用户名: 密码: 验证码:
偃麦草属着丝粒序列组成分析及小麦—十倍体长穗偃麦草广谱抗锈易位系的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偃麦草属植物是迄今在小麦育种中利用最成功的小麦近缘种属之一,为小麦品种改良提供了优异的基因资源。真核生物的着丝粒保证了细胞分裂中染色体准确分离。外源染色体在细胞中的去留与着丝粒有千丝万缕的关系。了解偃麦草属植物和小麦着丝粒组成的异同,将为小麦远缘杂交育种提供一些理论依据,提高远缘杂交育种的效率。本文对偃麦草着丝粒序列和小麦-十倍体长穗偃麦草杂交后代进行了研究,取得了以下主要结果:
     1、构建了偃麦草属祖先种二倍体拟鹅冠草(Pseudoroegneiria stipifolia,2n=14, StSt)的BAC文库,根据禾本科着丝粒特异序列CCS1设计的引物筛选BAC克隆。结合荧光原位杂交,筛选到1个着丝粒特异的BAC克隆和2个着丝粒及近着丝粒区相关的BAC,构建了这3个BAC克隆的Shotgun文库,并完成了测序和组装。
     2、发现Ps. stipifolia的着丝粒区包含与小麦着丝粒区特异的反转录转座子CRW、Quinta及unnamedfam6的同源序列,相似性均在85%以上;在Ps. stipifolia的着丝粒区,还发现一种尚未见报道的串联重复序列,基序长度约为500bp,暂命名为CentSt。在小麦中也存在CentSt的同源序列,串联重复单元长度为550bp,两者相似性约85%。
     3、利用CRW、Quinta、unnamedfam6和CentSt分析四倍体拟鹅冠草(2n=28, StSt)、四倍体长穗偃麦草(2n=28, EeEe)、中间偃麦草(2n=42, StEbEe)和十倍体长穗偃麦草(2n=70, StStEbEeEx)的着丝粒组成,发现除了四倍体长穗偃麦草中没有检测到unnamedfam6的信号外,其它的三个物种中都含有这些元件,但是它们的分布规律不尽相同。说明在偃麦草多倍体化的过程中,着丝粒的序列组成也在发生着急剧的变化。
     4、同源克隆了Ps. stipifolia、Th. elongatum(2n=14, EeEe)、Th. bessarabicum(2n=14, EbEb)、中间偃麦草和十倍体长穗偃麦草中着丝粒功能关键蛋白CENH3的编码基因,它们与小麦的CENH3基因相似性在95%以上。小麦的CENH3蛋白抗体能够结合在偃麦草染色体的着丝粒区。以上结果说明偃麦草属的着丝粒在DNA组成上和着丝粒关键蛋白水平上与小麦有很高的相似性,为偃麦草染色体在小麦背景下的稳定传递提供了可能,也为其与小麦染色体的重组提供了更多机会。
     5、从普通小麦与十倍体长穗偃麦草的杂交、回交后代中,获得了对小麦条锈病流行混合小种具有广谱抗性的新种质。通过对其进行条锈病抗性鉴定、农艺性状调查、分子细胞学和品质相关性状分析发现:这批材料在苗期普遍表现为轻度感病,但成株后则完全高抗或免疫,对8份材料进行了连续三年的人工接种鉴定,抗性表现十分稳定,对多个致病小种及混合小种具有很好的抗性,这些材料根尖细胞染色体均为2n=42,农艺性状良好。原位杂交分析显示这些材料中含有同一个易位片段,即在4DS末端有一来自长穗偃麦草St基因组的小片段,其中一个品系(GDR3)还携带一个未能准确定位的小片段易位,该材料对混合小种的抗性优于其它材料。推测这两个小片段易位上均携带抗条锈病基因。高分子量麦谷蛋白分析表明,这批材料均含有优质亚基14+15。新的广谱抗性易位系的育成,将有可能在我国小麦抗锈育种中发挥重要作用。
     总之,偃麦草属植物着丝粒在DNA组成和着丝粒关键蛋白CENH3水平上与小麦相似性很高,为偃麦草染色体在小麦背景下的稳定传递提供了可能,也为其与小麦染色体的重组提供了更多的机会。小麦与偃麦草染色体自发抗病易位系的发生和发现,从一个侧面证明了前一结论的可靠性,这些工作为未来的作物远缘杂交育种选材提供了新的视角,即物种间享有共同的着丝粒序列是外源染色体稳定传递的重要基础,也为自发易位和重组的发生创造了机会。
The Thinopyrum specics are the most successful relative species in wheat distanthybridization breeding, providing numerous useful genes in bread wheat improvement. Centromeresmaintain the integrity of the chromosomes during cell division. The deletion and preservation of alienchromosomes in cells related to the centromere. For understanding the centromere sequencecomposition of Thinopyrum and providing theoretical basis of distant hybridization breeding, in thisdissertation, three aspects of studies were performed surrounding the Thinopyrum’s centromere andwheat-Th.ponticum translocation lines.
