用户名: 密码: 验证码:
基于三维离散元法的玉米脱粒过程分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米是典型的多用途高产作物,经过多年发展,我国玉米的种植面积,已成为仅次于水稻的第二大作物,年产玉米近一亿五千万吨。由于各地地理和气候等原因,大部分玉米都是收获晾晒后,再进行脱粒操作。因此,玉米脱粒机的使用非常广泛,对于保证玉米收后质量和农民增收起着重要作用。
     由于脱粒机工作过程的复杂性,到目前为止国内外对玉米脱粒机的研究和设计,大都采用试验方法、统计分析方法或传统连续介质力学的分析方法,本文采用离散元法研究玉米的脱粒过程。在综述了玉米脱粒机原理和结构以及国内外对于脱粒过程研究现状的基础上,以一种滚筒式玉米脱粒机为研究对象,通过对玉米果穗的物理力学性质测试分析、玉米果穗建模方法的研究、三维离散元法边界建模软件的研制、玉米脱粒过程的离散元法计算方法的研究,研制了基于三维离散元法的玉米脱粒过程仿真分析软件,进行了玉米脱粒过程台架试验,并采用研制的软件对该过程进行了仿真分析,通过仿真结果与试验结果的对比,验证了所建立方法和软件的可行性和有效性,为玉米脱粒过程的研究和脱粒机的优化设计建立了一种新方法,本文的主要工作和结论如下。
     1)对先锋8号玉米果穗的物理力学性质进行了测试分析,包括玉米果穗长度、果穗行数、行粒数、果穗大小端直径、玉米芯大小端直径、行内籽粒偏移角度、行间籽粒偏移量,各段玉米果穗的参数以及玉米籽粒和玉米芯的密度和含水率等,并分别测试了各段玉米果穗的玉米籽粒与玉米芯连接处的刚度系数和连接力,提出了玉米籽粒与玉米芯连接力的计算方法和连接的破坏准则,为采用离散元法仿真分析玉米的脱粒过程奠定基础。
     2)在深入研究玉米果穗、玉米籽粒和玉米芯结构的基础上,提出了基于颗粒聚合体的玉米果穗分析模型建模方法,通过所建立的分析模型与实际玉米果穗的对比,验证了提出的玉米果穗分析模型建模方法的可行性。
     3)在深入研究UG软件及其二次开发方法、研究规则曲面类型及信息提取方法的基础上,研制了基于UG软件的三维离散元法边界建模软件,通过所建立玉米脱粒机分析模型的初步验证,证明了该边界建模软件的可行性和有效性。
     4)对玉米脱粒过程的离散元法计算方法进行了深入的研究,提出了分析玉米脱粒过程的离散元法分析方法,主要包括:颗粒间及颗粒与边界间的邻居搜索和接触检测方法、颗粒间及颗粒与边界间的接触力计算方法、玉米果穗内部的接触检测和受力计算方法,颗粒运动的求解方法等。
     5)基于面向对象技术,研制出基于离散元法的玉米脱粒过程仿真分析软件,进行了软件的需求分析、概要设计和详细设计,对软件的各个功能进行了测试,包括对玉米果穗模型与边界的接触过程测试,邻居搜索和接触检测方法的测试以及对玉米脱粒过程仿真分析、脱粒性能分析功能的测试,通过给出的测试用例,证明了研制的脱粒过程仿真分析软件的可行性和有效性。
     6)以一种滚筒式玉米脱粒机为对象,进行了玉米脱粒过程的台架试验,研究不同因素对玉米脱粒过程和脱粒机性能的影响,得到如下结论:
     ①不同滚筒转速下(122.7~317.15r/min),试验脱净率随滚筒转速的提高而增加,转速低于250r/min时,脱净率的受转速影响较大,脱粒效果很不稳定;转速高于250r/min时,脱净率达96%以上,此时脱净率的变化受转速影响变小,脱粒效果明显变好。不同果穗投入量下(5~20穗)及不同果穗部位下(上段、中段和下段),脱净率的变化波动较小;
     ②不同转速下,籽粒数量的分布沿脱粒机滚筒轴向逐步减少,滚筒轴线两端脱落籽粒数量差别较大,而在最后一段的分离率随转速的增加而增加。不同果穗投入量下,籽粒的分布基本沿滚筒轴向逐步下降,脱粒机滚筒转速、果穗投入量以及果穗部位对籽粒的轴向分布曲线影响均比较小。
     7)采用自主研制的三维离散元法仿真分析软件,对玉米脱粒过程进行了仿真分析,并将仿真结果与试验结果进行了对比,得到如下结论:
     ①不同滚筒转速下(65.5~500r/min),仿真脱净率随滚筒转速的提高而增加,这一变化趋势与台架试验结果相同。当滚筒转速低于252.10r/min时,仿真脱净率略低于试验结果;当滚筒转速为122.70r/min时,两者误差最大为9.99%;当转速提高后,仿真结果略高于台架试验结果,且脱净率变化的波动很小。不同果穗投入量下,仿真脱净率随投入量的增加而增加,这一变化趋势与台架试验相同。脱净率受果穗投入量及果穗部位的影响也较小;
     ②不同滚筒转速下,仿真时脱落籽粒数量分布沿滚筒轴向减少,并且仿真和试验的分布曲线在变化规律上大致相同,但多数情况下两者在轴向第1段籽粒分布差距相对较大(误差在10%左右)。脱粒机滚筒转速、果穗投入量以及果穗部位对籽粒的轴向分布曲线影响均比较小;
     ③仿真输入参数在实测范围内选取时,玉米果穗的脱净率随颗粒刚度系数的增大而增大;3种摩擦系数下,脱净率均大于98%,脱净率受摩擦系数的影响较小;
