,59(7):1799-1809.
    160. Tanksley S.D., Nelson J.C. Advanced backcross QTL analysis: a method for the simultaneousdiscovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines.Theoretical and Applied Genetics1996,92:191-203.
    161. Teklewold A., Becker H.C. Heterosis and combining ability in a diallel cross of Ethiopianmustard inbred lines. Euphytica2005,45:2629-2635.
    162. Thangasamy S., Guo C.L., Chuang M.H., Lai M.H., Chen J., Jauh G.Y. Rice SIZ1, a SUMO E3ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytologist2011,189(3):869-882.
    163. Thomson M.J., Tai T.H., McClung A.M., Lai X.H., Hinga M.E., Lobos K.B., Yu Y., Martinez C.P.,McCouch S.R. Mapping quantitative trait loci for yield, yield components and morphological traitsin an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivarJefferson. Theoretical and Applied Genetics2003,107:479-493.
    164. Troyer A.F. Breeding widely adapted, popular maize hybrids. Euphytica1996,92:163-174.
    165. Tsaftaris A.S., Kafka M., Polioros A., Tanni E. The genetics and exploitation of heterosisin crops:Epigenetic changes in maize DNA and heterosis. American Society of Agronomy1999, P112-113.
    166. Uzarowska A., Keller B., Piepho H.P., Schwarz G., Ingvardsen G., Wenzel G., Lubberstedt T.Comparative expression profiling in meristems of inbred-hybrid triplets of maize based onmorphological investigations of heterosis for plant height. Plant Molecular Biology2007,63:21-34.
    167. Vasal S.K., Srinivasan G., Pandey S., Gonzalez F., Crossa J., Beck D.L. Heterosis and combiningability of CIMMYT’s quality protein maize germplasm I. lowland tropical. Crop Science1993,33:46-51.
    168. Vaughn M.W., Martienssen R. It's a small RNA world, after all, Science2005,309:1525-1526.
    169. Verma O.P., Srivastava H.K. Genetic component and combining ability analyses in relation toheterosis for yield and associated traits using three diverse rice-growing ecosystems. Field CropsResearch2004,88:91-102.
    170. Wan L.Y., Zhang J.F., Zhang H.W., Zhang Z.J, Quan R.D., Zhou S.R., Huang R.F. Transcriptionalactivation of OsDERF1in OsERF3and OsAP2-39negatively modulates ethylene synthesis anddrought tolerance in rice. PLoS ONE2011,6(9): e25216.
    171. Wang C.R., Chen S., Yu S.B. Functional markers developed from multiple loci in GS3for finemarker-assisted selection of grain length in rice. Theoretical and Applied Genetics2011,122:905-913.
    172. Wang D.L., Zhu J., Li Z.K., Paterson A.H. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theoretical and Applied Genetics1999,99:1255-1264.
    173. Wang E., Wang J., Zhu X., Hao W., Wang L., Li Q., Zhang L., He W., Lu B., Lin H., Ma H., ZhangG., He Z. Control of rice grain-filling and yield by a gene with a potential signature ofdomestication. Nature Genetics2008a,40(11):1370-1374.
    174. Wang J.K., Wan X.Y., Crossa J., Crouch J., Weng J.F., Zhai H.Q., Wang J.M. QTL mapping ofgrain length in rice (Oryza sativa L.) using chromosome segment substitution lines. GeneticalResearch2006,88:93-104.
    175. Wang S., Wu K., Yuan Q., Liu X., Liu Z., Lin X., Zeng R., Zhu H., Dong G., Qian Q., Zhang G.,Fu X. Control of grain size, shape and quality by OsSPL16in rice. Nature Genetics2012,44(8):950-955.
    176. Wang W.W., Meng, B., Ge X.M., Song S.H., Yang Y., Yu X.M., Wang L.G., Hu. S.N., Liu. S.Q., YuJ. Proteomic profiling of rice embryos from a hybrid rice cultivar and its parental lines. Proteomics2008b,8:4808-4821.
    177. Wei G., Tao Y., Liu G., Chen C., Luo R., Xia H., Gan Q., Zeng H., Lu Z., Han Y., Li X., Song G.,Zhai H., Peng Y., Li D., Xu H., Wei X., Cao M., Deng H., Xian Y., Fu X., Yuan L., Yu J., Zhu Z.,Zhu L. A transcriptomic analysis of superhybrid rice LYP9and its parents. Proceeding of NationalAcademy of United States of America2009,106:7695-7701.