     1. A BAC library of Pseudoroegneiria stipifolia (2n=14, StSt) was constructed. The BAC librarywas screened via PCR by primers designed based on cereal centromeric sequence (CCS1). Afterfluorescent in situ hybridization (FISH) analysis, one centromere-specific BAC and two centromericassociated BACs were obtained. Shotgun libraries were constructed for the three BAC clones. Theywere sequenced, assembled and annotated.
     2. We found that centromeres of Ps.stipifolia contained the homologous sequences of CRW,Quinta and unnamedfam6, which were found in wheat, and their similarity was more than85%. Acetromeric tandem repeat was found in Ps. stipifolia, which was named as CentSt. Homologoussequence of CentSt was also found in wheat and its D genome donor, Aegilops tauschii.
     3. CRW, Quinta, unnamedfam6and CentSt were used to analysis the centromere of tetraploid Ps.stipifolia, tetraploid Th. elongatum (2n=28, EeEe), Th. intermedium (2n=42, StEbEe) and Th. ponticum(2n=70, StStEbEeEx). We found that except the tetraploid Th. elongatum which we didn’t detect thesignal of unnamedfam6in its chromosome, all of the other three species contained these centromericelements. But the distribution of the centromeric elements was different from each other. It wassuggested that in the progress of polyploidization inThinopyrum, the sequence compositon of thecentromeres changed a lot.
     4. CENH3genes were cloned from Ps. stipifolia, Th. elongatum (2n=14, EeEe), Th.bessarabicum (2n=14, EbEb), Th. intermedium and Th. ponticum. The similarity of CENH3cordingsequences between wheat and genome donors of Thinopyrum genus was more than95%. And wheatCENH3antibody can perfectly attach on the centromere of the Thinopyrum chromosomes. All of theseresults suggested that the wheat and Thinopyrum have high homology centromere sequences andCENH3genes. This provides the base for Thinopyrum chromosomes stably being transmitted in wheatgenetic background, which creats chance for recombination.
     4. To transfer stripe rust resistance from Th. ponticum to common wheat, hybrid progeniesbetween them were screened for stripe rust resistance.The progenies were characterized by their diseaseresistance, agronomic traits, genomic in situ hybridization and quality related protein analysis. Eightlines with good resistance or immune to the pathogens at adult stage were obtained. All of them have42chromosomes, in which seven lines convey a new translocation,4DS/4St. In addition, besides this translocation, the GDR3conveys another distal translocation, which may be derived from the E-genomechromosome of Th. ponticum. The GDR3performed very good resistance in whole life. It was immuneto yellow rusts. We estimated that both of the alien segments convey resistant genes to the stripe rusts.All of the eight lines convey the good subunits14+15at Glu-B1, which should be inherited fromXiaoyan6. Wild relatives of wheat usually convey genes with broad spectrum resistance to pathogens.This is the genetic base for their surviving in extreme environments, which also provide excellent generesource for disease resistant breeding in wheat.
     In summary, the Triticum aestivum and Thinopyrum have simliar centromere sequences and CENH3genes. This provides the possibility that Thinopyrum chromosomes can stay and transmission stably inwheat genetic background, which creates chance for recombination between wheat and alienchromosomes. The occurrence of spontaneous translocations between wheat and Th. ponticumillustrates the reliability of ourspeculation. This work sheds light for chose of donor species in cropwide hybridization breeding.
引文
1.董玉琛,郑殿升.中国小麦遗传资源.中国农业出版社,1998.
    2.衡燕芳.小麦TaCENH3基因的克隆及功能分析.中国农业大学,2010.
    3.姜奇彦.小麦Ⅱ型蔗糖合酶基因TaSus2的多样性与产量性状的关系.中国农业科学院研究生院,2010.
    4.李振声,容珊,陈漱阳等.小麦远缘杂交.中国农业科技出版社,1985.
    5.李振声.我国小麦育种的回顾与展望.中国农业科技导报,2010,12(2):1-4.
    6.刘越.矮败-中国春小麦品系BAC文库的构建与筛选.中国农业科学院研究生院,2003.
    7.陆坤,徐柱,刘朝等. St基因组中的CRW同源序列在偃麦草中的FISH分析.遗传,2009,31(11):1141-1148.
    8.孙善澄.小偃麦新品种与中间类型的选育途径、程序和方法.作物学报,1981,7(1):51-58.
    9.王桂香.芸薹属和薏苡属植物的着丝粒DNA结构与CENH3基因的功能研究.中国农业大学,2009.
    10.王文明,江光怀,王世全等.高覆盖水稻BAC文库的构建及抗病基因相关克隆的筛选.遗传学报,28(2):120-128.
