用户名: 密码: 验证码:
基于换流技术的快速直流真空开关理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
清洁能源和可再生能源大多依赖直流系统传输,促使直流系统向互联组网的方向发展。大容量直流开关作为直流电网灵活操作,故障时快速重构的重要部件,应用前景将十分广阔。中压直流集电网和基于直流区域配电的船舶综合电力系统迫切需要性能可靠、功能全面、环境友好的直流开关。兼具真空开断技术和有源换流技术二者特性的有源换流型直流真空开关,具备快速开断、低成本和小型化等可预期特性,是中压直流电网用开关设备的发展方向。
     研制有源换流型直流真空开关时,缺乏对电流强制过零时真空电弧调制特性的了解,缺少换流回路参数的优化选取方法及低成本高性能的快速操动机构,存在一系列理论难点与技术瓶颈。针对这些问题,本文分析了真空电弧的强制过零开断特性,提出调控机制;提出了完整的换流回路参数计算方法,并针对小直流电流和双向直流的开断问题,提出解决方案;设计了基于斥力驱动,永磁力保持的快速真空开关系统;结合船电应用工况,开发了一台5kV等级的快速直流真空开关样机,并在实验室条件下完成测试。
     主开断单元的强制过零开断特性决定着换流回路的参数选取和各组件间的动作时序配合,是产品研发设计中最重要的理论依据之一。本文从阐述真空电弧换流开断的实质着手,分析了直流故障电流换流开断所面对的工况条件;利用一维热传导方程,分析了阳极表面温度在直流故障电流强制过零开断过程中的相关特性并提出调控机制;利用粒子守恒方程,分析了间隙金属蒸气密度在开断过程中的相关特性并提出调控机制;利用杯状纵磁触头的3D有限元模型,分析了纵向磁场在开断过程中的特性。
     换流回路的参数设计是有源换流型直流开关研究的核心部分。本文从有源换流技术的特性分析出发,分析了换流回路元件参数对主开断单元上电流过零前的下降率dI/dt和过零后的恢复电压上升率dV/dt的影响;基于有源换流的自身特性,提出完整的换流回路参数计算方法:针对小直流电流开断存在的问题,提出一种利用联锁互动开关结构的双换流支路直流开关拓扑图;针对双向电流开断能力的需求,提出一种四联锁换向开关,以解决换向开关的配合问题。
     基于快速操动机构的直流开关本体设计,是研制其整机要面对的问题。本文从换流型直流开关对主开关的分闸特性要求出发,提出了一种基于斥力驱动,永磁力保持的快速真空开关结构;利用场路耦合的有限元分析了电磁斥力装置结构参数对其特性的影响,并提出设计导则;完成了快速真空开关驱动系统的特性测试,经永磁保持装置结构改进和增加反向电流缓冲措施后,灭弧室动触头达到6mm行程只需2.8ms。
     作为大容量直流真空开关的应用研究,研制了面向船舶综合电力系统应用的5kV快速直流真空开关样机;在学校实验室条件下完成了样机的测试,结果表明其主要参数可以满足船舶综合电力系统的应用要求。
With the rapid adoption and large-scale application of the clean energy and renewable energy, it is contributing to the DC system in the direction of the interconnected network. In order to operate the power grid flexibly and open the fault circuit rapidly, DC Switch is particularly important and will be very broad application prospect. MVDC Collector Grid and Integrated Power System based on DC zonal electric distribution are urgent need for a reliable, full-featured, friendly environment, reasonable coast DC switch. The active commutation type of DC vacuum switch with the both characteristics of vacuum interruption and active commutation also has the characteristics of fast-break, low-cost, and miniaturization, and so it is the development direction of the switchgear in MVDC power grid.
     There are a series of technical bottlenecks to develop the DC vacuum switch based on active commutation circuit. To solve these problems, this paper analyzes the forcing current to zero characteristics of the vacuum arc and its influencing factors; proposes a complete calculation method of commutation circuit parameters and solutions for the interruption problems of small DC current and bi-directional DC current; designs a prototype of12kV rated high-speed vacuum switch based on electromagnetic repulsion driving and permanent magnet force latching; finally, considering the ship electrical applications, develops a prototype of5kV rated high-speed DC vacuum switch and finishes the test under laboratory conditions.
