用户名: 密码: 验证码:
城市绿地土壤碳储量及碳通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进程的加速,城市用地在迅速扩张的同时也导致了绿地利用方式的改变,这种改变深刻影响了土壤理化性质。国内外对城市土壤的研究早期主要围绕着土壤肥力展开,探讨工业化背景下城市土壤养分及重金属污染状况。伴随着全球气候变化的加剧,城市土壤碳库研究被赋予了新的内涵,即与全球碳循环相联系,受到了广泛关注。当前对城市土壤碳库的研究主要集中在对城市土壤碳含量及其时间变化规律上,而系统的对城市土壤碳库特征及碳通量等方面的研究还不多见。因此,对城市土壤碳储量及影响因素的研究,对全面了解全球变化背景下土壤碳库变化具有积极意义。
     本文以合肥不同绿地类型(校园绿地、公园绿地、工厂绿地、道路绿地、居住区、近郊森林公园)、不同植被配置模式(乔草、灌草、乔灌草、草地)、不同功能区(老工业区、商业区、居民服务区等)土壤为研究对象,从城市土壤有机碳含量、土壤C:N比、土壤活性碳氮、土壤呼吸等方面对城市土壤碳库特征进行了系统研究,得到如下结果。
     0~(-3)0cm土层,城区各绿地土壤pH (H_2O)均值为8.64,呈强碱性,近郊森林公园pH均值为6.48;城区内各绿地土壤容重、电导率均值分别为1.40g cm~(-3),154.98μS cm~(-1)显著高于近郊森林公园(1.25g cm~(-3),8369μS.cm-1);城区内各绿地土壤NH4+–N、NO_3~-–N、全磷含量分别为9.65mg kg-1、6.89mg kg-1、493.74mg kg~(-1)均高于森林公园土壤对应养分含量(7.48mg kg-1、6.76mg kg-1、242.61mg kg-1);城区各绿地土壤含水率均值为22.70%,低于森林公园土壤含水率(30.35%)。
     绿地类型、土层厚度、植被配置模式均对土壤有机碳含量影响显著(P<0.05),城区绿地土壤有机碳含量垂直变化较复杂,但整体上仍随土层深度的增加而递减。0~(-3)0cm土层,不同绿地类型土壤有机碳含量分别为森林公园(17.95g kg-1)>道路绿地(9.91g kg-1)>公园绿地(7.00g kg-1)>校园绿地(6.87g kg-1)>居住区绿地(5.70g kg-1)>工厂绿地(5.01g kg-1);不同植被配置模式下土壤有机碳含量依次为乔草模式(15.43g kg-1)>灌草模式(7.48g kg-1)>乔灌草模式(7.32g kg-1)>草地(5.91g kg-1)。
     土壤有机碳含量在不同功能区中差异显著(P<0.05),呈现明显的环境梯度变化,老工业区、商业区、居民服务区、森林公园含量分别为6.67、8.58、6.31和17.95g kg-1;工业类型对土壤有机碳影响不显著(P>0.05),4种工业类型土壤有机碳含量依次为纺织业(6.47g kg~(-1))>制造业(5.15g kg~(-1))>居民服务业(4.27g kg~(-1))>化工工业(4.01g kg~(-1))。
     近郊森林公园土壤有机碳密度与城区内各绿地差异显著(P<0.05);城区内道路绿地土壤有机碳密度与其它绿地差异显著(P<0.05)。城区内各绿地土壤有机碳密度变幅为0.20-4.27kg m~(-2),0~(-1)0cm、10~(-2)0cm、20~(-3)0cm土壤有机碳密度均值分别为1.13、0.93和0.87kg m~(-2),森林公园土壤有机碳密度变幅为1.07~(-3).40kg m~(-2),三土层含量分别为2.40、2.33和2.02kg m~(-2)。
     不同功能区土壤有机碳密度差异显著(P<0.05),0~(-3)0cm土层,近郊森林公园、老商业区、老工业区、居民服务区土壤有机碳密度分别为2.22、1.14、0.94、0.90kg m~(-2)。相关分析表明,土壤有机碳密度与NO_3~--N、全磷、含水率呈正相关;与pH (H_2O)、容重呈负相关。
     土壤C:N比是衡量土壤养分转化、积累以及生产力稳定性的重要指标。0~(-3)0cm土层,城区内C:N比均值为10.6,与全国所有类型0~(-3)0cm土壤C:N比平均水平10.84接近;不同绿地类型土壤C:N比依次为公园(14.36)>校园(10.18)>居住区(9.38)>工厂(9.20);相关分析表明,土壤C:N比与土壤有机碳、NO_3~--N、NH_4~+N、全磷呈显著正相关。
     绿地类型对土壤溶解性有机碳(DOC),微生物量碳(MBC)含量影响显著,城区各绿地土壤DOC,MBC含量低于近郊森林公园,且城区各绿地DOC,MBC含量垂直变化较复杂,但整体上仍随土层的增加而递减。DOC,MBC含量呈现明显的季节变化特征,且受林分影响明显。
     不同绿地类型土壤DOC含量依次为:森林公园绿地(44.28mg kg~(-1))>校园绿地(29.84mg kg~(-1))>公园绿地(28.39mg kg~(-1))>居住区绿地(26.82mg kg~(-1))>道路绿地(26.72mg kg~(-1))>工厂绿地(22.88mg kg~(-1));不同配置模式土壤DOC平均含量依次为:乔草模式(43.13mg kg~(-1))>灌草模式(28.24mg kg~(-1))>草地(28.16mg kg~(-1))>乔灌草模式(26.05mg kg~(-1));不同功能区DOC含量依次为森林公园(44.28mg kg~(-1))>居民服务区(32.96mg kg~(-1))>老工业区(27.36mg kg~(-1))>商业区(25.27mg kg~(-1));土壤理化性质对DOC含量影响显著,DOC含量与溶解性有机氮(DON)、含水率、NH_4~+N呈显著正相关,与导电率、容重、pH (H_2O)、pH(KCl)、全磷呈显著负相关。
     森林公园、公园绿地、道路绿地、校园绿地、居住区绿地、工厂绿地MBC含量依次为489.86、260.51、253.24、233.55、229.90、174.42mg kg~(-1);乔草模式、灌草模式、乔灌草模式、草地土壤MBC含量依次为440.71、244.72、241.00、180.15mg kg~(-1);功能区对土壤MBC含量影响显著(P<0.05),森林公园、商业区、居民服务区、老工业区含量依次为489.86、277.66、215.14、197.58mg kg~(-1)。相关分析表明,MBC与MBN、DON、NO_3~--N、全磷、含水率呈显著正相关,与NH_4~+N、导电率、pH (H_2O)、pH (KCl)、容重呈负相关。
     DOC/SOC值城区各绿地0~(-1)0cm、10~(-2)0cm、20~(-3)0cm土层均值分别为0.48%、0.59%、0.56%,高于近郊森林公园对应土层(0.30%、0.34%、0.20%);不同绿地类型DOC/SOC值分别为居住区(0.63%)>校园(0.59%)>公园(0.56%)>工厂(0.53%)>道路(0.42%)>森林公园(0.28%)。MBC/SOC城区内各绿地三土层的均值(3.84%,3.49%,3.28%)均高于森林公园对应土层含量(2.74%,3.11%,2.55%);不同绿地类型MBC/SOC值分别居住区(4.03%)>公园(3.83%)>工厂(3.66%)>学校(3.36%)>道路(2.98%)>森林公园(2.80%)。
     对居住区、公园、工厂、校园绿地土壤呼吸研究表明,月份对土壤呼吸影响显著(P<0.05),土壤呼吸7月开始增长,12月开始降低,最大值出现在2011年6月和8月(雨季);居住区绿地土壤呼吸范围为0.72-2.39μmol m~(-2)s~(-1),工厂绿地土壤呼吸范围为1.73-4.10μmol m~(-2)s~(-1),公园绿地土壤呼吸范围为1.95-5.59μmol m~(-2)s~(-1),校园绿地土壤呼吸范围为1.85-5.09μmol m~(-2)s~(-1)
     0-5cm土壤温度随季节变化明显,未受降水影响时0-5cm土壤温度对土壤呼吸影响显著(P<0.05);研究范围内,当土壤含水率在18%~(-2)5%时,含水率对土壤呼吸影响显著(P<0.05)。在2011年6月和8月降水旺季对土壤呼吸进行测定,结果表明土壤含水率对土壤呼吸影响显著(P<0.05),但此降水期间土壤温度对土壤呼吸影响不显著(P>0.05);研究表明土壤呼吸与0~(-1)0cm土壤有机碳、NO_3~--N、全磷以及细跟含量呈正相关(P<0.05),与DOC呈负相关(P<0.05);与10~(-2)0cm土壤全N,全磷含量呈正相关(P<0.05),与DOC呈负相关;与20~(-3)0cm土层细根含量呈正相关(P<0.05)。
With the acceleration of urbanization, the rapid urban land expansion changed thetypes of green-land at the same time, and these changes make profound impact on soilphysicochemical properties. The early researches focused on soil fertility worldwide,preliminary exploring urban soil nutrient status and heavy metal pollution. Nowadays,with the exacerbating of global climate change, the urban soil carbon pool is given anew connotation, which is associated with global carbon cycling and was widelyconcerned. A great attention has been paid to the carbon content of urban soil and itstemporal variation, with ignoring systematic studies on the characteristics of soil carbonpool and its carbon fluxes. Therefore, comprehensive study on the carbon pool of urbansoil and its influencing factors have a positively meaning for understanding the changeof global carbon pool.
