用户名: 密码: 验证码:
甘蓝型油菜含油量QTLs定位及候选基因筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝型油菜是芸薹属植物中一种非常重要的油料作物并在世界范围内大面积的种植。甘蓝型油菜的含油量每期高一个百分点相当于产量期高2.3~2.5个百分点,所以研究甘蓝型油菜的含油量具有十分重要的意义。
     本论文的主要研究内容如下:
     1. DH群体的高低油混样转录组测序。根据DH高低油极端混样(高油混样是选择了DH群体含油量极端高的10个单株,低油混样是选择了DH群体含油量极端低的10个单株)转录组测序结果,得到了2730个差异表达基因,其中,1586个上调基因和1144个下调基因。
     2.引物设计和多态性扩增。因为缺少多态性的标记,我们设计了2244对公共引物、5944对新开发的基因组来源的引物和443对新开发的与含油量有关的基因来源的引物。在亲本zy036和51070中扫了2244对公用引物、5944对新开发的基因组来源的引物和443对新开发的基因引物的多态性,分别鉴定出400(17.83%)、718(12.08%)和73(16.48%)对多态性引物。
     3.遗传连锁图谱构建。利用DH群体构建了一个包括527个标记的遗传连锁图谱。这527个标记包括181个公用标记、298个新开发的基因组来源的标记和48个新开发的与含油量有关的基因标记。连锁图谱覆盖总长度是2,265.54cM,平均每条连锁群长度是119.34cM,标记之间的平均图距4.30cM。
     4.含油量QTLs定位及候选基因筛选。利用WinQTL Cartographer2.5软件进行含油量QTLs检测,共检测到17个QTLs。通过QTL定位,估计的每个QTL解释含油量表型变异(R2)是9.15%~24.56%。每个QTL的加性效应是0.35~2.05。结合50个差异表达基因开发的基因来源的引物及17个含油量QTLs区间,共得到了7个含油量候选基因。
     5.含油量与主花序产量及构成因子之间的相关性分析。实验表明: DH群体含油量与主花序产量、主花序有效角果数、每角粒数和千粒重之间没有明显的相关性(P>0.05);共定位了13个主花序产量、10个主花序有效角果数、15个每角粒数和23个千粒重QTLs。
     本论文的创新性如下:
     1.用两个含油量差异很大(10个百分点)的甘蓝型油菜品种构建了DH群体,设计了许多新开发的基因组和基因来源引物,定位了含油量QTLs,并得到了高油QTLs,为甘蓝型油菜含油量和产量QTL性状的精细定位、基因克隆和分子标记辅助选择(MAS)奠定了基础。
     2.通过把DH群体的高低油混样转录组测序得到的差异表达基因设计基因引物和含油量QTLs定位相结合,同步得到多个QTLs区间的多个含油量候选基因,为以后快速、高通量的寻找数量性状候选基因期供了可能性。
     3.通过分析含油量与主花序产量及构成因子之间的相关性表明,含油量与主花序产量之间相关性不明显,说明可以同步期高油菜的含油量和产量。
Rapeseed (Brassica napus) is one of the most important oilseed crops, and it is cultivated over alarge area around the world. A1%increase in the seed oil content of rapeseed is equivalent to a2.3~2.5%increase in seed yield. Therefore, it is very important to improve the seed oil content inrapeseed.
     The major research contents in the study are as follows:
     1. Transcriptome sequencing of high-/low-oil content mixtures in DH population. A total of2370differentially expressed genes including1586up-regulated genes and1144down-regulatedgenes were detected. They were found according to the result of transcriptome sequencing ofextremely high-/low-oil content mixtures (10single plants of DH population with extremely high oilcontent were chosen as high-oil mixture and10single plants of DH population with extremely low oilcontent were chosen as low-oil mixture).
     2. Primer design and primer polymorphism aplificatoin. To address the deficiency inpolymorphic markers, we designed2244pairs of publicly available primers,5944pairs of newlydeveloped genome-sourced primers, and443pairs newly developed primers related to oil-contentgenes. Primer screened for polymorphisms in the parents zy036and51070, for the2244pairs ofpublicly available primers,5944pairs of newly developed genome-sourced primers, and443pairs ofnewly developed primers related to oil-content genes,400(17.83%),718(12.08%), and73(16.48%)amplified polymorphisms.
     3. Construction of the genetic linkage map. A genetic linkage map was constructed with527markers using our DH population. The map included181publicly available markers,298newlydeveloped genome-sourced markers and48newly developed markers related to oil-content genes.The total length of the19linkage groups was2,265.54cM, with an average length of119.34cM foreach linkage group and an average distance of4.30cM between markers.
     4. Mapping of QTLs and screening of candidate genes for seed oil content.17QTLs for oilcontent were detected using software WinQTL Cartographer2.5. By QTL mapping, the mount ofphenotype variation (R2) in seed oil content explained by an individual QTL ranged from9.15%to24.56%. The additive effect of an individual QTL varied from0.35to2.05. Seven candidate genesrelated with oil content was found by combining the information of gene-sourced primers based on50differentially expressed genes with17oil content QTLs regions.