    11.魏沛,多年生簇毛麦着丝粒重复序列的分离与鉴定.电子科技大学,2009.
    12.夏光敏,向凤宁,周爱芬等.小麦与高冰草的不对称体细胞杂交获可育杂种植株.植物学报,1999,41(4):349-352.
    13.殷学贵,尚勋武,庞斌双等. A-3中抗条锈新基因YrTp1和YrTp2的分子标记定位分析.中国农业科学,2006,39(1):10-17.
    14.张俊成.中国春小麦3B染色体Sr2/FHB区BAC测序及大片段线粒体DNA插入分析.山东农业大学硕士论文,2007.
    15.张荣琦,陈春环,赵晓农等.利用远缘杂交技术选育小麦新品种之研究.中国农学通报,2006,22(6):186-188.
    16.张学勇,董玉琛,栗站稳.小麦和彭梯卡偃麦草杂种及其衍生后代的细胞遗传学研究: Ⅰ彭梯卡偃麦草及其与普通小麦和硬粒小麦杂种F1的染色体配对.遗传学报,1993,20(5):439-447.
    17.张学勇,董玉琛,杨欣明.小麦与长穗偃麦草、中间偃麦草杂种及其衍生后代的细胞遗传学研究: Ⅲ遗传学报,1993,22(3):217-222.
    18.张学勇,李振声,陈漱阳.“缺体回交法”选育普通小麦异代换系方法的研究.遗传学报,1989,9(6):431-439.
    19.张学勇,庞斌双,游光霞等.中国小麦品种资源Glu-1位点组成概况及遗传多样性分析.中国农业科学,2002,35(11):1302-1310.
    20. Allshire R C and Karpen G H. Epigenetic regulation of centromeric chromatin: old dogs, newtricks? Nat Rev Genet,2008,9:923-937.
    21. Amor D J and Choo K H A. Neocentromeres: role in human disease, evolution, and centromerestudy. Am J Hum Genet,2002,71:695-714.
    22. Amor D J, Bentley K, Ryan J, et al. Human centromere repositioning. Proc Natl Acad Sci,2004,101:6542-6547.
    23. Ananiev E V, Phillips R L and Rines H W. Complex structure of knob DNA on maizechromosome9. Retrotransposon invasion into heterochromatin. Genetics,1998,149:2025-2037.
    24. Aragon-Alcaide L, Miller T, Schwarzacher T, et al. A cereal centromeric sequence. Chromosoma,1996,105:261-268.
    25. Bevan M, Mayer K, White O, et al. Sequence and analysis of the Arabidopsis genome. CurrentOpinion in Plant Biology,2001,4:105-110.
    26. Birchler J A and Presting G G. Retrotransposon insertion targeting: a mechanism forhomogenization of centromere sequences on nonhomologous chromosomes. Genes andDevelopment,2012,26:638-640.
    27. Birchler J, Gao Z, and Han F P. A tale of two centromeres-diversity of structure but conservationof function in plants and animals. Functional&Integrative Genomics,2009,9:7-13.
    28. Blower M D and Karpen G H. The role of Drosophila CID in kinetochore formation, cell-cycleprogression and heterochromatin interactions. Nat Cell Biol,2001,3:730-739.
    29. Blower M D, Sullivan B A, and Karpen G H. Conserved organization of centromeric chromatinin fies and humans. Dev Cell,2002,2:319-330.
    30. Cai X and Jones S. Direct evidence for high level of autosyndetic pairing in hybrids ofThinopyrum intermedium and Th. ponticum with Triticum aestivum. Theor Appl Genet,1997,95:568-572.
    31. Chai J F, Zhou R H, Jia J Z, et al. Development and application of a new codominant PCRmarker for detecting1BL·1RS wheat-rye chromosome translocations. Plant Breeding,2006,125:302-304.
    32. Charpentier A. Production of disomic addition lines and partial amphidiploids ofThinopyrum junceum on wheat. C R Acad Sci Paris,1992,315:551-557.
    33. Chen G L, Zheng Q, Bao Y G. Molecular cytogenetic identification of a novel dwarf wheat linewith introgressed Thinopyrum ponticum chromatin. Journal of Biosciences,2012,37(1):149-155.
    34. Chen Q, Conner R L, Laroche A, et al. Genomic analysis of Thinopyrum intermedium and Th.ponticum using genomic in situ hybridization. Genome,1998,41(4):580-586.
    35. Chen Q. Detection of alien chromatin introgression from Thinopyrum into wheat using Sgenomic DNA as a probe–A landmark approach for Thinopyrum genome research. CytogenetGenome Res,2005,109:350-359.
    36. Cheng Z K, Dong F, Langdon T, et al. Functional rice centromeres are marked by a satelliterepeat and a centromere-specific retrotransposon. Plant Cell,2002,14:1691-1704.