     This study conducted in Hefei, the soil carbon pool, soil C:N ratio, soil activeorganic carbon and nitrogen, soil respiration were studied based on the differentgreen-land types (campus green-land, park green-land, factory green-land, roadsidegreen-land, residential green-land and suburb forest park), the different planting mode(shrub-lawn, arbor-lawn, lawn and arbor-shrub-lawn modes), and the differentfunctional area (primary industrial estate, primary shopping center, the science, cultureand education center and suburban forest park). The results are as follows.
     In0~(-3)0cm soil, the mean pH (H_2O) of the urban soils was8.64, being stronglyalkaline, while in forest park the mean pH (H_2O) was6.48. The mean soil bulk density,EC, NH4+–N, NO_3~-–N and total P concentrations in urban soils were1.40g cm~(-3),154.98μS cm~(-1),9.65mg kg~(-1),6.89mg kg~(-1)and493.74mg kg~(-1), which were higher than thoseof forest park soils (the corresponding content1.25g cm~(-3),83.69μS cm~(-1),7.48mg kg~(-1),6.76mg kg~(-1)and242.61mg kg~(-1)). The moisture content of the urban soil is22.70%,which is lower than soils in the forest park (30.35%).
     Soil depth, greenland types and planting mode have significant influence on soilorganic carbon content (P<0.05). The vertical variation of organic carbon contents inurban soil changed more complex than in forest park soil. Generally, it still decreasedwith increasing soil depth. With regards to0~(-3)0cm soil layer, the average soil organiccarbon concentration in the different green-lands was ranked as forest park (17.95g kg~(-1))> roadside green-land (9.91g kg~(-1))> park green-land (7.00g kg~(-1))> campusgreen-land (6.87g kg~(-1))> residential green-land (5.70g kg~(-1))> factory green-land (5.01 g kg~(-1)). Under the different planting modes, it ranked as arbor-lawn mode (15.43g kg~(-1))> shrub-lawn mode (7.48g kg~(-1))> arbor-shrub-lawn modes (7.32g kg~(-1))>lawn (5.91g kg~(-1)).
     Area have significant influence on soil organic carbon content (P<0.05), thecontent of soil organic carbon in primary industrial estate, primary shopping center, thescience, culture and education center and suburban forest park were,respectively,6.67,8.58,6.31and17.95g kg~(-1), with obviously environmental gradient from the east to thewest of the city. Industry type had no significant influence on soil organic carboncontent (P>0.05). The content in the four industry types was followed in the order ofthe textile industry (6.47g kg~(-1))> manufacturing (5.15g kg~(-1))> resident services (4.27g kg~(-1))> chemical industry (4.01g kg~(-1)).
     Correlation analysis showed that green-land types had significant influence on soilorganic carbon density (SOCD)(P<0.05), the SOCD in suburban forest park wassignificantly different with these green-lands (P<0.05), and SOCD in the roadsidegreen-land had significant difference with other green-lands (P<0.05). The SOCD inurban soils was ranged from0.20to4.27kg m~(-2), with1.13kg m~(-2)in0~(-1)0cm,0.93kg m~(-2)in10~(-2)0cm and0.87kg m~(-2)in20~(-3)0cm soil. The SOCD in forest park rangedfrom1.07to3.40kg m~(-2), with respective2.40,2.33and2.02kg m~(-2)in the abovementioned three soil layers.
     The functional area had significant influence on SOCD (P<0.05). In the0~(-3)0cmsoil, the SOCD in forest park, primary shopping center, primary industrial estate, thescience, culture and education center were2.22,1.14,0.94and0.90kg m~(-2),respectively. Correlation analysis showed that SOCD were significantly and positivelycorrelated with NO_3~-–N, total P, moisture content, and negatively correlated with pH(H_2O) and bulk density.
     Soil C:N ratio was recognized as indicators for the conversion and accumulation ofsoil nutrients, and the stability of productivity. In the0~(-3)0cm soil, the C:N ratio inurban soils was10.6, which was close to the national mean C: N ratio (10.84) for alltypes of soil. C: N ratio in the different green-lands was ranked as park green-land(14.36)> campus green-land (10.18)> residential green-land (9.38)> factorygreen-land (9.20). Correlation analysis showed that soil C:N ratio was significantly andpositively correlated with soil organic carbon, NO_3~--N, NH_4~+N, and total P.Green-land types have significant influence on soil dissolved organic carbon (DOC)and microbial biomass carbon (MBC). The mean concentrations of DOC and MBC were lower in urban soils than in forest park soils. The vertical variation of DOC andMBC in the urban soils changed more complex, and generally it still decreasing withincreasing soil depth. Soil DOC and MBC concentration showed a significant seasonalvariation and significant impact by stands.