     5. Analysis of correlation between oil content and yield of main inflorescence and itscomponents. It was shown that there were no significant correlation (P>0.05) between oil content andthe yield of main inflorescence, the number of effective siliques on main inflorescence, the number ofseeds per silique and thousand seeds weight.13QTLs of the yield of main inflorescence,10QTLs ofthe number of effective siliques on main inflorescence,15QTLs of the number of seeds per silique and23QTLs of thousand seeds weight were mapped.
     The points of innovation in the study are as follows:
     1. The B. napus DH population whose parents (10percentage points) with big difference in oilcontent were constructed. Many newly developed genome-and gene-sourced primers were designed.QTLs for oil content were detected, especially high-oil QTLs, which were laid foundation for finelyQTL mapping related to oil content and yield traits, genes cloning and molecular marker assistedselection (MAS) in B. napus.
     2. Many candidate genes in many QTL regions could be detected at same time by combiningdesign of gene primers using differentially expressed genes obstaining from result of transcriptomesequencing of high-/low-oil content mixtures in DH population, which supplied possibility to findquickly candidate genes related to the quantitative traits with high-throughput.
     3. It was shown that oil content and yield of main inflorescence had no significant correlationshipbetween each other by analysis of correlation between oil content and yield of main inflorescence andits components, which indicated that oil content and yield could be increased at same time.
引文
1.艾复珍,李改珍.密度与施肥量对油菜产量及经济性状的影响[J].浙江农业科学,2005,26(02):131~134.
    2.蔡长春,傅廷栋,陈宝元,涂金星.甘蓝型油菜遗传图谱的构建及开花提的QTL分析[J].中国油料作物学报[J],2007,29(0l):1~8.
    3.陈伦林,邹小云,李书宇,邹晓芬,张建模,宋来强. SSR和SRAP标记揭示甘蓝型油菜遗传多样性的差异分析[J].分子植物育种,2008,(03):511~516.
    4.陈全求,詹先进,蓝家样,黄云. EST分子标记开发研究进展[J].中国农学通报.2008,(09):72~77.
    5.陈新军,戚存扣,高建芹,等.不同栽培密度对杂日油菜产量的影响[J].江苏农业科学,2001,(01):29~30.
    6.董媛媛,俞咪娜,李小白,徐攀峰,崔海瑞,张明龙. EST-SSR和RAPD标记检测油菜(Brassica napus)遗传多样性[J].核农学报,2008(5):611~616.
    7.杜晓华,王得元,巩振辉,等.目标区域扩增多态性(TRAP):一种新的植物基因型标记技术[J].分子植物育种,2004,2(5):747~750.
    8.方宣钧,吴为人,唐纪良.作物NDA标记辅助育种[M].北京:科学出版社,2001.
    9.冯娟,黄华,杨文钰.不同密度、施氮量对机械撒播油菜产量及其构成的影响[J].作物杂志,2006(02):26~28
    10.傅寿仲,张洁夫,戚存扣,浦惠明,高建芹,陈新军,陈锋,甘蓝型油菜高含油量种质选育研究[J].中国油料作物学报,2008,30(3):279~283.
    11.高必军,李平,江洪.甘蓝型油菜若干农艺性状与单株产量的关系分析[J].生物数学学报,2007,22(1):137~144.
    12.高必军.甘蓝型油菜napin基因启动子的克隆与几个重要农艺性状的初步QTL定位[博士学位论文].雅安:四川农业大学,2007.
    13.高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175~179.
    14.管延安.甜高粱遗传图谱的构建及能源相关性状的QTL定位[博士学位论文].济南:山东农业大学,2011.
    15.韩慧杰.甘蓝型油菜耐菌核病抗倒伏新种质的创建[硕士学位论文].武汉:华中农业大学,2009.
    16.胡虹文.甘蓝型油菜12种主要性状与产量的关系[J].中国油料,1997,19(3):10~14.
    17.黄卓烈,朱利泉.生物化学[M].北京:中国农业出版社.2004,226~232.
    18.金梦阳,段先琴,危文亮.续随子苗提抗旱性综合评价[J].中国油料作物学报.2009(4):465~469.
    19.金梦阳,李加纳,付福友,张正圣,张学昆,刘列钊,甘蓝型油菜含油量及皮壳率的QTL分析[J].中国农业科学,2007,40(4):677~684.
    20.金梦阳.甘蓝型油菜遗传图谱的构建及农艺性状QTL定位[硕士学位论文].重庆:西南大学,2006.
    21.景尚友.甘蓝型春油菜主要农艺性状与单株产量的通径分析[J].黑龙江农业科学,2002(3):16~19.
    22.李靖,李成斌,顿文涛,王政,方庆.流式细胞术(FCM)在生物学研究中的应用[J].中国农学通报,2008,24(6):5.
    23.李孟良.不同密度对直播油菜生长及产量的影响[J].安徽科技学院学报,2011,25(1):23~26.
    24.李小白,张明龙,崔海瑞.油菜EST-SSR标记的建立[J].分子细胞生物学报,2007(40):137~143.
    25.李小白,崔海瑞,张明龙. EST分子标记开发及在比较基因组学中的应用[J].生物多样性,2006,14(6):541~547.
    26.李玉梅,姚纪元,吴静,白秀娟. PCR-SSCP技术的研究及应用进展[J].生物技术通报.2007,6.
    27.李媛媛,沈金雄,王同华,等.利用SRAP、SSR和AFLP标记构建甘蓝型油菜遗传连锁图谱[J].中国农业科学,2007,40(6):1215~1126.