     ④仿真输入参数在实测范围内选取时,不同刚度系数及摩擦系数下,仿真时脱落籽粒分布沿滚筒轴向减少,这一变化趋势与台架试验结果相同;
     ⑤改变脱粒机CAD模型后,不同滚筒转速下,仿真脱净率随滚筒转速的提高而增加,脱落籽粒分布沿滚筒轴向逐步减少,这一变化趋势与改变前仿真结果相同。由于改变脱粒机的结构,加大了钉齿对玉米果穗的打击机会,使不同转速下的仿真脱净率均高于改变前结果,以及滚筒第1段分布籽粒数量百分比均高于改变前结果。
     8)通过软件仿真与试验结果的对比分析,初步证明了本文所建立方法和软件的可行性和有效性,为玉米脱粒过程分析和脱粒机的优化设计建立了一种新方法。
Corn is a typical multipurpose and high yield crop. After years of development, the cornplanting area of China has become the second largest crops after rice, the annual output ofcorn is nearly a billion fifty million tons. Due to local geography, climate and other factors,most of corn will be dried first and then threshed after harvesting. Therefore, there is awildly use of corn thresher, and it plays an important role to guarantee the quality of cornafter harvesting and also to improve the farmers’income.
     However, due to the complexity of working process, up to now most of the researchesand designs of corn thresher were carried out by experimental methods, statistical analysismethods or traditional continuum mechanics analysis methods at home and abroad. In thispaper, the discrete element method (DEM) is adopted to research the corn threshing process.Based on the review of the principle and the structure of the corn threshers as well as theresearch status of the corn threshing, a drum type corn thresher is taken as research object. Inthis paper the physical and mechanical properties of the corn ears is tested, the modelingmethod of corn ears is researched, the3D DEM boundary modeling software is developed,researches the DEM calculation methods of the corn threshing process is researched. Basedon above work, a corn threshing process simulation analysis software using3D DEM isdeveloped. The simulation analysis of the corn threshing process is carried out by using thissoftware and the bench test of the corn threshing process is finished. By comparing thesimulation results with the test results, the feasibility and effectiveness of the new methodare validated. Thus this paper presents a novel method for the research of the corn threshingprocess and the optimal design of the corn thresher. The main work and results of this paperare as follows.