     The forcing current to zero characteristics of the main interruption unit, which is one of the most important design bases, determines the parameters selection of commutation circuit and the operation time of each component. This paper expounds the essence of the vacuum arc commutation interruption, analyzes the working conditions of DC fault current commutation interruption; using the one-dimensional heat conduction equation, analyzes the characteristics of the anode surface temperature in the process of DC fault current forcing current to zero and its influencing factors; using the particle conservation equation, analyzes characteristics of the gap metal vapor density in the same process and its influencing factors; utilizing the3D finite element model of the cup-typed AMF contacts, analyzes its characteristics in the same process.
     The parameters design of commutation circuit is the hard-core of the active DC vacuum switch research. This paper is based on the characteristics of the active commutation technology, in full working conditions, analyzes the commutation circuit parameters effects on the descent rate dl/dt before the zero-crossing of the main commutation unit current and the recovery voltage rise rate dV/dt after the zero-crossing; basing on the characteristics of the active commutation, proposes a complete calculation method of commutation circuit parameters; referring to the problems of small DC current commutation, proposes a double commutation branches DC switch topology using interlock interactive switch structure; referring to the requirement of bi-directional current interruption ability, proposes a four interlocking commutation switch to solve the operation time problems of commutation switch.
     The design of the fast actuator is the principal problem to be faced in the development of the DC switch. This paper is based on the main switch opening characteristics requirement due to commutation DC switch, proposes a high-speed vacuum switch structure based on electromagnetic repulsion driving and permanent magnet force latching; analyzes the characteristics of structure parameters of electromagnetic repulsion device and proposes the design guidelines; designs a prototype of12kV rated high-speed vacuum switch and finishes the characteristics test, after improving the structure of permanent magnet force latching device and adding the fuction of the reverse current buffer, the6mm stroke only needs2.8ms.
     Finally, for DC5kV onboard IPS applications, we develops a prototype of the high-speed DC vacuum switch; the test of prototype is finished under college laboratory conditions. The results indicate that its main parameters can meet the requirements of the onboard IPS.
引文
[I]George K. DC Power Production, Delivery and Utilization[R]. California: EPRI Solutions Inc. , 2006.
    [2]ABB circuit breakers for direct current applications[R/0L]. Texas: ABB, Inc. , 2010. http://www04.abb.com/global/seitp/seitp202.nsf/0/6bl6aa3f34983211cl25761f004fd 7f9/$file/vol. 5.pdf.
    [3]Asplund G, Carlsson L, Tollerz 0. 50 years HVDC: from pioneer to world leader[J]. ABB Review, 2003(4):6-8.
    [4]High Voltage Direct Current Transmission -Proven Technology for Power Exchange[EB/OL]. Erlangen, Germany: Siemens AG, 2011. http://www.Siemens.com/sustainability/pool/en/environmental-portfolio/products-solutions/power—transmission-distribution/hvdc_proven_technology.pdf.
    [5]Greenwood A N, Lee T H. Theory and Application of the Commutation Principle for HVDC Circuit Breakers[J]. IEEE Transactions on Power Apparatus and Systems, 1972, 91(4): 1570-1574.
    [6]Greenwood A N, Barkan P, Kracht W C. Hvdc Vacuum Circuit Breaker[J]. IEEE Transactions on Power Apparatus and Systems, 1972, 91 (4):1575-1588.
    [7]Working Group 03 of CIGRE Study Committee 13. HVDC Switching Devices and Arrangements[J]. Electra, 1971, 18:9-66.
    [8]Hofmann G A, La Barbera G L, Reed N E, et al. A high speed HVDC circuit breaker with crossed-f ield interrupters[J]. Power Apparatus and Systems, IEEE Transactions on, 1976, 95(4) : 1182-1193.
    [9]Hofmann G A, LaBarbera G L, Reed N E, et al. Field test of HVDC circuit breaker: Load break and fault clearing on the Pacific intertie[J]. Power Apparatus and Systems, IEEE Transact:ons on, 1976, 95(3): 829-838.
    [10]Melvold D J, Shockley P R, Long W F, et al. Three terminal operation of the Pacific HVDC intertie for dc circuit breaker testing[J]. Power Apparatus and Systems, IEEE Transactions on, 1976, 95(4): 1287-1296.
    [11]Yanabu S, Tamagawa T, Irokawa S, et al. Development of HVDC Circuit Breaker and its Interrupting Test[J]. IEEE Transactions on Power Apparatus and Systems, 1982, 101(7):1958-1965.