    37. Copenhaver G P, Nickel K, Kuromori T, et al. Genetic definition and sequence analysis ofArabidopsis centromeres. Science,1999,286:2468-2474.
    38. Cottarel G, SheroJ H, Hieter P, et al. A125-base-pair CENH6DNA fragment is sufficient forcomplete meiotic and mitotic centromere functions in Saccharomyces cerevisiae, Mol Cell Biol,1989,9:3342-3349.
    39. Dawe R K, Reed L M, Yu H G, et al. A maize homolog of mammalian CENPC is a constitutivecomponent of the inner kinetochore. Plant Cell,1999,11:1227-1238.
    40. Depinet T W, Zackowski J L, Earnshaw W C, et al. Characterization of Neo-Centromeres inMarker Chromosomes Lacking Detectable Alpha-satellite DNA. Human Molecular Genetics,1997,6:1195-1204.
    41. Dernburg A F. Here, there, and everywhere: kinetochore function on holocentric chromosomes. JCell Biol,2001,153:33-38.
    42. Dewey D R. The genome system of classification as a guide to intergeneric hybridization withperennial Triticeae. Gene Manipulation in Plant Improvement. New York: Plenum1984,209-279.
    43. Dong E, Miller J T, Jackson S A, et al. Rice (Oryza sativa) centromeric regions consist ofcomplex DNA. Proc. Natl Acad Sci,1998,95:8135-8140.
    44. duSart D, Cancilla M R, Earle E, et al. A functional neo-centromere formed through activation ofa latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet,1997,16:144-153.
    45. Dvorak J, Sosulski F W. Effects of additions and substitutions of Agropyron elongatumchromosomes on quantitative characters in wheat. Can J Genet Cytol,1974,16(3):627-637.
    46. Dvorak J. Metaphase I pairing frequencies of individual Agropyron elongatum chromosome armswith Triticum chromosomes. Can J Geneti Cytol,1979,21(2):243-254.
    47. Earnshaw W C and Rothfield N. Identification of a family of human centromere proteins usingautoimmune sera from patients with scleroderma. Chromosoma,1985,91:313-321.
    48. Fedak G, Chen Q, Conner RL, Laroche A, Petroski R, Armstrong K C, Characterization ofwheat-Thinopyrum partial amphiploids by meiotic analysis and genomic in situ hybridization.Genome,2000,43:712-719
    49. Fedak G, Han F P, Cao W, Burvill M, Kriteno S, Wang L. Identification and characterization ofnovel sources of resistance to Fusarium head blight. In: Pogna N E, Romanò M, Pogna E A,Galterio G (eds) Proceeding of the10th International Wheat Genetics Symposium. S.I.M.I.,Rome, Italy,2003, pp354-356.
    50. Fedak G, Han F P. Characterization of derivatives from wheat-Thinopyrum wide crosses.Cytogenet Genome Research,2005,109:360-367.
    51. Fedak G. Molecular aids for integration of alien chromatin through wide crosses. Genome,1999,42(4):584-591.
    52. Ferguson-Smith A C, Greally J M, Martienssen R A, et al. Epigenetic Silencing ofPericentromeric Heterochromatin by RNA Interference in Schizosaccharomyces pombe.Epigenomics,2009, Part II:149-162.
    53. Francki M G. Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon familyfrom cereal rye (Secale cereale L.). Genome,2001,44(2):266-274.
    54. Friebe B, Jiang J, Knott D R, et al. Compensation indices of radiation-induced wheat-Agropyronelongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci,1994,34:400-404.
    55. Friebe B, Jiang J, Raupp W J, et al. Characterization of wheat-alien translocations conferringresistance to diseases and pests: Current status. Euphytica,1996,91:59-87.
    56. Fukui K I, Suzuki G, Lagudah E S, et al. Physical arrangement of retrotransposon-related repeatsin centromeric regions of wheat. Plant Cell Physiol,2001,42:189-196.
    57. Gao D, Gill N, Kim H R, et al. A lineage-specific centromere retrotransposon in Oryzabrachyantha. Plant Journal,2009,60:820-831.
    58. Ge S, Sang T, Lu B R, et al. Phylogeny of rice genomes with emphasis on origins ofallotetraploid species. Proc Natl Acad Sci,1999,96:14400-14405.
    59. Hall S E, Kettler G, and Preuss D. Centromere satellites from Arabidopsis populations:Maintenance of conserved and variable domains. Genome Res,2003,13:195-205.
    60. Hall S E, Luo S, Hall A E, et al. Differential rates of local and global homogenization incentromere satellites from Arabidopsis relatives. Genetics,2005,170:1913-1927.
    61. Han F P, Fedak G, Benabdelmouna A, et al. Characterization of six wheat×Thinopyrumintermedium derivatives by GISH, RFLP and multicolor GISH. Genome,2003,46:490-495.