    28.刘后利.油菜遗传育种学[M].北京:中国农业大学出版社,2000,32~43.
    29.刘列钊,林呐,堪利,唐章林,张学昆,李加纳.甘蓝型油菜5个重要性状QTL分析[J].农业生物技术学报,2006,14(5):747~751
    30.刘志文,刘雪平,傅廷栋,涂金星.甘蓝型油菜小孢子培养的胚诱导和加倍效率的研究[J].华中农业大学学报,2005.24(4):339~342.
    31.刘梓谕.高含油量甘蓝型油菜新品系指纹图谱的构建及与含油量连锁标记的筛选[硕士学位论文].北京:中国农业科学院,2008.
    32.龙艳.人工合成特长角甘蓝型油菜产量相关性状的遗传分析和基因定位[硕士学位论文].雅安:四川农业大学,2003.
    33.马爱芬,李加纳,谌利,钱伟,付福友,刘列钊.甘蓝型油菜种皮色泽相关基因的cDNA-SRAP差异显示[J].作物学报.2008(3):526~529.
    34.梅德圣,张鑫,李云昌等.油菜油分、蛋白质和硫营含量相关性分析及QTL定位[J].植物学报,2009,44(5):536~545.
    35.米哲,李云昌,梅德圣,李英德,徐育松,陈玉峰,胡琼.甘蓝型油菜小孢子培养影响因素研究及再生苗早提倍性鉴定[J].华北农学报,2011,26(5):97~102.
    36.沈金雄.甘蓝型油菜杂种优势及其遗传分析[博士学位论文].武汉:华中农业大学,2003.
    37.师家勤.甘蓝型油菜产量性状及其杂种优势遗传基础的全基因组解析[博士学位论文].武汉:华中农业大学,2009.
    38.石淑稳,周永明,吴江生,刘后利.甘蓝型油菜小孢子培养、染色体加倍、试管苗继代越夏和田间移栽配套技术的研究及其在油菜育种中的应用[J].中国农学通报,2001.17(2):57~59.
    39.宋稀,刘凤兰,郑普英,等.高密度种植专用油菜重要农艺性状与产量的关系分析[J].中国农业科学,2010,43(9):1800~1806.
    40.陶抵辉,李小红,王利群,周杰良,陈涌,霍稳根.植物染色体倍性鉴定方法研究进展[J].生命科学研究,2009,13(5):453~458.
    41.田琳琳,管荣展,张凤启,张红生.一个甘蓝型油菜细胞质雄性不育相关基因克隆和表达分析[J].分子植物育种.2008(6):1193~1196.
    42.童晋.油菜柠檬酸合酶与柠檬酸裂解酶基因克隆及功能研究[博士学位论文].北京:中国农业科学院,2009.
    43.王刚.棉花幼苗盐胁迫条件下Solexa转录组测序结果的分析及验证[硕士学位论文].济南:山东农业大学,2011.
    44.王汉中,王新发,刘贵华,郑元本,杨庆.甘蓝型杂日油菜亲本的小孢子培养技术研究[J].中国油料作物学报,2004.26(1)1~4.
    45.王汉中,我国油菜产业发展的历史回顾与展望[J].中国油料作物学报,2010,32(2):300~302.
    46.王汉中.发展油菜生物柴油的潜力、问题与对策[J].中国油料作物学报,2005(27):74~76.
    47.王建康.数量性状基因的完备区间作图方法[J].作物学报,2009,35(2):239~245.
    48.王丽鸳.基于EST数据库和转录组测序的茶树DNA分子标记开发与应用研究[博士学位论文].北京:中国农业科学院,2011.
    49.王瑞,李加纳,谌利,等.甘蓝型黄籽油菜主要性状的通径分析[J].中国农学通报,2004,20(6):325~326.
    50.王元英.烟草抗病基因筛选及其高通量RNAi载体库的构建[博士学位论文].北京:中国农业科学院,2011.
    51.吴安平,殷少华,熊飞,胡海珍.甘蓝型油菜小孢子加倍培养技术[J].现代农业科技,2010,3.
    52.吴安平.利用小孢子培养技术培育抗寒性增强的甘蓝型油菜polCMS恢复系[硕士学位论文].武汉:华中农业大学,2008.
    53.吴建忠.甘蓝型油菜结实相关性状分析及QTL定位[硕士学位论文].武汉:华中农业大学,2010.
    54.吴雅琴,常瑞丰,程和禾.流式细胞术进行倍性分析的原理和方法[J].云南农业大学学报,2006.21(4):407~414.
    55.杨畅,郑普英,张学昆,邹崇顺,程勇,李桂英.甘蓝型油菜EST分子标记技术体系的建立[J].中国油料作物学报.2008,1:17~24.
    56.杨光圣.甘蓝型油菜PolCMS恢复系小孢子培养后代的遗传变异[硕士学位论文].武汉:华中农业大学,2007.
    57.杨景华,王士伟,刘训言,杨加付,张明方.高等植物功能性分子标记的开发与利用[J].中国农业科学.2008(11):3429~3436.
    58.杨敏敏.高含油量甘蓝型油菜新种质创建[硕士学位论文].武汉:华中农业大学,2008.
    59.姚坚强.中国糯玉米穗部发育相关基因的转录组测序与功能分析[硕士学位论文].武汉:华中农业大学,2011.