     1) The physical and mechanical properties of the corn ear of xianfeng8have been tested,including corn ear length, corn ear both ends of diameter, corn cob both ends of diameter,corn ear row number, kernel number per row, kernel angle per row, kernel offset between therows, parameters of each segment corn ear, density and moisture content of the kernel andthe cob, connection stiffness coefficient and connection force between the kernel and the cobof each segment and so on. The calculation method of the connection force between thekernel and the cob and the conditions for the corn kernel threshing are proposed. Thus wehave laid the foundation for using the DEM to analyze the corn threshing process.
     2) Based on deep researching of the structure of corn ear, cob and kernel, the modelingmethod of corn ears based on particles agglomerate is proposed. By comparing the corn ears’entities with the analysis models, the feasibility of the new method is validated.
     3) Based on deep researching of the UG software and the second development,researching of the method of getting boundary information for regular surface, the3D boundary modeling software for corn thresher based on UG software is developed. Bybuilding the corn thresher’s analysis model, the feasibility and effectiveness of the boundarymodeling software are validated.
     4) The DEM analysis theory of corn threshing process has been established, and theDEM calculating method of corn threshing process has been deeply researched, includingthe neighbor search collision detecting methods and the contact force calculation methodsbetween the particles and between the particle and the boundary, the collision detectingmethods and force calculation methods in one corn ear, and the calculation method forparticle motion.
     5) With the application of object-oriented technology, a corn threshing processsimulation analysis software based on3D DEM is developed after the requirements analysisand the preliminary design as well as the detailed design. The following functions are tested,including the connecting process function test between corn ear models and the boundaries,the methods of the neighbor search collision detecting and the function of performancepresentation function of the threshing machines. From the test cases, the feasibility andeffectiveness of analysis on the threshing simulation software is verified.
     6) Through the bench experiments of the drum-type corn threshing machine, the impactof different factors on the corn threshing process and the threshing machines performance isstudied. Conclusions are as follows.
     ①Threshed rate during the test increases with increasing rotary speed of the rollerwithin65.5~500r/min. Rotary speed of the roller less than250r/min has a great impact onthreshed rate which is then very unstable. Threshing performance is greatly improved andthe threshed rate reaches96%when rotary speed of the roller is more than250r/min. Rotaryspeed of the roller on threshed rate is not significant and it also adds stability to threshingperformance. The corn ear number between5to20and the different parts of the corn earsfrom top to bottom don’t affect largely on threshed rate.
     ②It has a less threshed kernels distribution axially in different rotary speed of theroller with different rotary speed of the roller. There are big differences quantitativelybetween the first part and the last part of the cylinder. The threshed rate in last part of thecylinder increases with increasing rotary speed of the roller. In addition, it has a less fallenkernels distribution axially in different rotary speed of the roller with different numbers ofthe corn ears. There is few differences of the distribution curve of the fallen kernels axiallywith different rotary speed of the roller, different numbers of the corn ears and different partsof the corn ears.
     7) Simulation analysis on the working process of corn threshing is conducted by thesimulation analysis software based on DEM developed independently. And the results acquired by experiment of corn threshing machine are analyzed contrastively. Conclusionsare as follows.
     ①It is the same that threshed rate during the test increases with increasing rotary speedof the roller within65.5~500r/min. Threshed rates in the simulation analysis are just underthose in the bench experiments when the rotary speed of the roller is less than252.10r/min.The maximum discrepancy is9.99%in122.70r/min. Threshed rates in the simulationanalysis are higher than those in the bench experiments as the rotary speed of the rollerincreases. It also follows the same trend with the bench experiments that threshed ratesincrease with increasing numbers of corn ears in simulation tests. The number of the cornears and the different parts of the corn ears don’t play an important role on the threshingprocess.
     ②It has a less shedding kernel distribution axially in the simulation analysis and thedistribution of the threshed kernel is similar to that in the bench experiments. Mostly, thebiggest error (about10%) occurs in the first part of the cylinder. There is few differences ofthe distribution curve of the fallen kernels axially with different rotary speed of the roller,different numbers of the corn ears and different parts of the corn ears.