    62. Harrington J J, Bokkelen G V, Mays R W, et al. Formation of de novo centromeres andconstruction of first-generation human artificial microchromosomes. Nat Genet,1997,15:345-355.
    63. Henikoff S, Ahmad K and Malik H S. The centromere paradox: stable inheritance with rapidlyevolving DNA. Science,2001,293:1098-1102.
    64. Heslop-Harrison J S, Brandes A and Schwarzacher T. Tandemly repeated DNA sequences andcentromeric chromosomal regions of Arabidopsis species. Chromosome Research,2003,11:241-253.
    65. Heun P, Erhardt S, Blower M D, et al. Mislocalization of the Drosophila Centromere-SpecificHistone CID Promotes Formation of Functional Ectopic Kinetochores. Dev Cell,2006,10:303-315.
    66. Hosouchi T, Kumekawa N, Tsuruoka H, et al. Physical map-based sizes of the centromericregions of Arabidopsis thaliana chromosomes1,2, and3. DNA Research,2002,9:117-121.
    67. Howman E V, Fow ler K J, Newson A J, et al. Early disruption of centromeric chromatinorganization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci,2000,97:1148-1153.
    68. Ikeno M, Grimes B, Okazaki T, et al. Construction of YAC-based mammalian artificialchromosomes. Nat Biotech,1998,16:431-439.
    69. Initiative A G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.Nature,2000,408:796-815.
    70. Jauhar P P. Meiosis and fertility of F1hybrids between hexaploid bread wheat and decaploid tallwheatgrass (Thinopyrum ponticum). Theor Appl Genet,1995,90:865-871.
    71. Jauhar P P. Multidisciplinary approach to genome analysis in the diploid species, Thinopyrumbessarabicum and Th. elongatum (Lophopyrum elongatum) of the Triticeae. Theor Appl Genet,1990,80:523-536.
    72. Jiang J, Birchler J B, Parrott W A, et al. A molecular view of plant centromeres. Trends Plant Sci,2003,8:570-575.
    73. Jiang J, Friebe B, Gill B S. Recent advances in alien gene transfer in wheat. Euphytica,1994,73:199-212.
    74. Jiang J, Nasuda S, Dong R, et al. A conserved repetitive DNA element located in the centromeresof cereal chromosomes. Proc Natl Acad Sci,1996,93:14210-14213.
    75. Jin W W, Lamb J C, Vega J M, et al. Molecular and functional dissection of the maize Bcentromere. Plant Cell,2005,17:1412-1423.
    76. Jin W W, Melo J R, Nagaki K, et al. Maize centromeres: Organization and functional adaptationin the genetic background of oat. Plant Cell,2004,16:571-581.
    77. Kamm A, Galasso I, Schmidt T, et al. Analysis of a repetitive DNA family from Arabidopsisarenosa and relationships between Arabidopsis species. Plant Molecular Biology,1995,27:853-862.
    78. Karpen G H, Allshire R C. The case for epigenetic effects on centromere identity and function.Trends Genet,1997,13:489-496.
    79. Kawabe A and Nasuda S. Structure and genomic organization of centromeric repeats inArabidopsis species. Mol Genet Genomics,2005,272:593-602.
    80. Kishii M, Nagaki K and Tsujimoto H. A tandem repetitive sequence located in the centromericregion of common wheat (Triticum aestivum) chromosomes. Chromosome Research,2001,9:417-428.
    81. Knott D R. The inheritance of rust resistance. VI The transfer of stem rust resistance fromAgropyron elongatum to common wheat. Can J Plant Sci,1961,41:109-123.
    82. Kumar A and Bennetzen J L. Plant retrotransposons. Annu Rev Genet,1999,33:479-532.
    83. Kumekawa N, Hosouchi T, Tsuruoka H, and et al. The size and sequence organization of thecentromeric region of Arabidopsis thaliana chromosome5. DNA Research,2000,7:315-321.
    84. Lee H R, Neumann P, Macas J, et al. Transcription and evolutionary dynamics of the centromericsatellite repeat CentO in rice. Mol Biol Evol,2006,23(12):2505-2520.
    85. Lee H R, Zhang W L, Langdon T, et al. Chromatin immunoprecipitation cloning reveals rapidevolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci,2005,102:11793-11798.
    86. Levy A A and Feldman M. Genetic and epigenetic reprogramming of the wheat genome uponallopolyploidization. Biol J Linnean Society,2004,82(7),607-613.
    87. Li D Y and Zhang X Y. Physical localization of the18S-5.8S-26S rDNA and sequence analysis ofITS regions in Thinopyrum ponticum (Poaceae: Triticeae): implication of concerted evolution.Annals of Botany,2002,90:445-452.