    60.易斌,陈伟,马朝芝,傅廷栋,涂金星.甘蓝型油菜产量及相关性状的QTL分析[J].作物学报,2006,32(5):676~682.
    61.应梅.甘蓝型油菜抗(耐)菌核病PolCMS恢复系的选育[硕士学位论文].武汉:华中农业大学,2008.
    62.袁素霞.甘蓝和青花菜小孢子培养及早提胚胎形成相关基因差异表达分析[博士学位论文].北京:中国农业科学院,2009.
    63.张建模,邹小云,宋来强,等.杂日油菜主要产量性状与品质性状的关系研究[J].江西农业学报,2006,18(6):16~20.
    64.张洁夫,戚存扣,浦惠明,陈松,陈锋,高建芹,陈新军,顾慧,傅寿仲.甘蓝型油菜主要脂肪酸组成的QTL定位[J].作物学报,2008,34(1):54~60.
    65.张俊龙.葡萄气孔、花粉等与倍性的关系及倍性判别分析[J].甘肃科技,2005.21(5):103~104.
    66.张书芬,傅廷栋,朱家成,王建平,文雁成,马朝芝.甘蓝型油菜产量及其构成因素的QTL定位与分析[J].作物学报,2006,32(8): l135~1142.
    67.张宇文,郭亚茹.油菜主序优势及其利用初析[J].西北植物学,1996,16(6):126~131.
    68.赵雪,谢华,马荣才.植物功能基因组研究中出现的新型分子标记[J].中国生物工程杂志,2007,27(8):104~110.
    69.周伟军,唐桂香,张国庆.甘蓝型油菜小孢子秋水仙碱处理期高双单倍体频率研究[J].中国农业科学,2002,35(4):410~414.
    70. Adams MD, Kelley JM, Jeannine D, Gocayne, Dubnick M, et al.Complementary DNAsequencing expressed sequence tags and human genome project [J]. Science,1991,252:1651~1656.
    71. Alan Coulson, John Sulston, Sydney Brenner, and Jonathan Karn. Toward a physical map ofthe genome of the nematode Caenorhabditis elegans [J]. Proc Natl Acad Sci US.1986,83(20):7821~7825.
    72. Basunanda P, Radoev M, Ecke W, Fried W, Becker HC, et al.. Comparative mapping ofquantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassicanapus L.)[J]. Theor Appl Genet,2010,120:271~281.
    73. Beisson F, Koo AJ, Ruuska S, Schwender J, Pollard M, et al. Arabidopsis genes involved inacyl lipid metabolism [J]. A2003census of the candidates, a study of the distribution ofexpressed sequence tags in organs, and a web-based database. Plant Physiol,2003,132:681~697.
    74. Bennett S. Solexa Ltd [J]. Pharmacogenomics,2004,5(4):433~438.
    75. Black DL. Mechanisms of alternative premessenger RNA splicing [J]. Annual Review ofBiochemistry,2003,72:291~336.
    76. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in manusing restriction fragment length polymorphisms [J]. Am J Hum Genet,1980,32:314~333.
    77. Burns MJ, Barnes SR, et al. QTL analysis of an intervarietal set of substitution lines in Brassicanapus:(i)seed oil content and fatty acid compositions [J]. Heredity,2003,90:38~48.
    78. Chen G, Geng JF, Rahman M, Liu XP, Tu JX, Fu TD, Li GY, McVetty PBE, Tahir M.Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassicanapus)[J]. Euphytica,2010,175:161~174.
    79. Chen X, Hedley PE, Morris J, Liu H, Niks RE, et al.. Combining genetical genomics andbulked segregant analysis-based differential expression: an approach to gene localization [J].Theor Appl Genet,2011,122:1375~1383.
    80. Cheng X, Xu J, Xia S, Gu J, Yang Y, et al. Development and genetic mapping of microsatellitemarkers from genome survey sequences in Brassica napus [J]. Theor Appl Genet,2009,118:1121~1131.
    81. Cheung WY, Champagne G, Hubert N, Landry BS. Comparison of the genetic maps ofBrassica napus and Brassica oleracea [J]. Theor Appl Genet,1997,94:569~582.
    82. Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E, Piao ZY, Soengas P, Han TH,King GJ, Barker GC, Hand P, Lydiate DJ, Batley J, Edwards D, Koo DH, Bang JW, Park BS,Lim YP. The reference genetic linkage map for the multinational Brassica rapa genomesequencing project [J]. Theor Appl Genet,2007,115:777~792.
    83. Churchill GA, Doerge RW. Emperical threshold values for quantitative trait mapping [J].Genetics,1994,138:963~971.
    84. Coupe SA, Palmer BG, Lake JA, Overy SA, Oxborough K, Woodward FI, Gray JE, Quick WP.Systemic signalling of environmental cues in Arabidopsis leaves [J]. J Exp Bot,2006,57:329~341.
    85. Cronn R, Liston A, Parks M, Gernandt DS, Shen R, Mockler T. Multiplex sequencing of plantchloroplast genomes using Solexa sequencing-by-synthesis technology [J]. Nucleic Acids Res..2008,36(19):122.
    86. Cuddapah S. Barski A, Cui K, Schones DE, Wang Z, Wei G, Zhao K. Native chromatinpreparation and Illumina/Solexa library construction [J]. Cold Spring Harb. Protoc..2009,209(6):5237.