     The average concentration of DOC were ranked in the order of suburban forestpark (44.28mg kg~(-1))> campus green-land (29.84)> park green-land (28.39)>residential green-land (26.82)> roadside green-land (26.72)> factory green-land(22.88). Under the different planting mode the DOC concentration ranked as arbor-lawnmode (43.13mg kg~(-1))> shrub-lawn mode (28.24)> lawn (28.16)> arbor-shrub-lawnmodes (26.05). The change of land use resulted in the variation of DOC concentration.In the different functional area, DOC was ranked as suburban forest park (44.28mg kg~(-1))> the science, culture and education center (32.96)> primary industrial estate(27.36)> primary shopping center (25.27). Soil DOC concentration was positivelycorrelated with dissolved organic nitrogen (DON), moisture content, NH_4~+N whilenegative correlated with EC, soil bulk density, pH (H_2O), pH (KCl) and total P.
     The concentrations of MBC were, respectively,489.86mg kg~(-1)in the forest park,260.51mg kg~(-1)in park green-land,253.24mg kg~(-1)in roadside green-land,233.55mg kg~(-1)in campus green-land,229.90mg kg~(-1)in residential green-land and174.42mg kg~(-1)in factory green-land. The MBC concentration were440.71,244.72,241.00and180.15mg kg~(-1)for arbor-lawn mode, shrub-lawn mode, arbor-shrub-lawn modes andlawn,respectively. Functional area have significant influence on MBC concentration(P<0.05), with489.86mg kg~(-1)in forest park,277.66mg kg~(-1)in primary shoppingcenter,215.14mg kg~(-1)in the science, culture and education center, and197.58mg kg~(-1)in primary industrial estate. The correlation analysis showed that MBC wassignificantly and positively correlated with MBN, DON, NO_3~--N, total P, moisturewhile negatively correlated with NH_4~+N, EC, pH (H_2O), pH (KCl) and bulk density.
     The mean values of DOC/SOC in0~(-1)0cm,10~(-2)0cm,20~(-3)0cm soil layer of urbangreen-lands were0.48%、0.59%、0.56%, higher than corresponding layer of suburbanforest park (0.30%、0.34%、0.20%). The value of DOC/SOC in different green-landswere ranked as residential green-land (0.63%)> campus green-land (0.59%)> parkgreen-land (0.56%)> factory green-land (0.53%)> roadside green-land (0.42%)>forest park green-land (0.28%). The value of MBC/SOC in0~(-1)0cm,10~(-2)0cm,20~(-3)0cm soil were3.84%,3.49%,3.28%, which higher than the corresponding soil layers ofthe suburban forest park (2.74%,3.11%,2.55%). In the different green-land type, the value of MBC/SOC ranked as residential green-land (4.03%)> park green-land(3.83%)> factory green-land (3.66%)> campus green-land (3.36%)> roadsidegreen-land (2.98%)> forest park (2.80%).
     Months had significant influences on soil respiration (P<0.05). Soil respiration rateincreased toward June, while decreased from December. The largest values of soilrespiration rates were recorded from June to August of2011(wet season). Soilrespiration rates were ranged from0.72to2.39μmol m~(-2)s~(-1)in the residential,1.73to4.10μmol m~(-2)s~(-1)in the factory,1.95to5.59μmol m~(-2)s~(-1)in the park and1.85to5.09μmol m~(-2)s~(-1)in the campus green-lands.
     During study period, there was a marked seasonal pattern in temperature at0-5cmsoil depth (P<0.05). When all potentially rain–affected data were excluded, a significantrelationship between soil respiration and0-5cm soil temperature was observed duringstudy period (P<0.05). When soil moisture was between18%and25%, statisticallysignificant relationship was found between soil respiration and moisture (P<0.05). InJune and August2011, soil respiration was significantly and positively correlated withsoil moisture (P<0.01), while not correlated with soil temperature. The results fromcorrelation analysis showed that in0~(-1)0cm soil, soil respiration was significantly andpositively correlated with SOC, NO_3–N, P and fine root density (R<2mm), whilenegatively correlated with DOC. In10~(-2)0cm soil, soil respiration was significantly andpositively correlated with N and P, while negatively correlated with DOC. In20~(-3)0cmsoil, soil respiration was only positively correlated with fine root density.
引文
[1] Kuzyakov Y, Schneckenberger K. Review of estimation of plant rhizodeposition andthe contribution to soil organic matter formation [J]. Archives of Agronomy and SoilScience,2004,50:115-132.
    [2] Trumbore SE. Comparison of carbon dynamics in tropical and temperate in soilsusing radiocarbon measurements [J]. Global Biogeochemical Cycles,1993,7(2):275-290.
    [3] Spackman LK, Munn LC. Genesis and morphology of soils associated withformation of Larance Basin (Mima-Like) mounds in Wyoming [J]. Soil ScienceSociety of America Journal,1983,48(6):1384-1392.
    [4] Sims ZR, Niclsen GA. Organic carbon in Montana soils as related to clay contentand climate [J]. Soil Science Society of America Journal,1986,50(5):1269-1271.
    [5] Trumbore SE, Chadwick OA, Amundson R. Rapid exchanges between soil carbonand atmospheric carbon dioxide driven by temperature [J]. Science,1996,272(19):393-396.
    [6] Oechle WC, Hastings SJ, Voutlitis G, et al. Recent change of Arctic tundraecosystems from a net carbon dioxide sink to source [J]. Nature,1993,361:520-523.
    [7] Chantigny MH. Dissolved and water-extractable organic matter in soils: a review onthe influence of land use and management practice [J]. Geoderma,2003,113:357-380.
    [8]周岩梅,刘瑞霞,汤鸿霄.溶解有机质在土壤及沉积物吸附多环芳烃类有机污染物过程中的作用研究[J].环境科学学报,2003,3(2):216-223.
    [9] Jajtha K, Crow SE, Yano Y, et al. Detrital controls on soil solution N and dissolvedorganic matter in soils: A field experiment [J]. Biogeochemistry,2005,76(2):261-281.
    [10] Yano Y, Lajtha K, Solling P, et al. Chemistry and dynamics of dissolved organicmatter in a temperate coniferous forest on antic soils: effects of litter quality [J].Ecosystems,2005,8(3):286-300.
    [11] Cortina J, Romanya J, Vallejo VR. Nitrogen and phosphorus leaching from theforest floor of a mature Pinus radiate stand [J]. Geoderma,1995,66(3-4):321-330.