    178. Weng J.F., Gu S.H., Wan X.Y., Gao H., Guo T., Su N., Lei C.L., Zhang X., Cheng Z.J., Guo X.P.,Jiang L., Zhai H.Q., Wan J.M. Isolation and initial characterization of GW5, a major QTLassociated with rice grain width and weight. Cell Research2008,18:1199-1209.
    179. Wu Z.C., Ren H.Y., McGrath S.P., Wu P., Zhao F.J. Investigating the contribution of the phosphatetransport pathway to arsenic accumulation in rice. Plant Physiology2011,157(1):498-508.
    180. Xia K.F., Wang R., Ou X.J., Fang Z.M., Tian C.G., Duan J., Wang Y.Q., Zhang M.Y. OsTIR1andOsAFB2downregulation via OsmiR393overexpression leads to more tillers, early flowering andless tolerance to salt and drought in rice. PLoS ONE2012,7(1): e30039.
    181. Xiao J., Li J., Grandillo S., Ahn S.N., Yuan L., Tanksley S.D., McCouch S.R. Identification oftrait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics1998,150:899-909.
    182. Xiao J., Li J., Yuan L., Tanksley S.D. Dominance is the major genetic basis of heterosis in rice asrevealed by QTL analysis using molecular markers. Genetics1995,140:745-754.
    183. Xiao J., Li J., Yuan L., Tanksley S.D. Identification of QTLs affecting traits of agronomicimportance in a recombinant inbred population derived from a subspecific rice cross. Theoreticaland Applied Genetics1996,92:230-244.
    184. Xing Y.Z., Zhang Q.F. Genetic and Molecular Bases of Rice Yield. Annual Review Plant Biology2010,61:421-442.
    185. Xing Y., Tan F., Hua P., Sun L., Xu G., Zhang Q. Characterization of the main effects, epistaticeffects and their environmental interactions of QTLs on the genetic basis of yield traits in rice.Theoretical and Applied Genetics2002,105:248-257.
    186. Xing Y., Tang W., Xue W., Xu C., Zhang Q. Fine mapping of a major quantitative trait loci, qSSP7,controlling number of spikelets per panicle as a single Mendelian factor in rice. Theoretical andApplied Genetics2008,116:789-796.
    187. Xie Z.S., Wang J.Q. Gao M.L., Zhao C.F., Zhao K., Shao J.M., Lei T.T., Xu N.Z., Liu S.Q.pedigree analysis of an elite rice hybrid using proteomic approach. Proteomics2006,6:474-486.
    188. Xu C., Wang Y.H., Yu Y.C. Duan J.B., Liao Z.G., Xiong G.S., Meng X.B., Liu G.F., Qian Q., Li J.Y.Degradation of MONOCULM1by APC/CTAD1regulates rice tillering. Nature Communications2012,3:750.
    189. Xu M., Zhu L., Shou H.X., Wu P. A PIN1family Gene, OsPIN1, involved in auxin-dependentadventitious root emergence and tillering in Rice. Plant and Cell Physiology2005,46(10):1674-1681.
    190. Xue W., Xing Y., Weng X., Zhao Y., Tang W., Wang L., Zhou H., Yu S., Xu C., Li X., Zhang Q.Natural variation in Ghd7is an important regulator of heading date and yield potential in rice.Nature Genetics2008,40(6):761-767.
    191. Yaish M.W., El-kereamy A., Zhu T., Beatty P. H., Good A.G., Bi Y.M., Rothstein S. J. TheAPETALA-2-Like transcription factor OsAP2-39controls key interactions between abscisic acidand gibberellin in rice. PLoS Genetics2010,6(9): e1001098.
    192. Yan H., Saika H., Maekawa M., Takamure I., Tsutsumi N., Kyozuka J., Nakazono M. Ricetillering dwarf mutant dwarf3has increased leaf longevity during darkness-induced senescence orhydrogen peroxide-induced cell death. Genes&Genetic Systems2007,82(4):361-366.
    193. Yan W.H., Wang P., Chen H.X., Zhou H.J., Li Q.P., Wang C.R., Ding Z.H., Zhang Y.S., Yu S.B.,Xing Y.Z., Zhang Q.F. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity,plant height, and heading date in rice. Molecular Plant2011,4(2):319-330.
    194. Yang R., Tang Q.C., Wang H.M., Zhang X.B., Pan G., Wang H., Tu J.M. Analyses of two rice(Oryza sativa) cyclin-dependent kinase inhibitors and effects of transgenic expression of OsiICK6on plant growth and development. Annals of Botany2011,107(7):1087-1101.