    87. Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, et al. Genetic control of oil content inoilseed rape (Brassica napus L.)[J]. Theor Appl Genet,2006,113:1331~1345.
    88. Doan TT, Carlsson AS, Hamberg M, Bulow L, Stymne S, Olsson P. Functional expression offive Arabidopsis fatty acyl-CoA reductase genes in Escherichia coli [J]. J Plant Physiol,2009,166:787~796.
    89. Doerge RW, Churchill GA. Permutation test for multiple loci affecting a quantitative character[J]. Genetics,1996,142:285~294.
    90. Dolezel J, Greilhuber J, Suda J. Estimation of Nuclear DNA Content in Plants Using FlowCytometry [J]. Nature Protocols,2007,2(9):2233~2244.
    91. Domergue F, Vishwanath SJ, Joubes J, Ono J, Lee JA, Bourdon M, Alhattab R, Lowe C, PascalS, Lessire R, Rowland O. Three Arabidopsis fatty acyl-coenzyme A reductases, FAR1, FAR4,and FAR5, generate primary fatty alcohols associated with suberin deposition [J]. Plant Physiol,2010,153:1539~1554.
    92. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue [J].Phytochem Bull,1987,19:11~15.
    93. Dunwell JM, Cornish M, De Courcel AG. Influence of genotype, plant growth temperature andanther incubation temperature on microspore embryo production in Brassica napus spp.oleifera [J]. J Exp Bot,1985,36:679~689.
    94. Ecke W, Uzunova M, Weiβleder K. Mapping the genome of rapeseed (Brassica napus L.) II.Localization of genes controlling erucic acid synthesis and seed oil content [J]. Theor ApplGenet,1995,91:972~977.
    95. Eeckhaut T, Leus L, Huylenbroeck J V. Exploitation of Flowcytometry for Plant Breeding [J].Acta Physiologiae Plantarum,2005,27(4B):743~750.
    96. Fan C, Cai G, Qin J, Li Q, Yang M, et al. Mapping of quantitative trait loci and development ofallele-specific markers for seed weight in Brassica napus [J]. Theor Appl Genet,2010,121(7):1289~1301.
    97. Fatland BL, Ke J, Anderson MD, Mentzen WI, Cui LW, Allred CC, Johnston JL, Nikolau BJ,Wurtele ES. Molecular characterization of a heteromeric ATP-citrate lyase that generatescytosolic acetyl-coenzyme A in Arabidopsis [J]. Plant Physiol,2002,130:740~756.
    98. Fatland BL, Nikolau BJ, Wurtele ES. Reverse genetic characterization of cytosolic acetyl-CoAgeneration by ATP-citrate lyase in Arabidopsis [J]. The Plant Cell,2005,17:182~203.
    99. Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima fromSpain using RAPD and SRAP markers [J]. Genet Res Crop Evol,2003,50(3):227~238.
    100. Garg K,Green P,Niekerson DA. Identification of candidate coding region single nucleotidepolymorphisms in165human genes using assembled expressed sequence tags [J]. GenomeRes,1999,9:1087~1092.
    101. Grodzicker T, Anderson C, Sharp PA, Sambrook J. Conditional lethal mutants of adenovirus2-simian virus40hybrids I. host range mutants of Ad2+ND1[J]. J Virol,1974,13:1237~1244.
    102. Gul M K. QTL Mapping and Analysis of QTL×Nitrogen Iteractions for Some YieldComPonents in Brassica napus L [J]. Turkey Journal of Agriculture Forage,2003,27:71~75.
    103. Hatey F, Wenola G, Tosser-Klopp, et. al. Expressed sequence tags for genes: a review [J].Genet. Sel. Evol,1998,30:521~541.
    104. Hu J G, Vick B A. Target region amplification polymorphism: a novel marker technique forplant genotyping [J]. Plant molecular Biollogy Reporter,2003,21:289~294.
    105. Hu J, Vick BA. Target region amplification polymorphism: A novel marker technique for plantgenotyping [J]. Plant Mol Biol Rep,2003,21:289~294.
    106. Hua W, Li R, Zhan G, Liu J, Li J, et al. Maternal control of seed oil content in Brassica napus:the role of silique wall photosynthesis [J]. Plant J,2012,69:432~444.
    107. Huang B, Bird S, Kemble R, Simmonds D, Keller W, Miki B. Effects of culture density,conditioned medium and feeder cultures on microspore embryogenesis in Brassica napus L. cv.Topas [J]. Plant Cell,1990,8:594~597.
    108. Iniguez-Luy FL, Lukens L, Farnham MW, Amasino RM, Osborn TC. Development of publicimmortal mapping populations, molecular markers and linkage maps for rapid cycling Brassicarapa and Brassica oleracea [J]. Theor Appl Genet,2009,120:31~43.
    109. Jin MY, Li JN, et al. QTL analysis of the oil content and hull content in Brassica napus L [J].Agri Sci,2007,6(4):414~421.
    110. Jin MY, Li JN, Fu FY, Zhang ZS, Zhang XK, Liu LZ. QTL analysis for seed oil content andhull content in Brassica napus [J]. Scientia Agricultura Sinica,2007,40(4):677~684
    111. Kalendar R, Grob T, Regina M, Suoniemi A, Schulman AH. IRAP and REMAP: two newretrotransposon-based DNA fingerprinting techniques [J]. Theor Appl Genet.1999,98:704~711.