     ③The threshed rate increases with the increasing stiffness coefficient while thesimulation parameters are acquired in the physical and mechanical tests. The threshed rate isless affected by the friction coefficient in the selected three friction coefficients as thethreshed rate is all higher than98%.
     ④It also follows basically the same trend with the bench experiments that it has a lessthreshing kernels distribution axially with different stiffness coefficient and frictioncoefficient while the simulation parameters are acquired in the physical and mechanicaltests.
     ⑤It is the same for the changed threshing machine CAD model in the simulation withthe original model that the threshed rate increases with increasing rotary speed of the rollerand it has a less shedding kernel distribution axially. The changed threshing machine modelincreases the chance of collision between nail teeth and corn ears, so the threshed rates withthe changed threshing machine model are higher than those in the original model in thesimulation and there are more kernels in the first part of the cylinder.
     8) By comparing the simulation results with the test results, the feasibility andeffectiveness of the new method and the corn threshing process simulation analysis softwareis validated. Thus we have put forward a novel method for the research of the corn threshing a nd the optimal design of the corn thresher.
引文
[1]王启现.我国玉米产业形势分析与栽培学科前景展望[J].玉米科学,2008,16(4):35-38.
    [2]李心平,马福丽,高连兴.玉米种子的机械损伤对其发芽率的影响[J].农机化研究,2009,34(3):34-39.
    [3]赫金魁.我国玉米收获机械现状及展望[J].河北农机,1997,6:3-4.
    [4]常建国,李国明,王春海.黑龙江省脱粒机械的现状及发展建议[J].农业化研究,2006(03):20-22.
    [5]马继光.立足国情,瞄准国际先进水平,发展我国种子加工技术——种子加工技术引进项目的实施与思考[J].中国农技推广,2001,5:29.
    [6]赵武云,吴劲锋,张锋伟,等.玉米轴流脱粒机研究现状分析[J].机械研究与应用,2009(5):9-10,13.
    [7]郭炎伟,刘锴.玉米机械化收获的现状及思考[J].农业机械,2005,3:123.
    [8]蒋亦元.21世纪农业机械发展方向之预见[J].农业机械学报,2000,31(1):4-6.
    [9]王冰.玉米脱粒机试验方法的编制[J].农机试验与推广,1997,3:25.
    [10]东北农学院.农业机械学理论与设计(下册)[M].北京:中国农业出版社,1961.
    [11] Huynh, M V, Powell, T, Siddal, N J. Threshing and separating process-a mathematicalmodel [J]. Transactions of the ASAE,1982,25(1),65-73.
    [12] Petre I. Miu. Mathematical model of threshing process in an axial unit with tangentialfeeding [J]. CSAE Paper,1997,2:217-219.
    [13]毛欣,衣淑娟.轴流脱粒、分离机理及仿真研究的发展探讨[J].农机化研究,2007,10:202-205.
    [14]柳建安,李伟杰.螺旋挤搓式玉米脱粒机的设计[J].农机化研究,2010,8:82-85.
    [15] Cundall P A, Strack O L. A discrete numerical model for granular assembles [J].Geotechnique,1979,29(1):47-65.
    [16] Tijskens E, Ramon H, Baerdemaeker J De. Discrete element modeling for processsimulation in agriculture [J]. Journal of Sound and Vibration,2003,266(3):493-514.
    [17]吴玄辰.基于二维离散元法的玉米脱粒过程仿真分析[D].长春:吉林大学,2011.
    [18]李艳双.颗粒聚合体的三维离散元法算法研究与软件设计[D].长春:吉林大学,2011.
    [19]于亚军,周海玲,付宏,等.基于颗粒聚合体的玉米果穗建模方法[J].农业工程学报,2012,28(8):167-174.
    [20]付宏,吕游,李艳双,等.基于离散元法的玉米脱粒过程分析[J].吉林大学学报(工学版),2012,42(4),997-1002.