    [12]Tokuyama S, Arimatsu K, Yoshioka Y, et al. Development and Interrupting Tests on 250KV 8KA HVDC Circuit Breaker[J]. IEEE Transactions on Power Apparatus and Systems. 1985, 104(9):2452-2459.
    [13]Lee A, Slade P G, Yoon K H, et al. The Development of a HVDC SF6 Breaker[J]. IEEE Transactions on Power Apparatus and Systems,1985,104(10):2721-2729.
    [14]Vithayathil J J, Courts A L, Peterson W G, et al. HVDC Circuit Breaker Development and Field Tests[J]. IEEE Power Engineering Review,1985,5(10):29-30.
    [15]Pauli B, Mauthe G, Ruoss E, et al. Development of a High Current HVDC Circuit Breaker with Fast Fault Clearing Capability[J]. IEEE Transactions on Power Delivery,1988, 3(4):2072-2080.
    [16]Frank C M. HVDC Circuit Breakers:A Review Identifying Future Research Needs[J]. IEEE Transactions on Power Delivery,2011,26(2):998-1007.
    [17]Ito H, Hamano S, Ibuki K, et al. Instability of DC Arc in SF6 Circuit Breaker[J]. IEEE Transactions on Power Delivery,1997,12(4):1508-1513.
    [18]Hiroyuki Nakao, Yoshihiko Nakagoshi, Masayuki Hatano, et al. D. C. Current Interruption in HVDC SF6 Gas MTRB by Means of Self-Excited Oscillation Superimposition[J]. IEEE Transactions on Power Delivery,2001,16(4):687-693.
    [19]Andersson D, Henriksson A. Passive and Active DC Breakers in the three Gorges-Changzhou HVDC Project[C]//Proceedings of the International Conference on Power Systems. Wuhan, China:CIGRE,2001:391-395.
    [20]Railway applicatlons-Supply voltages of traction systems. IEC 60850-2007[S] Electrical equipment and systems for railways, International Electrotechnical Commission.2007.
    [21]Railway applications-Fixed installations-DC switchgear Part I:General. IEC 61992.1-2006[S]//Electrical equipment and systems for railways, International Electrotechnical Commission.2006.
    [22]Onboard DC Grid__The step forward in Power Generation and Propulsion [EB/OL]. ABB Inc.,2011. http://wwwO4. abb. com/global/seitp/seitp202. nsf/0/292d42e87306453dc12579ad0050a 457/$file/12_10_OnboardDCGrid_Technical-Information.pdf.
    [23]High-speed DC circuit-breakers for Rolling Stock[EB/OL]. Secheron. http://dl.secheron. com/data/classes/produit/brochure_en_rs95_19. pdf.
    [24]High Speed DC Circuit Breaker-Gerapid 2607,4207,6007,8007 with arc chutes 1X2,1X4,2X2,2X3,2X4-USER MANUAL [EB/OL]. GE Consumer & Industrial GmbH. http://www. gepowercontrols. com/ru/resources/literature library/catalogs/downlo ads/d_manual_GERAPID_english_08.pdf.
    [25]DC Switchgear ETGR 21 & 22 Series Ver.3.0[EB/OL]. ENhanced TEChnology. http://www. entecene.co. kr/eng/catalog/DC%20switchgear. pdf.
    [26]High speed bi-directional DC circuit breaker for rolling stock DCTrac 915 (900V-150OA-30kA) DCTrac 1815 (1800V-1500A-30kA)[EB/OL]. ABB Inc. http://www05.abb.com/global/scot/scot235.nsf/veritydisplay/b475545c70b4f029832 57a0d0044c47e/$file/DCtrac-technical-datasheet_EN.pdf.
    [27]Hitachi Ltd. High Speed Vacuum Circuit Breaker[OL]. http://www.hitachi-rail.com/products/powersupply/powersupplyequipment/hsvsc/in dex.html.
    [28]粟飯原一雄,铃木伸夫,菊地征范.電気铁道变電所用新形直流高速度遮断器[J].富士時報,1999,72(2):111-117.
    [29]HONMA M, KIKUCHI S, TSHIDA S, et al. DC high-speed vacuum circuit breaker[J]. Tetsudo Saibane, Shinpojiumu Ronbunshu,2001,38(Pt 2):460-465.