    88. Li H J, Wang X M. Thinopyrum ponticum and Th. intermedium: the promising source ofresistance to fungal and viral diseases of wheat. Journal of Genetics and Genomics,2009,36:557-565.
    89. Li Z S, Li B, Tong Y P. The contribution of distant hybridization with decaploid Agropyronelongatum to wheat improvement in China. Journal of Genetics and Genomics,2008,35:451-456.
    90. Liu S, Yu L X, Singh R P, et al. Diagnostic and co-dominant PCR markers for wheat stem rustresistance genes Sr25and Sr26. Theor Appl Genet,2010,120:691-697.
    91. Liu Z, Li D Y, Zhang X Y. Genetic relationships among five basic genomes St, E, A, B and D inTriticeae revealed by genomic Southern and in situ hybridization. Journal of Integrative PlantBiology,2007,49(7):1080-1086.
    92. Liu Z, Yue W, Dong Y S, et al. Identification and preliminary analysis of severalcentromere-associated bacterial artificial chromosome clones from a diploid wheat library.Journal of Integrative Plant Biology,2006,48(3):348-358.
    93. Liu Z, Yue W, Li D, et al. Structure and dynamics of retrotransposons at wheat centromeres andpericentromeres. Chromosoma,2008,117:445-456.
    94. Ma J X, Wing R A, Bennetzen J L, et al. Plant centromere organization: a dynamic structure withconserved functions. Trends in Genetics,2007,23:134-139.
    95. Ma J, and Jackson S A. Retrotransposon accumulation and satellite amplification mediated bysegmental duplication facilitate centromere expansion in rice. Genome Res,2006,16:251-259.
    96. Macas J, Neumann P, Novák P, et al. Lobal sequence characterization of rice centromeric satellitebased on oligomer frequency analysis in large-scale sequencingdata. Bioinformatics,2010,26(17):2101-2108.
    97. Malik H S, Bayes J J. Genetic conflicts during meiosis and the evolutionary origins ofcentromere complexity. Biochem Soc Trans,2006,34:569-573.
    98. Maluszynsak J and Heslop-Harrison J S. Localization of tandemly repeated DNA sequences inArabidopsis thaliana. Plant Journal,1991,1:159-166.
    99. Margaret G R, Thomas A J, and Y T Zhang. Ubiquity of the St chloroplast genome inSt-containing Triticeae polyploids NRC Research Press web site on September2000,19:846-852.
    100. Martinez-Zapater J M, Estelle M A, and Somerville C R. A high repeated DNA sequence inArabidopsis thaliana. Mol Gen Genet,1986,204:417-423.
    101. McEwen B F, Chan G K, Zubrowski B, et al. CENP-E is essential for reliable bioriented spindleattachment, but chromosome alignment can be achieved via redundant mechanisms inmammalian cells. Mol Biol Cell,2001,12:2776-2789.
    102. McIntosh R A, Yamazaki Y, Dubcovsky J, et al. Catalogue of Gene Symbols for Wheat.[C] InProc11th Int Wheat Genet Symp. University of Sydney Press, Australia,2008,11:24-29.
    103. Mellone B G, Allshire R C. Stretching it: putting the CEN (P-A) in centromere. Curr Opin GenetDev,2003,13:191-198.
    104. Meluh P B, Yang P R, Glowczewski L, et al. Cse4p is a component of the core centromere ofSaccharomyces cerevisiae. Cell,1998,94:607-613.
    105. Miller J T, Dong E, Jackson S A, et al. Retrotransposon-related DNA sequences in thecentromeres of grass chromosomes. Genetics,1998,150:1615-1623.
    106. Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of the three genomes inhexaploid wheat by multi-color fluorescence in situ hybridization using total genomic and highlyrepeated DNA probes. Genome,1993,36:489-494.
    107. Mullan D J, Mirzaghaderi G, Walker E, et al. Development of wheat–Lophopyrum elongatumrecombinant lines for enhanced sodium ‘exclusion’ during salinity stress. Theor Appl Genet,2009,9:1313-1323.
    108. Murata M, Ogura Y and Motoyoshi F. Centromeric repetitive sequences in Arabidopsis thaliana.Jpn J Genet,1994,69:361-370.
    109. Murphy T D and Karpen G H. Localization of centromere function in a Drosophilaminichromosome. Cell,1995,82:599-609.
    110. Nagaki K, Cheng Z K, Ouyang S, et al. Sequencing of a rice centromere uncovers active genes.Nat Genet,2004,36:138-145.
    111. Nagaki K, Kashihara K, and Murata M. Visualization of diffuse centromeres withcentromere-Specific histone H3in the holocentric plant Luzula nivea. Plant Cell,2005,17,1886-1893.
    112. Nagaki K, Neumann P, Zhang D, et al. Structure, divergence, and distribution of the CRRcentromeric retrotransposon family in rice. Mol Biol Evol,2005,22:845-855.