    [21]李心平,张伏,高连兴.玉米种子脱粒装置的结构技术剖析[J].农机化研究,2008(6):24-26.
    [22]尹文庆,何扬清.脱粒装置的结构技术剖析[J].农机化研究1999,11:42-44.
    [23] Ronald W B, Stephen J M. Roller sheller: low damage corn shelling cylinder [J].TRANSACTION of the ASAE,1973,5(2):278-283.
    [24] Mofazzal H C, Wesley F B. Effects of the operating parameters of the rubber rollersheller [J]. TRANSACTION of the ASAE,1975,7(4):278-283.
    [25]吴多峰,袁长胜. HS48型玉米脱粒机[J].现代化农业,2006(9):40.
    [26]何晓鹏.挤搓式玉米脱粒机的研制[J].农业工程学报,2003,19(3):105-108.
    [27] Mid F A, Stephen J M, Mofazza H C. Laboratory studies of a low-damagecorn-shelling Machine [J]. TRANSACTION of the ASAE,1980,9(3):278-283.
    [28]李心平,马福丽,高连兴.差速式玉米种子脱粒机的设计[J].农业机械学报,2008,39(8),192-195.
    [29]陈吕西.5TY-0.2型玉米脱粒机[J].农机与食品机械,1998,254(2):28-29.
    [30]尹文庆,何扬清.脱粒装置的技术结构剖析[J].农机化研究,1999(4):42-44.
    [31]陶桂香,衣淑娟.玉米轴流脱粒机理研究现状分析[J].农机化研究,2007(11):239-243.
    [32]张彦河.轴流脱粒分离装置参数的试验研究[D].大庆:黑龙江八一农垦大学,2011.
    [33] Etter G, Marcella Z, Antonio G著.高元恩译.用超高速摄影观察传统型脱粒装置试验[J].农机情报资料,1981(2):119-130.
    [34] Maertens K, Baerdemaeker J De. Flow rate based prediction of threshing process incombine arvesters [J]. Applied engineering in agriculture,2003,4:383-388.
    [35] Casper, L. Einfluss von spaltweite,spaltund korbform aufden drechvorgang [J].Grundlagen der Landtechnik,1966,16:220-228.
    [36]卢里耶,格罗姆切夫斯基著.袁佳平译.农业机械的设计和计算[M].北京:中国农业机械出版社,1983.
    [37] Balastreire L A. Relaxation modulus for corn endosperm in bending [J]. Transactionsof the ASAE,1978,21(4):1261-1268.
    [38] Huynh V M, Powell T, Siddall J N. Threshing and separating process-a mathematicalmodel [J]. TRANSACTIONS of the ASAE.1982,20(1):65-73.
    [39] Wrubleshi. Process in conventional combin-thresher [J]. J. Engng,1986(5):119-130.
    [40] Trollope J R. A mathematical model of the threshing process in a conventionalcombine-thresher [J]. Journal of Agricultural Engineering Research,1982,27(2):119-130.
    [41] Harrison H P. Rotor power and losses of an axial flow combin [J]. Transactions of theASAE,1991,34(1):60-64.
    [42] Price J S. Hobson R N. Neale M A, et al. Seed losses in commercial harvesting ofoilseed rape [J]. Journal of Agricultural Engineering Research,1996,65(3):183-191.
    [43] Heinrich S, Heinze D, Kutzbach. Influence of moisture content on threshing andseparating process [J].Proceeding of99International Conference on AgriculturalEngineering.I,1999:242~245.
    [44] Akubuo C O. Performance Evaluation of a local maize sheller [J]. BiosystemsEngineering,2002,83(1):77-83.
    [45] Petkevichius S, Shpokas L, Kutzbach H D. Investigation of the maize ear threshingprocess [J]. Biosystems Engineering,2008,99:532-539.
    [46] Miu P I, Kutzbach H D. Modeling and simulation of grain threshing and separation inthreshing units-Part I [J]. Computers and electronics in agriculture,2008,60(1):96-104.