    195. Yano M., Katayose Y., Ashikari M., Yamanouchi U., Monna L., Fuse T.,Tomoya B., YamamotoK., Umehara Y., Nagamura Y., Sasaki T. Hd1, a major photoperiod sensitivity quantitative traitlocus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell2000,12(12):2473-2483.
    196. Yoon D.B., Kang K.H., Kim H.J., Ju H.G., Kwon S.J., Suh J.P., Jeong O.Y., Ahn S.N. Mappingquantitative trait loci for yield components and morphological traits in an advanced backcrosspopulation between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseongbyeo.Theoretical and Applied Genetics2006,112:1052-1062.
    197. Yu C.Y., Jiang L., Xiao Y.H., Zhai H.Q., Wan J.M. Combining ability of yield-component traits forindica chromosome substituted segments in japonica hybrid rice. ACTA AGRONOMICA SINICA2008,34:1308-1316.
    198. Yu C.Y., Wan J.M., Zhai H.Q., Wang C.M., Jiang L., Xiao Y.H., Liu Y.Q. Study on heterosis ofintersubspecies between indica and japonica rice (Oryza sativa L.) using chromosome segmentsubstitution lines. Chinese Science Bulletin2005,50:131-136.
    199. Yu S.B., Li J.X., Xu G.C., Tan Y.F., Gao Y.J., Li X.H., Zhang Q.F., Maroof Saghai M.A.Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proceeding ofNational Academy of United States of America1997,94:9226-9231.
    200. Yu S.B., Li J.X., Xu C.G., Tan Y.F., Li X.H., Zhang Q.F. Identification of quantitative trait loci andepistatic interactions for plant height and heading date in rice. Theoretical and Applied Genetics2002,104:619-625.
    201. Zhang B.S., Tian F., Tan L.B., Xie D.X., Sun C.Q. Characterization of a novel high-tillering dwarf3mutant in rice. Journal of genetics and genomics2011a,38(9):411-418.
    202. Zhang C.J., Zhao B.C., Ge W.N., Zhang Y.F., Song Y., Sun D.Y., Guo Y. An apoplastic H-typethioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygenspecies in rice. Plant Physiology2011b,157(4):1884-1899.
    203. Zhang F., Zhai H.Q., Paterson A.H., Xu J.L., Gao Y.M., Zheng T.Q., Wu R.L., Fu B.Y., Ali J.H., LiZ.K. Dissecting genetic networks underlying complex phenotypes: The theoretical framework.PLoS ONE2011c,6: e14541.
    204. Zhang H.Y., He H., Chen L.B., Li L., Liang M.Z., Wang X.F., Liu X.G., He G.M., Chen, R.S., MaL.G., Deng X.W. A genome-wide transcription analysis reveals a close correlation of promoterINDEL polymorphism and heterotic gene expression in rice hybrids. Molecular Plant2008,1(5):720-731.
    205. Zhang Y.S., Luo L.J., Liu T.M., Xu C.G., Xing Y.Z. Four rice QTL controlling number ofspikelets per panicle expressed the characteristics of single Mendelian gene in near isogenicbackgrounds. Theoretical and Applied Genetics2009,118:1035-1044.
    206. Zhou G., Chen Y., Yao W., Zhang C., Xie W., Hua J., Xing Y., Xiao J., Zhang Q. Geneticcomposition of yield heterosis in an elite rice hybrid. Proceeding of National Academy of UnitedStates of America2012,109(39):15847-15852.
    207. Zhu Q.H., Ramm K., Shivakkumar R., Dennis E.S., Upadhyaya N.M. The ANTHERINDEHISCENCE1gene encoding a single MYB domain protein is involved in anther developmentin rice. Plant Physiology2004,135(3):1514-1525.
    208. Zhu Y., Nomura T., Xu Y., Zhang Y., Peng Y., Mao B., Hanada A., Zhou H., Wang R., Li P., ZhuX., Mander L.N., Kamiya Y., Yamaguchi S., He Z. ELONGATED UPPERMOST INTERNODEencodes a cytochrome P450monooxygenase that epoxidizes gibberellins in a novel deactivationreaction in rice. Plant Cell2006,18(2):442-456.
    209. Zhuang J.Y., Lin H.X., Lu J., Qian H.R., Hittalmani S., Huang N., Zheng K.L. Analysis of QTL×environment interaction for yield components and plant height in rice. Theoretical and AppliedGenetics1997,95:799-808.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700