    113. Nagaki K, Talbert P B, Zhong C X, et al. Chromatin immunoprecipitation reveals that the180-bpsatellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics,2003,163:1221-1225.
    114. Nagaki K, Walling J G, Hirsch C, et al. Structure and Evolution of plant centromeres. Prog MolSubcell Biol,2009,48:153-179.
    115. Oliver R E, Xu S S, Stack R W, et al. Molecular cytogenetic characterization of four partialwheat-Thinopyrum ponticum amphiploids and their reactions to Fusarium head blight, tan spot,and Stagonospora nodorum blotch. Theor Appl Genet,2006,112:1473-1479.
    116. Palmer D K, O'Day K, Trong H L, et al. Purification of the centromere-specific protein CENP-Aand demonstration that it is a distinctive histone. Proc Natl Acad Sci,1991,88:3734-3748.
    117. Pidoux A and Allshire R. Kinetochore and heterochromatin domains of the fission yeastcentromere. Chromosome Research,2004,12:521-534.
    118. Pluta A F, Mackay A M, Ainsztein A M, et al. The Centromere: Hub of Chromosomal Activities.Science,1995,270:1591-1594.
    119. Politi V, Perini G, Trazzi S, et al. CENP-C binds the alpha-satellite DNA in vivo at spefccicentromere domains. J Cell Sci2002,115:2317-2327.
    120. Presting G G, Malysheva L, Fuchs J, et al. A Ty3/gypsy retrotransposon-like sequence localizes tothe centromeric regions of cereal chromosomes. Plant J,1998,16:721-728.
    121. Qi L, Friebe B, Zhang P, Gill B S. Homoeologous recombination, chromosome engineering andcrop improvement. Chromosome Research,2007,15:3-19.
    122. Rayburn A L, Gill B S. Molecular identification of the D-genome chromosomes of wheat. Journalof Heredity,1986,77:253-255.
    123. Roelfs A P, Singh R P, Saari E E. Rust diseases of wheat: concepts and methods of diseasemanagement.[C] CIMMYT, Mexico,1992.
    124. Round E K, Flowers S K, and Richards E J. Arabidopsis thaliana centromere regions: geneticmap positions and repetitive DNA structure. Genome Res,1997,7:1045-1053.
    125. Rudd M K, Wray, G A, and Willard H F. The evolutionary dynamics of α-satellite. Genome Res,2006,16:88-96.
    126. Saffery R, Irvine D V, Griffths B, et al. Human centromeres and neocentromeres show identicaldistribution patterns of>20functionally important kinetochore-associated proteins. Hum MolGenet2000,9:175-185.
    127. Sanei M, Pickering R, Kumke K, et al. Loss of centromeric histone H3(CENH3) fromcentromeres precedes uniparental chromosome elimination in interspecfic barley hybrids. Proc.Natl Acad Sci,2011,108(33):498-505.
    128. Sepsi A, Molnár I, Szalay D, Molnár-Lang M. Characterization of a leaf rust-resistantwheat-Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolour GISHand FISH. Theor Appl Genet,2008,116:825-834.
    129. Shi J, Wolf E, Burke J M, et al. Widespread gene conversion in centromere cores. PLoS Biology,2010,3: e1000327.
    130. Sullivan B A and Karpen G H. Centromeric chromatin exhibits a histone modification pattern thatis distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol,2004,11:1076-1083.
    131. Sullivan B A, Blower M D, and Karpen G H. Determining centromere identity: cyclical storiesand forking paths. Nat Rev Genet,2001,2:584-596.
    132. Sullivan B and Willard H F. Stable dicentric X chromosomes with two functional centromeres.Nat Genet,1998,20:227-228.
    133. Sullivan B, and Schwartz S. Identification of centromeric antigens in dicentricRobertsoniantransclocations: CENP-C and CENP-E are essential components of functionalcentromeres. Hum Mol Genet,1995,4:2189-2198.
    134. Sun X P, Wahlstrom J, and Karpen G. Molecular structure of a functional Drosophila centromere.Cell,1997,91:1007-1019.
    135. Talbert P B, Masuelli R, Tyagi A P, et al. Centromeric localization and adaptive evolution ofanArabidopsis histone H3variant. Plant Cell,2002,14:1053-1066.
    136. Tang S, Li Z, Jia X, Larkin P J. Genomic in situ hybridization (GISH) analyses of Thinopyrumintermedium, its partial amphiploid Zhong5, and disease-resistant derivatives in wheat. TheorAppl Genet,2000,100:344-352.
    137. ten Hoopen R, Manteuffel R, Dolezel J, et al. Evolutionary conservation of kinetochore proteinsequences in plants. Chromosoma,2000,109:482-489.