    [47] Miu P I, Kutzbach H D. Modeling and simulation of grain threshing and separation inthreshing units: Part II. Application to tangential feeding [J]. Computers andelectronics in agriculture,2008,60(1):105-109.
    [48]介站,刘红俊,侯风云.中国GPS联合收割机研究展望[J].河南科技大学学报(自然科学版),2004,6(3):1-5.
    [49]王成芝,葛永久.轴流滚筒的试验研究[J].农业机械学报,1982,13(1):55-72.
    [50]曹崇文.谷物联合收割机凹板的分离性能[J].粮油加工与食品机械,1975(A2):29-37.
    [51]立式轴流脱粒部件课题组.提高立式轴流脱粒分离性能的实验研究[J].农业机械学报,1985,3(1):97-107.
    [52]纪春千,赵学笃.谷物脱出物分离原理的试验研究[J].农业机械学报,1986(4):38-45.
    [53]李耀明.水稻梳脱混合物复脱分离、清选特性的研究[D].南京:南京农业大学,2004.
    [54]万金宝,赵学笃,纪春千,等.传统脱粒装置的数学模型及应用[J].农业机械学报,1990,21(2):21-28.
    [55]张金海,都丽萍.脱粒部件数学模型的建立与模拟[J].农业机械学报,1994,25(3):56-60.
    [56]陈树人.板齿摘脱滚筒梳脱过程的计算机仿真[J].农业工程学报,1999,15(1):59-62.
    [57]徐立章.梳脱式联合收割机复脱装置的仿真及试验研究[D].镇江:江苏大学,2003.
    [58]李耀明,徐立章,邓玲黎,等.复脱分离装置的理论分析及试验[J].农业机械学报,2005,36(11):55-58.
    [59]李杰,阎楚良,杨方飞.纵向轴流脱粒装置的理论模型与仿真[J].江苏大学学报.2006,27(04):299-302.
    [60]董成茂.立置轴流分离复脱清选三合一装置及其理论和试验研究以及水稻站杆整秧直接还田工艺的探索研究[D].哈尔滨:东北农学院,1988.
    [61]王岳,王秀梅,苏迎晨.轴流脱粒装置湿缠堵的机理和实验研究[J].农业机械学报,1989,20(3):57-69.
    [62]蒋恩臣.割前摘脱装置及其吸运系统[M].北京:高等教育出版社,2002.
    [63]毛欣.组合式轴流装置谷物流运动模型与仿真研究[D].大庆:八一农垦大学,2008.
    [64]衣淑娟,李敏,孟臣.谷物脱粒分离装置试验数据采集系统[J].农业机械学报,2005,36(1):100-103.
    [65]衣淑娟.组合式轴流装置理论与试验研究[D].哈尔滨:东北农业大学,2007.
    [66]衣淑娟,陶桂香,毛欣.轴流滚筒脱分过程中滚筒转数对稻谷运动规律的影响.2010国际农业工程大会论文集,2010.
    [67] Motohiko H, Kimiro M. Simulation of concrete-frame collapse due to dynamic loading[J]. Journal of Engineering Mechanics,1993(119):1709-1723.
    [68] Anandaraiah, Lu. Structural analysis by distinct element method [J]. Journal ofEngineering Mechnics,1991(9):2156-2163.
    [69] Magnier S A, Donze F V. Numerical simulations of impacts using a discrete elementmethod [J]. Mech. Cohes.–Fric.1998(3):257-276.
    [70]杨明芳.基于离散元法的玉米排种器的数字化设计方法研究[D].长春:吉林大学,2009.
    [71]杨锦忠,张洪生,郝建平,等.玉米果穗图像单一特征的品种鉴别力评价[J].农业工程学报,2011,27(1):196-200.
    [72]王玉亮,刘贤喜,苏庆堂,等.多对象特征提取和优化神经网络的玉米种子品种识别[J].农业工程学报,2010,26(6):199-204.
    [73]全国农作物种子标准技术委员会. GB/T3543.6《农作物种子检验规程》水分测定[S].北京:中国标准出版社,1995.