    112. Keller WA, Arnison PG, Cardy BJ. Haploids from gametophytic cells: recent developments andfuture prospects [J]. In Plant Tissue and Cell Culture. Alan R. Liss, Inc, New York,1987,223~234.
    113. Keller WA, Stringham GR. Production and utilization of microspore derived haploid plants. InTA Thorpe (ED) Frontiers of Plant Tissue Culture. International Association of Plant TissueCulture, Calgary, Alberta, Canada,1978,113~122.
    114. Kemal GM. QTL Mapping and Analysis of QTL×Nitrogen Iteractions for Some YieldComPonents in Brassica napus. Turk J Agric,2003,27:71~76.
    115. Kloosterman B, Oortwijn M, uitdeWilligen J, America T, de Vos R, et al. From QTL tocandidate gene: genetical genomics of simple and complex traits in potato using a poolingstrategy [J]. BMC Genomics,2010,11:158.
    116. Konieczny A, Ausubel FM. A prodedure for mapping Arabidopsis mutations usingco-dominant ecotype-specific PCR-based markers [J]. The Plant Journal,1993,4(2):403~410.
    117. Konishi T, Abe K, Matsuura S, Yano Y. Distorted segregation of the esterase isozymegenotypes in barley (Hordeum vulgare L.)[J]. Jpn J Genet,1990,65(6):411~416
    118. Kosambi DD. The estimation of map distance from recombination values [J]. Ann Eugen,1994,12:172~175.
    119. Kott LS, Polsoni L, Beversdorf WD. Cytological aspects of isolated microspore culture ofBrassica napus [J]. Can J Bot,1988,66:1658~1664.
    120. Kott L. Doubled Haploid Technology Accelerates Canola Breeding [J]. Agri-Food Research inOntario,1996,19:16~18.
    121. Kresovich S, Szewc-McFadden AK, Bliek SM, McFerson JR. Abundance and characterisationof simple-sequence repeats (SSRs) isolated from a size-fractionated genomic library ofBrassica napus L (rapeseed)[J]. Theor Appl Genet,1995,91:206~211.
    122. Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigraindicates that Brassica genomes have evolved through extensive genome replicationaccompanied by chromosome fusions and frequent rearrangements [J]. Genetics,1998,150:1217~1228.
    123. Lander ES and Botstein S. Mapping Mendelian factors underlying quantitative traits usingRFLP linkage maps [J]. Genetics,1989,121:185~199.
    124. Lareau LF, Green RE, Bhatnagar R S, et al. The evolving roles of alternative splicing [J]. CurrOpin Struc Biol,2004,14:273~282.
    125. Leach JE, Stevenson HJ, Rainbow AJ, et al. Effects of high plant populations on the growth andyield of winter oilseed rape (Brassica napus)[J]. Journal of Agricultural Science,1999,132,2:173~180.
    126. Li C, Li B, Qu C, Yan X, Fu F, et al. Analysis of difference QTLs for oil content between twoenvironments in Brassica napus L [J]. Acta Agronomica Sinica,2010,37:249~254.
    127. Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker systembased on a simple PCR reaction: its application to mapping and gene tagging in Brassica [J].Theor appl genet.2001,103:445~46.
    128. Li G, Quiros CF, et al. Sequence related amplif ied polymorphism (SRAP), a new markersystem based on a simple PCR reaction: its application to mapping and gene tagging in Brassica[J]. Theor Appl Genet,2001,103(2):455~461.
    129. Li H, Ribaut JM, Li Z, Wang J. Inclusive composite interval mapping(ICIM)for digenicepistasis of quantitative traits in biparental populations [J]. Theor Appl Genet,2008,116:243~260.
    130. Li RJ, Wang HZ, Mao H, Lu YT, Hua W. Identification of differentially expressed genes inseeds of two near-isogenic Brassica napus lines with different oil content [J]. Planta,2006,224:952~962.
    131. Lichter R. Induction of haploid plants from isolated pollen of Brassica napus L [J]. ZPflanzenphysiol,1982,105:427~434.
    132. Lidder P, Gutierrez RA, Salome PA, McClung CR, Green PJ. Circadian control of messengerRNA stability. Association with a sequence-specific messenger RNA decay pathway [J]. PlantPhysiol2005,138:2374~2385.
    133. Lin Y, Ulanov AV, Lozovaya V, Widholm J, Zhang GR, Guo JH, Goodman HM. Genetic andtransgenic perturbations of carbon reserve production in Arabidopsis seeds reveal metabolicinteractions of biochemical pathways [J]. Planta2006,225:153~164.
    134. Liu H, Frankel LK, Bricker TM. Characterization and complementation of a psbR mutant inArabidopsis thaliana [J]. Arch Biochem Biophys2009,489:34~40.
    135. Liu S, Wang H, Zhang J, Fitt BDL, Xu Z, Evans N, Liu Y, Yang W, Guo X. In vitro mutationand selection of doubled-haploid Brassica napus lines with improved resistance to sclerotiniasclerotiorum [J]. Plant Cell Reports,2005,24(3):133~144.
    136. Lombard V, Delourme R. A consensus linkage map for rapeseed (Brassica napus L.):construction and integration of three individual maps from DH populations [J]. Theor ApplGenet,2001,103:491~507.