    [12] Tipping EE, Rigg CW, Harrison AF, et al. Climatic influences on the leaching ofdissolved organic matter from upland UK moorland soils, investigated by a fieldmanipulation experiment [J]. Environment International,1999,25(1):83-95.
    [13] Moller J, Miller M, Kjoller A. Fungal-bacterial interaction on beech leaves:Influence on decomposition and dissolved organic carbon quality [J]. Soil Biologyand Biochemistry,1999,31(3):367-374.
    [14] Jared L D, Donald R Z, Kurt S P, et al. Atmospheric nitrate deposition, micro-bialcommunity composition, and enzyme activity in Northern Hardwood Forests [J].Soil Science Society of America Journal,2004,68(1):132-138.
    [15] Kalbitz K, Solinger S, Park JH, et al. Controls on the dynamics of dissolvedorganic matter in soils:A review [J]. Soil Science,2000,165(4):277-304.
    [16]庞学勇,包维楷,吴宁.森林生态系统土壤可溶性有机质(碳)影响因素研究进展[J].应用与环境生物学报,2009,15(3):390-398.
    [17] Scott MJ, Woof MNJ, Tipping E, et al. Concentrations and fluxes of dissolvedorganic carbon in drainage water from an upland peat system [J]. EnvironmentInternational,1998,24(5-6):537-546.
    [18] Vance GF, David MB. Chemical characteristics and acidity of soluble Organicsubstances from northern hardwood forest floor, central Maine USA [J].Geochimica et Cosmochimica Acta.1991,55(12):3611-3625.
    [19] Lundquist EJ, Jackson LE, Scow KM. Wet dry cycles affect dissolved Organiccar-bon in two California agricultural soils [J]. Soil Biology and Biochemistry,1999,31(7):1031-1038.
    [20] Zhong ZK, Makeschin F. Soluble organic nitrogen in temperate forest soils [J]. SoilBiology and Biochemistry,2003,35:333-338.
    [21] Murphy EM, Zachara JM, Smith SC, et al. Interaction of hydrophobic organiccompounds with mineral-bound humic acid [J]. Environmental Science andTechnology,1994,28:1291-1299.
    [22] Chen CR, Xu ZH, Zhang SL, et al. Solubleorganic nitrogen pools in forest soils ofsubtropical Australia [J]. Plant and Soil,2005,277:285-297.
    [23] Jones DL, Shannon D, Murphy DV, et al. Role of dissolved organic nitrogen (DON)in soil N cycling in grassland soils [J]. Soil Biology and Biochemistry,2004,36:749-756.
    [24] Lee W, Westerhoff P, Soto EM. Occurrence and removal of dissolved organicnitrogen in US water treatment plants [J]. Journal American Water WorksAssociation,2006,98(1):102-110.
    [25] McDowell WH, Likens GE. Origin, composition, and flux of dissolved organiccarbon on the Hubbard Brook Valley [J]. Ecological Monographs,1998,58(3):177-195.
    [26] Neff JC, Hobbie SE, Vitousek PM. Nutrient and mineralogical control on dissolvedorganic C, N and P fluxes and stoichiometry in Hawaiian soils [J].Biogeochemistry,2000,51:283-302.
    [27] Griffiths BS. Microbial-feeding nematodes and protozoa in soil-their effects onmicrobial activity and nitrogen mineralization in decomposition hotspots and therhizosphere [J]. Plant and Soil,1994,164:25–33.
    [28] Bonkowski M, Griffths B, Scrimgeour C. Substrate heterogeneity and microfaunain soil organic hotspots as determinants of nitrogen capture and growth of ryegrass[J]. Applied Soil Ecology,2000,14:37–53.
    [29]韩成卫,李忠佩,刘丽等.去除溶解性有机质对红壤水稻土碳氮矿化的影响[J].中国农业科学,2007,40(1):107-113.
    [30] Cookson WR,Murphy DV. Quantifying the contribution of dissolved organicmatter to soil nitrogen cycling using15N isotopic pool dilution [J]. Soil Biologyand Biochemistry,2004,36:2097-2100.
    [31]巨晓棠,边秀举,刘学军等.旱地土壤氮素矿化参数与氮素形态的关系[J].植物营养与肥料学报,2000,6(3):251-259.
    [32] Kaiser K, Guggenberger G. The role of DOM sorption to mineral surfaces in thepreservation of organic matter in soils [J]. Organic Geochemistry,2000,31:711–725.
    [33] Lehmann J, Lilienfein J, Rebel K, et al. Subsoil retention of organic and inorganicnitrogen in a Brazilian savanna Oxisol [J]. Soil Use and Management,2004,20:163–172.
    [34] Wardle DA. A comparative assessment of factors which influence microbialbiomass carbon and nitrogen levels in soil [J]. Biological Reviews,1992,67(3):321-358.
    [35]朴河春,洪业汤,袁芷云.贵州山区土壤中微生物生物量是能源物质碳流动的源与汇[J].生态学杂志,2001,20(1):33-37.
    [36]梁文举,闻大中.土壤生物及其对土壤生态学发展的影响[J].应用生态学报,2001,12(1):137-140.
    [37] Smith JI, Paul EA. The significance of soil microbial Biomass estimations [J]. SoilBiochemistry,1990,6:357-396.
    [38] Bardgett RD. Lovell RD, Hobbs PJ, et a1. Seasonal Changes in soil microbialcommunities along a fertility Gradient of temperature grass lands [J]. Soil Biologyand Biochemistry,1999,31(7):1021-1030.
    [39] Garcia FO, Rice CW. Microbial biomass dynamics in Tall grass prairie [J]. SoilScience Society of American Journal,1994,58(3):816-824.
    [40]王洋,刘景双,窦晶鑫,等.三江平原典型小叶章湿地土壤微生物量碳的动态变化特征[J].浙江大学学报(农业与生命科学版),2009,35(6):691-698.
    [41] Swift MJ, Heal OW, Anderson JM. Decomposition in terrestrial ecosystems:studies in ecology [M]. Blackwell, Oxford,1979.
    [42] Jenkinson DS. The effects of biocidal treatments on metabolism in soils–IV. Thecomposition of fumigated organisms in soil [J]. Soil Biology and Biochemistry,1976,8(3):203-208.
    [43] Anderson JPE, Domsch KH. A physiological method for the quantitativemeasurement of microbial biomass in soils [J]. Soil Biology and Biochemistry,1978,10(3):215-221.
    [44] Vance ED, Brookes PC, Jenldnson DS. Microbial biomass measurements in forestsoils: the use of chloroform fumigation-incubations method in strongly acid soils[J]. Soil Biology and Biochemistry,1987,19(6):697-702.
    [45] Tate KR, Ross DJ, Feltham CW. A direct extraction method to estimate soilmicro-bial C: Effects of experimental variables and some different calibrationProcedures [J]. Soil Biology and Biochemistry,1988,20(3):329-335.
    [46] Wu J, Joergensen RG, Pommerening B, et a1. Measurement of soil microbialbiomass C by fumigation-extraction an automated procedure [J]. Soil Biology andBiochemistry,1990,22(8):1167-l169.