    [74]张永丽,刘红力,高连兴等.玉米种子剪切破碎的试验研究[J].农机化研究,2007,5:136-138.
    [75] Candia, Saasa, Muzei. Improving the AEATRI-motorized maize sheller to meet themarket demands of commercial maize farmers[J]. Uganda Journal of AgriculturalSciences,2004,9(1):569-573.
    [76]李心平,马福丽,高连兴.玉米种子的跌落式冲击试验[J].农业工程学报,2009,25(1):113-118.
    [77] Fandohan, Ahouansou, Houssou. Impact of mechanical shelling and dehulling onfusarium infection and fumonisin contamination in maize [J]. Food Additives andContaminants,2006,23(4):415-421.
    [78]王显仁.水稻谷粒的力学性能及基于能量平衡的脱粒损伤机理研究[D].镇江:江苏大学,2007.
    [79]宋有洪,贾文涛,郭众,等.虚拟作物研究进展[J].计算机与农业,2000,6:6-8,32.
    [80]郭新宇,邓旭阳,郑文刚,等.玉米叶片形态建成的三维可视化研究[J].玉米科学,2004,12(专刊):27-30.
    [81]曹云飞,刘晓东,李慧,等.基于生长骨架模型的虚拟作物器官建模[J].微电子学与计算机,2004,21(9),68-70.
    [82]王雪,郭新宇,陆声链,等.基于骨架模型的玉米生长运动仿真与动画生成技术[J].农业机械学报,2009,(S1):198-201.
    [83]刘晓东,姚兰,赵飞蓉,等.基于Loop细分格式的虚拟作物果实建模[J].中国农业大学学报,2007,12(2):72-75.
    [84]刘连峰.颗粒聚合体碰撞破损的细观力学仿真研究[J].力学进展,2006,36(2):599-610.
    [85]郭敬山.组合玉米和组合超球颗粒模型的三维离散元法算法研究[D].长春:吉林大学,2010.
    [86]李心平,高连兴.种子玉米籽粒果柄断裂机理试验研究[J].农业工程学报,2007,23(11):47-51.
    [87]李心平,高连兴.速搓式玉米种子脱粒机的性能试验[J].农业工程学报,2009,25(12):102-106.
    [88] Sawamoto Y, Tsubota H, Kasai Y, et al. Analytical studies onlocal damage toreinforced concrete structures under impactloading by discrete element method [J].Nuclear Engineering and Design,1998,179(2):157-177.
    [89]刘凯欣,高凌天.离散元法在求解三维冲击动力学问题中的应用[J].固体力学学报,2004,25(2):181-185.
    [90]赵历.组合椭球颗粒模型的三维离散单元方法的研究[D].长春:吉林大学,2010.
    [91] Langston, Tuzun U, Heyes. Distinct element simulation of interstitial air effects in axiallysymmetric granular flows hoppers [J]. Chemical Engineering Science,1996,51(6):873-891.
    [92] D iugys A, Peters B. An approach to simulate the motion of spherical and non-sphericalfuel particles in combustion chambers [J]. Granular Matter,2001,3:231-265.
    [93] Kremmer M, Favier J F. A method for representing boundaries in discrete elementmodeling-part I: Geometry and contact detection [J]. Int. J. Numer. Meth. Engng,2001,51:1407-1421.
    [94]付宏,董劲男,刘振宇,等.精密排种器的集成分析设计系统开发研究[J].计算机集成制造系统,2005,11(5):744-750.
    [95]付宏,董劲男,于建群.基于CAD模型的离散元法边界建模方法[J].吉林大学学报(工学版),2005,35(6):626-631.
    [96]寇幸幸.基于Pro/ENGINEER软件的三维离散元法边界建模研究[D].长春:吉林大学,2007.
    [97]滕安翔.基于AutoCAD软件的三维离散元法边界建模方法研究[D].长春:吉林大学,2006.