    138. ten Hoopen R, Schleker T, Manteuffel R, et al. Transient CENP-E-like kinetochore proteins inplants. Chromosome Res,2002,10:561-570.
    139. Tuleen N A, Hart G E. Isolation and characterization of wheat-Elytrigia elongata chromosome3E and5E addition and substitution lines. Genome,1988,30(4):519-524.
    140. Vig B K. Do specifc nucleotide bases constitute the centromere? Mutat Res,1994,309:1-10.
    141. Voge l K P, Arumuganathan K, Jensen K B. Nuclear DNA content of perennial grasses of theTriticeae. Crop Science,1999,39:661-667.
    142. Wang R R C, Larson S R, Jensen K B. Analyses of Thinopyrum bessarabicum, T. elongatum, andT. junceum chromosomes using EST-SSR markers. Genome,2010,53:1083-1089.
    143. Wang R R C, Zhang X Y. Characterization of the translocated chromosome using fluorescence insitu hybridization and random amplified polymorphic DNA on two Triticumaestivum-Thinopyrum intermedium translocation lines resistant to wheat streak mosaic or barleyyellow dwarf virus. Chromosome Research,1996,4:583-587.
    144. Warburton P E, Cooke C A, Bourassa S, et al. Immunolocalization of CENP-A suggests a distinctnucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol,1997,7:901-904.
    145. Warburton P E. Chromosomal dynamics of human neocentromere formation. Chromosome Res,2004,12:617-626.
    146. Willard H F. Centromeres: the missing link in the development of human artificial chromosomes.Curr Opin Genet Dev,1998,8:219-225.
    147. Wolfgruber T K, Sharma A, Schneider K L, et al. Maize centromere structure and evolution:sequence analysis of centromeres2and5reveals dynamic loci shaped primarily byretrotransposons. PLoS Genetics,2009,5: e1000743.
    148. Xin Z Y, Brettell R, Cheng Z M, et al. Characterization of a potential source of barley yellowdwarf virus resistance for wheat. Genome,1988,30(1):250-257.
    149. Xin Z Y, Xu H J, Chen X, et al. Development of a common wheat germ plasm-resistant to barleyyellow dwarf virus by biotechnology. Sci China (Series B),1991,34(9):1055-1062.
    150. Yan H H and Jiang J M. Rice as a model for centromere and heterochromatin research.Chromosome Res,2007,15:77-84.
    151. Yen C, Yang J L, Yen Y. Hitoshi Kihara, á skell L ve and the modern genetic concept of thegenera in the tribe Triticeae (Poaceae). Acta Phytotax Sin,2005,43:82-93.
    152. Yu H G, Muszynski M G, Dawe R K: The maize homologue of the cell cycle checkpoint proteinMAD2reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns.J Cell Biol,1999,145:425-435.
    153. Zhang P, Friebe B, Lukaszewski A J, et al. The centromere structure in Robertsonian wheat-ryetranslocationchromosomes indicates that centric breakage-fusion can occur at different positionswithin the primary constriction.Chromosoma,2001,110:335-344.
    154. Zhang X Y, Banks P M, Larkin P J. Verification of alien chromosomes and segments in additionlines derived from Triticum aestivum-Thinopyrum intermedium partial amphiploid Zhong5. ChinAgri Sci (English version),2000,3(1):53-59.
    155. Zhang X Y, Dond Y S, Wang R R C. Characterization of genomes and chromosomes in partialamphiploids of the hybrids of Triticum aestivum x Thinopyrum ponticum by in situ hybridization,isozyme analysis, and RAPD. Genome,1996,39:1062-1071.
    156. Zhang X Y, Koul A, Petroski R, et al. Molecular verification and characterization ofBYDV-resistant germ plasms derived from hybrids of wheat with Thinopyrum ponticum and Th.intermedium.Theor Appl Genet,1996,93:1033-1039.
    157. Zhang X Y, Li Z S and Chen S Y. Production and identification of three4Ag (4D) substitutionlines of Triticum aestivum-Agropyron: relative transmission rate of alienchromosomes. Theoretical and Applied Genetics,1992,83(6-7):707-714.
    158. Zhang X Y, Wang R R C, Fedak G, et al. Determination of genome and chromosome compositionof Thinopyrum intermedium and partial amphiploids derived from Triticum aestivum×Th.intermedium by GISH and Genome-specific RAPD Markers. In: Proceedings of the10thEWACmeeting1997. EWAC Newsletter,1998,34-38.
    159. Zhang Y, Huang Y, Zhang L, et al. Structural features of the rice chromosome4centromere.Nucleic Acids Research,2004,32(6):2023-2030.
    160. Zhong C X, Marshall J B, Topp C, et al. Centromeric retroelements and satellites interact withmaize kinetochore protein CENH3. Plant Cell,2002,14:2825-2836.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700