    137. Loureiro J, Rodriguez E, Dolezel, Jaroslav, Santos C. Comparison of Four Nuclear IsolationBuffers for Plant DNA Flow Cytometry [J]. Annals of Botany,2006,98:679~689.
    138. Lowe AJ, Jones AE, Raybould AF, Trick M, Moule CL, et al. Transferability and genomespecificity of a new set of microsatellite primers among Brassica species of the U triangle [J].Mol Ecol Notes,2002,2:7~11.
    139. Lowe AJ, Moule C, Trick M, Edwards KJ. Efficient large-scale development of microsatellitesfor marker and mapping applications in Brassica crop species [J]. Theor Appl Genet2004,108:1103~1112.
    140. Lyttle TW. Segregation distorters [J]. Annu Rev Genet1991,25:511~557.
    141. Michaels SD, Amasino RM. A robust method for detecting single-nucleotide changes aspolymorphic markers by PCR [J]. Plant J,1998,14:381~385.
    142. Milee A, Neeta S, Harish P. Advances in molecular marker techniques and their applications inplant sciences [J]. Plant Cell Rep,2008,27:617~631.
    143. Miura K, Ashikari M, Matsuoka M. The role of QTLs in the breeding of high-yielding rice [J].Trends Plant Sci,2011,16:319~326.
    144. Mladen Radoev, Heiko C, Becker and Wolfgang Ecke. Genetic analysis of heterosis for yieldand yield components in Rapeseed (Brassica napus L.) by quantitative trait locus mapping [J].Genetics,2008,179:1547~1558.
    145. Neff MM, Neff JD, Chory J, Pepper AE. dCAPS, a simple technique for the genetic analysis ofsingle nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics[J]. Plant J.1998,14:387~392.
    146. Orita M, et al. Dectection of polymorphisms of human DNA by gel electrophoresis assingle-strand conformation polymorphisms [J]. Proc Natl Acad Sci USA.1989,86:2766~2770.
    147. Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ. Segmentalstructure of the Brassica napus genome based on comparative analysis with Arabidopsisthaliana [J]. Genetics,2005,171,2:765~81.
    148. Parkin IAP, Sharpe AG, Keith DJ, Lydiate DJ. Identification of the A and C genomes ofamphidiploid Brassica napus (oilseed rape)[J]. Genome1995,38:1122~1131.
    149. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ,Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map withSSR markers [J]. Theor Appl Genet,2005,111:1514~1523.
    150. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, et al. Acomparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucicacid content [J]. Theor Appl Genet,2006,114:67~80.
    151. Quijada PA, Udall JA, et al. Quantitative trait analysis of seed yield and other complex traits inhybrid spring rapeseed (Brassica napus L.):1. indentification of genomic regions from wintergermplasm [J]. Theor Appl Genet,2006,113:549~561.
    152. Radoev M, Becker HC, Ecke W. Genetic analysis of heterosis for yield and yield componentsin rapeseed (Brassica napus L.) by quantitative trait locus mapping [J]. Genetics2008,179:1547~1558.
    153. Rafalski, J. and TingeS. Genetic diagnostics in plant breeding: RAPDs, microsatellites andmachines [J]. Trends Genet,2003,9:275~280.
    154. Rana D, Boogaart T, O'Neill CM, Hynes L, Bent E, Macpherson L, Park JY, Lim YP, BancroftI. Conservation of the microstructure of genome segments in Brassica napus and its diploidrelatives [J]. Plant J.2004,40:725~733.
    155. Richard I, Beckman JS. How neutral are synonymous codon mutations [J]. Nat Genet,1995,10:259.
    156. Sax K. The association of size differences with seed coat pattern and pigmentatioin inPhaseolus vulgaris [J]. Genetics,1923,8:552~560.
    157. Si P, Mailer RJ, Galwey N, Turner DW. Influence of genotype and environment on oil andprotein concentrations of canola (Brassica napus L.) grown across southern Australia [J]. AustJ Agric Res,2003,54:397~407.
    158. Slabaugh MB, Yu JK, Tang S, Heesacker A, Hu X, et al. Haplotyping and mapping a largecluster of downy mildew resistance gene candidates in sunflower using multilocus intronfragment length polymorphisms [J]. Plant Biotechnol J,2003,1:167~185.
    159. Slafer GA. Genetic basis of yield as viewed from a crop physiologist's perspective [J]. AnnAppl Biol,2003,142:117~128.
    160. Smooker A M, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F, Bancroft I. The identificationand mapping of candidate genes and QTL involved in the fatty acid desaturation pathway inBrassica napus [J]. Theor Appl Genet.2011,22:1075~1090.
    161. Stamm S, Ben-Ari S, Rafalska I, et al. Function of alternative splicing [J]. Gene,2005,344:1~20.
    162. Sun ZD, Wang ZN, Tu JX, et al. An ultradense genetic recombination map for Brassica napus,consisting of13551SRAP markers [J]. Theoretical and Applied Genetic,2007,114(8):1305~1317.
    163. Sunnucks, P. Efficient genetic markers for population biology [J]. Trends Ecol. Evol,2000,15:199~203
    164. Szewc-McFadden AK, Kresovich S, Bliek SM, Mitchell SE, McFerson JR. Identification ofpolymorphic, conserved simple sequence repeats (SSRs) in cultivated Brassica species [J].Theor Appl Genet,1996,93:534~538.