    [98]么鑫.基于边界二维CAD模型的三维离散元法边界建模方法[D].长春:吉林大学,2007.
    [99]刘睿.基于AutoCAD2007软件的三维离散元边界建模方法研究[D].长春:吉林大学,2008.
    [100]于亚军,于建群,陈仲,等.三维离散元法边界建模软件设计[J].农业机械学报,2011,42(8):98-103.
    [101]洪如. UG CAD快速入门指导[M].北京:清华大学出版社,2002.
    [102]董正卫,田立中. UG/OpenAPI编程基础[M].北京:清华大学出版社,2002.
    [103]黄翔,李迎光. UG应用开发教程与实例精解[M].北京:清华大学出版社,2005.
    [104]侯永涛,丁向阳. UG/Open二次开发与实例精解[M].北京:化学工业出版社,2007.
    [105]黄勇,张博林,薛运锋. UG二次开发与数据库应用基础与典型范例[M].北京:电子工业出版社,2008.
    [106]范元勋,庄亚红. UG二次开发工具的使用[J].机械制造与自动化,2002,12(6):70-72.
    [107]刘雅博,陈拂晓. MFC在UG二次开发CAD系统中的应用[J].金属成形工艺,2004,3(22):39-41.
    [108]李志勇.基于椭球颗粒模型的离散元法基本理论及算法研究[D].长春:吉林大学,2009.
    [109]陈龙斌,胡晓军,唐志平.离散元数值模拟中查找邻居元关系的改进算法[J].计计算力学学报,2000,17(4):497-499.
    [110]苏凤环,姚令侃,陈春光.三维离散单元法数值模拟中查找邻居元的一种新算[J].计算机应用,2004,24(1):149-151.
    [111] Bandi S, Thalmann D. An adaptive spatial subdivision of the object space for fastcollision detection of animated rigid bodies [J]. Proceedings of the Eurographics,Eurographics Assoc. Maastricht, Netherland, Aug.28-Sept.1,1995,259-270.
    [112]付宏,吕游,徐静,等.非规则曲面的离散元法分析模型建模软件[J].吉林大学学报(信息科学版),2012,30(1):23-29.
    [113]蔡泰信,和兴锁.理论力学[M].北京:机械工业出版社,2004.
    [114]张海藩.软件工程导论[M].北京:清华大学出版社,2006.
    [115]付宏.软件工程[M].吉林:吉林大学出版社,1998.
    [116] Deitiel著.薛万鹏译. C++程序设计教程[M].北京:机械工业出版社,2000.
    [117] Lippman, Lajoie著.潘爱民译. C++Primer(3rd Edition)中文版[M].北京:中国电力出版社,2002.
    [118] David J. Kruglinski著.潘爱民,王国印译. Visual C++技术内幕(第四版)[M].北京:清华大学出版社,1999.
    [119]冯占荣.基于CAD-DEM-CFD耦合的气吹式排种器数字化设计方法研究[D].长春:吉林大学,2010.
    [120]中华人民共和国机械行业标准. JB/T9778.2-1999纹杆式脱粒滚筒形式尺寸和技术要求[S].北京:国家机械工业局,1999.
    [121]潘庆和.5TY-10玉米脱粒机的性能测试[J].现代化农业,1994,8:36-37.
    [122]衣淑娟.水稻轴流脱粒分离装置的研究现状及发展趋势[C]//2010国际农业工程大会现代农机新技术应用研讨会分会场论文集,上海,2010.
    [123]李洪昌.水稻联合收割机新型脱粒分离装置的试验研究与分析[D].镇江:江苏大学,2008.
    [124]王显仁,李耀明.脱粒原理与脱粒过程的研究现状与趋势[J].农机化研究,2010(1):218-221.
    [125]赵武云,王广万,刘国春,等.低破碎玉米种子脱粒机的研制[J].机械研究与应用,2010(1):132-134.
    [126]周海玲,李清龙,张强强,等.玉米籽粒和玉米芯间连接的理论分析与试验研究
    [C]//颗粒材料计算力学研究进展,张家界,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700