    [47] Brookes PC, Landman A, Pruden G, et al.Chloroform fumigation and the releaseof Soil nitrogen:A rapid direct extraction methodto measure microbial biomassNitrogen in soil [J].Soil Biology and Biochemistry,1985,17:837-842.
    [48] Jenkinson DS, Brookes PC, Powlson DS.Measuring soil microbial biomass[J].Soil Biology and Biochemistry,2004,36:5-7.
    [49] Iqbal J, Hu RG, Feng ML, et al. Microbial biomass, and dissolved organic carbonand nitrogen strongly affect soil respiration in different land uses: A case study atthree gorges reservoir area, south china [J]. Agriculture, Ecosystems andEnvironment,2010,137:294-307.
    [50] Van G, Ladd JN, Amato M. Mierobia biomass responses to seasonal change andimposed drying regimes at increasing depths of undisturbed top soil Profiles [J].Biology and Biochemistry,1992,24:103-111.
    [51] Carter MR, Rennie DA. Dynamics of soil microbial biomass N under zero andshallow tillage for spring wheat using15N wheat [J]. Plant and Soil,1984,76:157-164.
    [52]周建斌,陈竹君,李生秀.土壤微生物量氮含量、矿化特性及其供氮作用[J].生态学报,2001,21(10):1718-1725.
    [53] Anderson JPE, Domseh KH. Quantities of Plant nutrients in the microbial biomassof selected soil [J]. Soil Science,1980,130:211-216.
    [54] Azam F, Yousaf M, Hussain E, et al. Determination of biomass N in someagricultural soil of Punjab [J]. Pakistan Plant and soil,1989,113:223-228.
    [55]刘守龙,肖和艾,童成立等.亚热带稻田土壤微生物生物量碳、氮、磷状况及其对施肥的反应特点[J].农业现代化研究,2003,24(4):278-283.
    [56]张凯.园林绿地生态系统养分动态及其利用效率研究[D].合肥:安徽农业大学博士学位论文.2010.
    [57] Singh JS, Gupta SR. Plant decomposition and soil respiration and soil respiration interrestrial ecosystems [J]. Botanical Review,1977,43(4):449-528.
    [58] Karlen W. Global temperature forced by solar irradiation and greenhouse gases [J]?A Journal of the Human Environment,2001,30(6):349-350.
    [59] Hansen J, Sato M, Ruedy R, et a1. Global temperature change [J]. National Acadsciences,2006,103(39):14288-14293.
    [60] Atkin OK, Edwards EJ, Loveys BR. Response of root respiration to changes intemperature and its relevance to global warming [J]. New Phytologist,2000,147(1):141-154.
    [61] Fang C, Moncrieff JB. The dependence of soil CO2efflux on temperature [J]. SoilBiology and Biochemistry,2001,33(2):155-165
    [62] Xu M, Qi Y. Spatial and seasonal variations of Q10, determined by soil respirationmeasurements at a Sierra Nevadan forest [J]. Global Biogeochemical Cycles,2001,15(3):687-696.
    [63]王国兵,唐燕飞,阮宏华等.次生栎林与火炬松人工林土壤呼吸的季节变异及其主要影响因子[J].生态学报,2009,29(2):966-975.
    [64] Luo Q, Zhou X H. Soil respiration and the environment [M]. London: Elsevier, Inc,2006.
    [65]陈全胜.内蒙古锡林河流域草原群落土壤呼吸的时空变异及其影响因子研究[D].北京:中国科学院博士论文.2002.
    [66] Freijer JI, Bouten W. A comparison of field methods for measuring soil carbondioxide evolution: experiments and simulation [J]. Plant and Soil,1991,135(1):133-142.
    [67]崔晓阳,方怀龙.城市绿地土壤及其管理[M].北京:中国林业出社,2001.
    [68] Moore MR. A commentary on the impacts of metals and metalloids in theenvironment upon the metabolism of drugs and chemicals [J]. Toxicology Letters,2004,148(3):153-158.
    [69]黄青,张凯,邓文鑫,徐小牛.合肥城市绿地土壤特点[J].城市环境与城市生态,2009,22(2):12-15.
    [70]陶春军,贾十军,陈永宁等.合肥市南郊土壤重金属环境质量评价[J].环境科学与管理,2011,36(10):164-166,179.
    [71]中华人民共和国住建部.1990. GBJ137-90城市用地分类与规划建设用地标准
    [S].
    [72] Jin XB, Bai JH, Zhou YK. Temperature sensitivity of soil respiration is affected bynitrogen fertilization and land use [J]. Acta agriculturae Scandinavica Section b-soiland Plant Science,2010,60:480-484.
    [73] Jones DL, Willett VB. Experimental evaluation of methods to quantify dissolvesorganic nitrogen (DON) and dissolved organic carbon (DOC) in soil [J]. SoilBiology and Biochemistry,2005,38:991-999.
    [74]鲍士旦.土壤农化分析方法[M].第3版.北京:中国农业出版社,2005.
    [75]黄靖宇,宋长春,宋艳宇等.湿地垦殖对土壤微生物量及土壤溶解有机碳、氮的影响[J].环境科学,2008,29(5):1380-1387.
    [76]孙艳丽.开封市土壤有机碳密度、组成及时空变化分析[D].河南:河南大学博士学位论文.2011.
    [77] Jiang YF, Wang XT, Wang F, et al. Levels, composition profiles and sources ofpolycyclic aromatic hydrocarbons in urban soil of Shanghai, China [J].Chemosphere.2009,75(8):1112–1118.
    [78]乔红波,张慧,高瑞等.三门峡烟区土壤pH时空变异特征[J].中国烟草科学,2010,38(4):48-51.
    [79]刘广明,杨劲松.土壤含盐量与土壤电导率及水分含量关系的实验研究[J].土壤通报,2001,32(50):85-87.
    [80]江浩浩,董希斌,王海飙.边坡土壤含水率对不同植被土壤抗剪强度的影响[J].森林工程,2009,25(3):77-80.
    [81]殷云龙,骆永明,张桃林等.南京市城乡公路蜀桧叶片中金属元素和氮、硫含量分析[J].应用生态学报.2005,5:929-932.
    [82]董惠英,蒋炳伸,杨喜田等.城市新建绿地系统的土壤剖面、养分特征及与植物生长的关系[J].河南农业大学学报.2005,3(1):35-39.
    [83] Lorenz K. Lai R. Biogeochemical C and N cycles in urban soil [J]. Environmentinternational,2009,35(1):1-8.
    [84] Stroganova MN. Soils of Moscow and Urban Environment [M]. Moscow,1998.
    [85]郝冠军,郝瑞军,沈烈英等.上海世博会规划区典型绿地土壤肥力特性研究[J].上海农业学报,2008,24(4):14-19.
    [86]刘继龙,张振华,谢恒星等.胶东果园土壤电导率的时空分布特征及Kriging估值[J].2006,24(5):193-197.