    165. Tanksley SD, Ganal MW, Martin GB. Chromosome landing a paradigm for map-based genecloning in plants with large genomes [J]. Ttrends Genet.1995,11(2):63~68.
    166. Tautz D, and Renz M. Simple sequences are ubiquitous repetitive components of eukaryoticgenomes [J]. Nucleic Acids Res,1984,25:4172~4138.
    167. Tuncturk M, Ciftci V. Relationships between yield and some yield components in rapeseed(Brassica napus ssp. Oleifera L.) cultivars by using correlation and path analysis [J]. PakistanJournal of Botany,2007,39(1):81~84.
    168. Udall, JA, Quijada PA, Lambert B, Osborn TC. Quantitative trait analysis of seed yield andother complex traits in hybrid spring rapeseed (Brassica napus L.):2. Identification of allelesfrom unadapted germplasm [J]. Theor Appl Genet,2006,113:597~609.
    169. Uzunova MI, Ecke W. Abundance, polymorphism and genetic mapping of microsatellites inoilseed rape (Brassica napus L.)[J]. Plant Breed1999,118:323~326.
    170. Vos P, Hogers R, Bleeker M. AFLP: a new technique for DNA fingerprinting [J]. NucleicAcids Res,1995,23:4407~4414.
    171. Wang S, Basten CJ, Gaffney P, Zeng ZB. Windows QTL Cartographer version2.5. NorthCarolina State University, Bioinformatics Research Center, Raleigh,2001~2005.
    172. Wang X, Wang H, Wang J, Sun R, Wu J, et al. The genome of the mesopolyploid crop speciesBrassica rapa [J]. Nat Genet,2011,43:1035~1039.
    173. Weller JI. Maximum likelihood techniques for the mapping and analysis of quantitative traitloci with the aid of genetic markers [J]. Biomatrics,1986,42:627~641.
    174. Weselake RJ, Taylor DC, Rahman MH, Shah S, Laroche A, McVetty PB, Harwood JL,Increasing the flow of carbon into seed oil [J]. Biotechnol Advances,2009,27:866~878.
    175. Westermeier P, Wenzel G, Mohler V. Development and evaluation of single-nucleotidepolymorphism markers in allotetraploid rapeseed (Brassica napus L.)[J]. Theor Appl Genet,2009,119:1301~1311.
    176. Wiliams JCK, kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primersare useful as genetic markers [J]. Nucl. Acids. Res.1990,18(02):6531~6535.
    177. Yan XY, Li JN, Fu FY, Jin MY, Chen L, Liu LZ. Co-location of seed oil content, seed hullcontent and seed coat color QTL in three different environments in Brassica napus L [J].Euphytica,2009,170:355~364
    178. Yu JK, Kantety RV, Graznak E, Benscher D, Tefera H, et al. A genetic linkage map for tef[Eragrostis tef (Zucc.) Trotter][J]. Theor Appl Genet,2006,113:1093~1102.
    179. Zeng ZB. Precision mapping of quantitative trait loci [J]. Genetics,1994,136:1457~1468.
    180. Zeng ZB. Theoretical basis for separation of multiple linked gene effects in mappingquantitative trait loci [J]. Proc Natl Acad Sci USA,1993,90:10972~10976
    181. Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, Bellin D, Pezzotti M,Delledonne M. Characterization of transcriptional complexity during berry development inVitis vinifera using RNA-Seq [J]. Plant Physiol,2010,152(4):1787~1795.
    182. Zhang C, Li YY, Wang XL, Zhang LJ, Li XB, Wang YJ, Xu SQ. High-throughputidentification of mutations using a combination of CELI fragmentation and SAGE technology.Genet [J]. Test Mol. Biomarkers,2009,13(1):97~103.
    183. Zhang JF, Qi CK, Li GY, et al. Genetic Map Construction and Apetalousness QTLsIdentification in Rapeseed (Brassica napus L.)[J]. Acta Agron Sin,2007,33(08):1246~1254.
    184. Zhang L, Li H,Li Z, Wang J. Interactions between markers can be caused by the dominanceeffect of QTL [J]. Genetics,2008,180:1177~1190.
    185. Zhao H, Shi L, Duan XL, Xu FS, Wang YH, Meng JL. Mapping and validation of chromosomeregions conferring a new boron-efficient locus in Brassica napus [J]. Molecular Breeding,2008,2(3)495~506.
    186. Zhao JY, Becker HC, Zhang DQ, Zhang YF, Ecke W. Conditional QTL mapping of oil contentin rapeseed with respect to protein content and traits related to plant development and grainyield [J]. Theor Appl Genet,2006.113:33~38.
    187. Zhao JY, Becker HC, Zhang DQ, Zhang YF, Ecke W. Oil content in a European×Chineserapeseed population: QTL with additive and epistatic effects and their genotype-environmentinteractions [J]. Crop Sci,2005,45:51~59.
    188. Zhao JY, Huang JX, Chen F, Xu F, Ni XY, Xu HM, Wang YL, Jiang CC, Wang H, Xu AX,Huang RZ, Li DR, Meng JL, Molecular mapping of Arabidopsis thaliana lipid-relatedorthologous genes in Brassica napus [J]. Theor Appl Genet,2012,124:407~421.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700