    [87]袁大刚,张甘霖.不同土地利用条件下的城市土壤电导率垂直分布特征[J].水土保持学报,2010,4:171-176.
    [88]薛正平,杨星卫,董玉红.土壤养分空间变异及合理取样数研究[J].农业工程学报,2002,18(4):6-9.
    [89]中华人民共和国.2012.行业分类标准[S]. http://www. stats.gov.cn/tjbz/hyf lbz/.
    [90]史正军,卢瑛,钟晓等.城市公园街道绿地不同剖面土壤肥力特征比较研究[J].2004,17(增刊):272-275.
    [91]李家熙,葛晓立.城市土壤环境地球化学研究一以苏州市为例[J].地质通报,24(8):710-713.
    [92]冯万忠,段文标,许蟓.不同土地利用方式对城市土壤理化性质及其肥力的影响—以保定市为例[J].河北农业大学学报,31(2):61-64.
    [93]孟昭虹,周嘉.哈尔滨城市土壤理化性质研究[J].哈尔滨师范大学自然科学学报.2005,21(4):102-105.
    [94]马建华,张丽,李亚丽.开封市土壤性质与污染的初步研究[J].土壤通报,1999,30(2):64-67.
    [95]于法展,尤海梅,李保杰等,徐州市不同功能区绿地土壤理化性质分析[J].水土保持研究,2007,14(3):85-88.
    [96]王秋兵,段迎秋,魏忠义等.沈阳市城市土壤有机碳空间变异特征研究[J].2009,40(2):252-257.
    [97]章名奎,王美青,符娟林.杭州城市土壤研究[M].北京:中国农业科学技术出版社,2006.
    [98]董艳,仝川,杨红玉.福州市自然和人工管理绿地土壤有机碳含量分析[J].杭州师范学院学报(自然科学版),2007,6(6):440-444;
    [99] Gbadegesinu A, Olabode MA, Soil properties in the metropolitan region of Ibadan,Nigeria: implications for the management of the urban environment of developingcountries [J]. The Environmentalist,20(3):205-214.
    [100]熊毅,李庆奎.中国土壤[M].第二版.北京:科学出版社,1990.
    [101] Pouyat R, Groffman P, Yesilonix L, et al. Soil carbon pools and fluxes in urbanecosystems [J]. Environmental Pollution,2002,116:107-118.
    [102]刘艳.北京市崇文区不同类型绿地土壤质量现状及综合评价[D].北京:中国林业科学研究院博士学位论文.2009.
    [103]王焕华,李恋卿,潘根兴等.南京市不同功能区表土微生物碳氮[J].生态学杂志,2005,24(3):273-277.
    [104]段迎秋,魏忠义,韩春兰等.东北地区城市不同土地利用类型土壤有机碳含量特征[J].沈阳农业大学学报,2008,39(3):324-326.
    [105]章明奎,王美青,符娟林.杭州市城市土壤研究[M].北京:中国农业科学技术出版社.2006.
    [106] Guardina CP, Ryan MG. Evidence that decomposition rates of organic carbon inmineral soil do not vary with temperature [J]. Nature,2000,404:858-861.
    [107]李天杰,赵烨,张科力等,土壤地理学[M].第三版.北京:高等教育出版社,2005.
    [108] Pouyat RV, Yesilonis ID. Golubiewski NE. A comparison of soil organic carbonstocks between residential turf grass and native soil [J]. Urban Ecosystem,2008,12(1):45-62.
    [109]牛西午,张强,杨治平等.柠条人工林对晋西北土壤理化性质变化的影响研究[J].西北植物学报,2003,23(4):628-632.
    [110]周广胜,王玉辉,蒋延玲等.陆地生态系统类型转变与碳循环[J].植物生态学报,2002,26(2):250-254.
    [111]申广荣,葛晓烨,黄秀梅.上海崇明岛表层土壤有机碳密度的空间分布特征及碳储量估算[J].上海交通大学学报(农业科学版).2011,29(6):61-66.
    [112]陈步峰,潘永军,史欣等.广州市典型森林土壤有机碳密度及储量生态特[J].东北林业大学学报,2010,38(4):59-65.
    [113]周毅,钟锡均,郭乐东等.不同土地利用形式下表土有机碳含量和密度特征的研究[J].2009,29(6):1-7.
    [114]许信旺,潘根兴,侯鹏程.不同土地利用对表层土壤有机碳密度的影响[J].水土保持学报,2005,19(6):193—196.
    [115]何志斌,赵文智,刘鹊等.祁连山青海云杉林斑表层土壤有机碳特征及其影响因素[J].生态学报,2006,26(8):89-97.
    [116] Lal R. Soil carbon sequestration impacts on global climate change and foodsecurity [J]. Science,2004,9:1623-1627.
    [117]申小冉,吕家珑,张文菊等.我国三种种植制度下农田土壤有机碳、氮关系的演变特征[J].干旱地区农业研究,2011,29(4):121-126.
    [118]黄昌勇.土壤学[M].北京:中国农业出版社,2005.
    [119] Tian HQ,Chen GS,Zhang C,et a1.Pattern and variation of C:N:P ratios in China,s soils: a synthesis of observational data [J]. Biogeochemistry,2010,98: l39-151.
    [120] Satjes NH.Totoal carbon and nitrogen in the soils of the world [J]. EuropeanJournal of Soil Science,1996,47:151-163.
    [121]耿远波,章申,董云社等.草原土壤的碳氮含量及其与温室气体通量的相关性[J].地理学报.2001,56(1):44-53.
    [122] Hu S, Chapin FS, Firestone MK, et al. Nitrogen limitation of microbialdecomposition in a grassland under elevated CO2[J]. Nature,2001,409:188-191.
    [123]乔云发,韩晓增,韩秉进等.长期施用化肥对农田黑土有机碳和氮消长规律的影响[J].中国土壤与肥料,2007(4):23—33.
    [124]张春华,王宗明,居为民等,松嫩平原玉米带土壤碳氮比的时空变异特征[J].环境科学,2011,32(5):1407-1414.
    [125]廖建雄,王根轩.CO2和温度升高及干旱对小麦叶片化学成分的影响[J].植物生态学报.2000,24(6):744-747.
    [126]窦晶鑫,刘景双,王洋等.三江平原草甸湿地土壤有机碳矿化对C:N比的响应[J].地理科学,2009,25(9):773-778.
    [127] Magill AH, Aber JD.2000. Dissolved organic carbon and nitrogen relationships inforest litter as affected by nitrogen deposition [J]. Soil Biology and Biochemistry,32:603-613.
    [128]张金波,宋长春,杨文燕.土地利用方式对土壤水溶性有机碳的影响[J].中国环境科学,2005,25(3):343-347.
    [129]莫彬,曹建华,徐祥明等.岩溶山区不同土地利用方式对土壤活性有机碳动态的影响[J].生态环境,2006,15(6):1224-1230.
    [130] Michalzik B, Kalbitz K, Park J H, et al. Fluxes and concentrations of dissolvedorganic carbon and nitrogen a synthesis for temperate forests [J].Biogeochemistry,2001,52(2):173-205.
    [131] Bruber N, Galloway JN. An earth-system perspective of the global nitrogen cycle[J]. Nature,2008,451:293-296.
    [132]李营.生态恢复过程中土壤有机碳的变化[J].云南地理环境研究,2007,19(3):40-45,54.
    [133] Currie WS, Aber JD, McDowell WH, et al. Vertical transport of dissolved organicC and N under long-term N amendments in pine and hardwood forests [J].Biogeochemistry,1996,35(3):471-505.
    [134]张迪,韩晓增,李海波等.不同植被覆盖与施肥管理对黑土活性有机碳及碳库管理指数的影响[J].生态与农村环境学报,2008,24(4):1-5.
    [135]胡卫萱,丁峰,宋文华.绿化配置对城市土壤酶活性和有机质质量分数的影响[J].东北林业大学学报,2009,37(9):115-116.
    [136] Falkengren-Grerup U, Tyler G. The importance of soil acidity, moisture,exchangeable cation pools and organic matter solubility to the cation compositionof beech forest (Fagus sylvatica L. soil solution[J]. Journal of Plant Nutrition andSoil Science,1993,156(4):365-370.
    [137]俞元春,李淑芬.江苏下蜀林区土壤溶解有机碳与土壤因子的关系[J].土壤,2003,35(5):424-428.
    [138]徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,2002,39(1):89-96.
    [139] Guggenberger G, Glaser B, Zech W. Heavy metal binding by hydrophobic andhydrophilic dissolved organic carbon fractions in a Spodosol A and B horizon [J].Water Air and Soil Pollution,1994,72:111-127.
    [140] Hajnos M, Sokoloeska Z, Jozefaciuk G, et al. Effect of leaching of DOC on porecharacteristic of a sandy soil [J]. Journal of Plant Nutrition and Soil Science,1999,162(1):19-25.
    [141] Curtin D, Campbell CA, Jalil A. Effects of acidity on mineralization: pHdependence of organic matter mineralization in weakly acidic soils [J]. SoilBiology and Biochemistry,1998,30(1):57-64.
    [142] Cronan CS. Comparative effects of precipitation acidity on three forest soils:carbon cycling responses [J]. Plant and Soil,1985,88(1):101-112.
    [143] Michalzik B, Matzner E. Dynamics of dissolved organic nitrogen and carbon in acentral European Norway spruce ecosystem [J]. European Journal of Soil Science,1999,50(4):579-590.
    [144]刘涛泽,刘丛强,张伟等.喀斯特地区坡地土壤可溶性有机碳的分布特征[J].中国环境科学,2009,29(3):248-253.
    [145]李忠佩,焦坤,吴大付.不同提取条件下红壤水稻土溶解有机碳的含量变化[J].土壤,2005,37(5):512-516.
    [146] Bolan NS, Baskaran S, Thiagarajan S. An evaluation of the measure methoddissolved organic carbon in soils, manures, sludge, and stream water [J].Communication in Soil science and plant analysis,1996,27(13-14):2732-2737.
    [147] Christ MJ, David MB. Dynamics of extractable organic carbon in spodosol forestfloors [J]. Soil Biology and Biochemistry,1996,28(9):1171-1179.
    [148] Davidson EA, Trumbores E, Amundson R. Soil warming and organic carboncontent [J]. Nature,2000,408(14):789-790.
    [149]赵劲松,张旭东,袁星等.土壤溶解性有机质的特性与环境意义[J].应用生态学报,2003,14(1):787-796.
    [150] Vance GF,David MB. Dissolved organic carbon and sulfate sorption by spodosolmineral horizons [J]. Soil Science,1992,154:136-144.
    [151]陈国潮,何振立,姚傀左.红壤微生物量的季节性变化研究[J].浙江大学学报(农业与生命科学版),1999,25(4):387-88.
    [152] Bauhaus J, pare D, CoteL. Effeets of tree species stand age, and soil type on soilmicrobial Biomass and its activity in a southern boreal forest [J]. Soil Biologyand Bioehemistry,1998,30:1077-1089.
    [153] Barbhulya AR, Arunaehala S, pandeyb HN, et al. Dynamies of MicrobialbiomassC, N andP in disturbed and undisturbed stands of a tropic wet-evergreenforest [J]. European Journal of soil Biology,2004,40:113-121.
    [154]胡亚林,汪思龙,颜绍馗等.杉木人工林取代天然次生阔叶林对土壤生物活性的影响[J].应用生态学报,2005,16(8):1411-1416.
    [155] Sharma P, Rai SC, Sharma R, et al. Effect of land-use changes on soil microbialC, N and P in a Himalayan watershed [J]. Pedobiologia,2004,48:83-92.
    [156] Mendham DS, Sankaran KV, O,Connell AM, et al. Eucalyptus globules harvestresidue management effects on soil carbon and microbial biomass at1and5yearsafter plantation establishment [J]. Soil Biology and Biochemistry,2002,34:1903-1912.
    [157]吴建国,张小全,徐德应.六盘山林区几种土地利用方式下土壤活性有机碳的比较[J].植物生态学报,2004,28(5):657-664.
    [158] Aslam T, Choudhary MA, Saggar S. Tillage impacts on soil microbial biomass C,N and P, earthworms and agronomy after two years of cropping followingpermanent pasture in New Zealand [J]. Soil and Tillage research,1999,51:103-111.
    [159]毛艳玲,杨玉盛,崔纪超等.土地利用方式对土壤活性有机碳分布的影响[J].福建林学院学报,2008,28(4):338-342.
    [160]王晓龙,胡锋,李辉信等.红壤小流域不同土地利用方式对土壤微生物量碳氮的影响[J].农业环境科学学报,2006,25(1):143-147.
    [161]张成娥,梁银丽,贺秀斌.地膜覆盖玉米对土壤微生物量的影响[J].生态学报,2002,22(4):508-512.
    [162] Whalen JK, Parmelee RW, McCartney DA, et al. Movement of N fromdecomposing earthworm tissue to soil, microbial and plant N pools[J]. SoilBiology Biochemistry,1999,31:487-492.
    [163]张小磊,何宽,安春华等.不同土地利用方式对城市土壤活性有机碳的影响—以开封市为例[J].生态环境,2006,15(6):1220-1223.
    [164]周程爱,张于光,肖烨等.土地利用变化对川西米亚罗林土壤活性碳库的影响[J].生态学报,2009,29(8):4542-4547.
    [165]仝川,董艳,杨红玉.福州市绿地景观土壤溶解性有机碳、微生物量碳及酶活性[J].生态学杂志,2009,28(6):1093-1101.
    [166]张帆,黄风球,肖小平等.冬季作物对稻田土壤微生物量碳、氮和微生物熵的短期影响[J].生态学报,2009,29(2):734-739.
    [167]徐华勤,章家恩,冯丽芳等.广东省不同土地利用方式对土壤微生物量碳氮的影响[J].生态学报,2009,29(8):4112-4118.
    [168]汪文霞,周建斌,严德翼等.黄土区不同类型土壤微生物量碳、氮和可溶性有机碳、氮的含量及其关系[J].水土保持学报,2006,20(6):103-106.
    [169] Pouyat RV, Turechek WW. Short and long-term effects of site factors on netN-mineralization and nitrification rates along an urban-rural gradient [J]. UrbanEcosystems,2001,5:159-178.
    [170] Zhu WX, Dillard ND, Grimm NB. Urban nitrogen biogeochemistry: Status andprocesses in green retention basins [J]. Biogeochemistry,2004,71:177-196.
    [171]张明,白震,张威等.长期施肥农田黑土微生物量碳、氮季节性变化[J].生态环境,2007,16(5):1498-1503.
    [172]李东坡,武志杰,陈利军等.长期培肥黑土微生物量碳动态变化及影响因素[J].应用生态学报,2004,15(8):1334-1338.
    [173]高云超,朱文珊,陈文新.秸秆覆盖免耕土壤微生物生物量与养分转化的研究[J].中国农业科学,1994,27(6):41-49.
    [174] Schlesinger WH. Carbon balance in terrestrial detritus [J]. Annual Review ofEcology and Systematics,1977,8:51-81.
    [175] Li RP, Zhou GS, Wang Y. Responses of soil respiration in non-growing seasons toenvironmental factors in a maize agroecosystem, Northeast China [J]. ChineseScience Bulletin,2010,55:2723–2730.
    [176] Vogt KA, Vogt DJ, Palmiotto PA, et al. Review of root dynamics in forestecosystems grouped by climate, climatic forest type and species [J]. Plant andSoil,1996,187:159–219.
    [177] Xu LK, Baldocchi DD. Seasonal variation in carbon dioxide exchange over aMediterranean annual grassland in California [J]. Aagricultural and ForestMeteorology,2004,123:79–96.
    [178] Yuste JC, Janssens IA, Carrara A, et al. Interactive effects of temperature andprecipitation on soil respiration in a temperate maritime pine forest [J]. TreePhysiology.2003,23:1263–1270.
    [179] Ruehr NK. Buchmann A. Soil respiration fluxes in a temperate mixed forest:seasonality and temperature sensitivities differ among microbial and rootrhizosphere respiration [J]. Tree Physiology,2010,30:165–176.
    [180] Wieser G. Seasonal variation of soil respiration in a Pinus cembra forest at theupper timberline in the Central Austrian Alps [J]. Tree Physiology,2004,24:475–480.
    [181] Widén B, Majdi H. Soil CO2efflux and root respiration at three sites in a mixedpine and spruce forest: seasonal and diurnal variation [J]. Sanadian Journal ofForest Research,2001,31:786–796.
    [182] Li M, Hoch G, K rner C. Source/sink removal affects mobile carbohydrates inPinus cembra at the Swiss treeline [J]. Trees,2002,16:331–337.
    [183] Baldocchi DD, Meyers TP. Trace gas Exchange above the floor of a deciduousforest evaporation and CO2efflux [J]. Journal of Geophysical Researchatmospheres,1991,96:7271-7285.
    [184] Weber MG. Forest soil respiration after cutting and burning in immature aspenecosystems [J]. Forest Ecology and Management,1990,31:1–14.
    [185] Elberling B, Brandt KK. Uncoupling of microbial CO2production and release infrozen soil and its implications for field studies of arctic C cycling [J]. SoilBiology and Biochemistry,2003,35:263–272.
    [186] Davidson EA, Belk E, Boone RD. Soil water content and temperature asindependent or confounded factors controlling soil respiration in a temperatemixed hardwood forest [J]. Global Change Biology,1998,4:217–227.
    [187] Flanagan LB, Johnson BG. Interacting effects of temperature, soil moisture andplant biomass production on ecosystem respiration in a northern temperategrassland [J]. Agricultural and Forest Meteorology,2005,130:237–253.
    [188] Holt JA, Hodgen MJ, Lamb D. Soil respiration in the seasonally dry tropics nearTownsville, North Queensland [J]. Australian Journal of soil research,1990,28:737–745.
    [189] O’Connell AM. Microbial decomposition (respiration) of litter in eucalypt forestsof southwestern Australia: an empirical model based on laboratory incubations [J].Soil Biology and Biochemistry,1990,22:153–160.
    [190] Keith H, Jacobsen KL, Raison RJ. Effects of soil phosphorus availability,temperature and moisture on soil respiration in Eucalyptus paucifora forest [J].Plant Soil,1997,190:127–141.
    [191] Maestre FT, Cortina J. Small-scale spatial variation in soil effux in aMediterranean semiarid steppe [J]. Applied Soil Ecology,2003,23:199–209.
    [192] Conan RT, Peter DB, Klopatek CC, et al. Controls on soil respiration in semiaridsoils [J]. Soil Biology and Biochemistry,2004,36:945–951.
    [193] Rout SK, Gupta SR. Soil respiration in relation to abiotic factors, forest floor litter,root biomass and litter quality in forest ecosystems of Siwaliks in northern Indian[J]. Oecologia Plantarum,1989,10:229–244.
    [194] Ritz K, McNicol JW, Nunan N, et al. Spatial structure in soil chemical andmicrobiological properties in an upland grassland [J]. FEMS MicrobiologicalEcology,2004,49:191–205.
    [195] Blagodatsky SA, Heinemeyer O, Richter J. Estimating the active and total soilmicrobial biomass by kinetic respiration analysis [J]. Biology and Fertility ofSoils,2000,32:73–81.
    [196] Toda H. Characteristics of nitrogen mineralization in forest soil [J]. ForestResources and Environment,2000,38:1-95(in Japanese with English summary).
    [197] Epron D, Dantec VL, Dufrene E, et al. Seasonal dynamics of soil carbon dioxideefflux and simulated rhizosphere respiration in a beech forest [J]. Tree Physiology,2001,21:145-152.
    [198] Atkon OK, Edwards EJ, Loveys BR. Response of root respiration to changes intemperature and its relevance to global warming [J]. New Phytologist,2000,147:141-154.
    [199] Guner S, Tufekcioglu A, Gulenay S, et al. Land-use type and slope positioneffects on soil respiration in black locust plantations in Artvin, Turkey [J]. AfricanJournal of Agricultural Research,2010,5:719-724.
    [200] Teklay T, Nordgren A, Malmer A. Soil respiration characteristics of tropical soilsfrom agricultural and forestry land-uses at Wondo Genet (Ethiopia) in response toC, N and P amendments [J]. Soil Biology and Biochemistry,2006,38:125–133.
    [201] WangY,Shen QR, Yang ZM, et al. Size of microbial biomass in soils of China [J].Pedosphere,1996,6(3):265-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700