    [30]Saeedifard M, Graovac M, Dias R F, et al. DC Power Systems:Challenges and Opportunities[C]//IEEE Power and Energy Society General Meeting. Minneapolis, Minnesota, USA:25-29 July 2010.
    [31]Savage P, Nordhaus R, Jamieson S P. DC Microgrids:Benefits and Barriers[J]. published for Renewable Energy and International Law(REIL) project, Yale School of Forestry and Environmental Studies,2010:0-9.
    [32]Kakigano H, Miura Y, Ise T. Low-voltage bipolar-type DC microgrid for super high quality distribution[J]. Power Electronics, IEEE Transactions on,2010,25(12): 3066-3075.
    [33]Paul Gardner. Generators and internal electrical systems[R]. Elforsk, April 2012.
    [34]Jimmy Ehnberg, Thomas Nordlander. Protection system design for MVDC collection grids for off-shore wind farms[R]. Elforsk, December 2011.
    [35]马伟明.舰船动力发展的方向——综合电力系统[J].海军工程大学学报,2002,14(6):1-5.
    [36]陈虹.基于直流配电系统的船舶综合电力系统[J].舰船科学技术,2005,27(1):31-36.
    [37]Ciezki J G, Ashton R W. A technology overview for a proposed navy surface combatant DC zonal electric distribution system[J]. Naval engineers journal,1999,111(3): 59-69.
    [38]Doerry N, McCoy K. Next generation integrated power system:NGIPS technology development roadmap[R]. NAVAL SEA SYSTEMS COMMAND WASHINGTON DC,2007.
    [39]Long W F, Reeve J, Menichol J R, et al. Application Aspects of Multiterminal DC Power Transmission[J]. IEEE Transactions on Power Delivery,1990,5(4):2084-2098.
    [40]Henry S, Denis A M, Panciatici P. Feasibility study of off-shore HVDC grids[C]/ IEEE Power and Energy Society General Meeting. Minneapolis, Minnesota, USA:25-29 July 2010.
    [41]Meyer C, Ho ing M, Peterson A, et al. Control and Design of DC Grids for Offshore Wind Farms[J]. IEEE Transactions on Industry Applications,2007,43(6):1475-1482.
    [42]Sheng Jie Shao, Vassilios G Agelidis. Review of DC System Technologies for Large Scale Integration of Wind Energy Systems with Electricity Grids[J]. energies,2010, 3(6):1303-1319.
    [43]Michael Bahrman P E. Offshore Wind Connections-HVDC for Offshore Grids[R/OL]. Maui:UWIG Technical Workshop on Grid Systems, October 2011. http://www. uwig. org/mauiworkshop/Bahrman-HVDC_for_Offshore_Grids. pdf.
    [44]Lars Weimers. A European DC Super Grid-A Technology Providers View[R/OL]. Dublin: ABB Power Systems, April 2012. http://www. engineersireland. ie/EngineersIreland/media/SiteMedia/groups/Divisio ns/electrical-electronic/HVDC-Light-Presentation. pdf?ext=. pdf.
    [45]Greenwood, A. Circuit-breakers for Meshed Multiterminal HVDC System[R]. Paris: CIGRE,1997.
    [46]Greiner C J, Langeland T, Solvik J, et al. Availability Evaluation of Multi-Terminal DC Networks with DC Circuit Breakers[C]//IEEE Trondheim PowerTech. Trondheim:19-23 June 2011.
    [47]Jovcic D, Van Hertem D, Linden K, et al. Feasibility of DC Transmission Networks[C]//the 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies. Manchester:5-7 December 2011.
    [48]Jurgen Hafner, Bjorn Jacobson. Proactive Hybrid HVDC Breakers-A key innovation for reliable HVDC grids[C]//the Electric Power System of the Future-Integrating Supergrids and Microgrids International Symposium. Bologna, Italy:CIGRE,13-15 September 2011.
    [49]Erik Koldby, Mats Hyttinen. Challenges on the Road to an Offshore HVDC Grid[C]// the Nordic Wind Power Conference. Bornholm, Denmark:10-11 September 2009.
    [50]王章启,何俊佳,邹积岩,等.电力开关技术[M].华中科技大学出版社,2003.
    [51]DC Switchgear[EB/OL]. Hawker Siddeley Switchgear, Whipp & Bourne. http://www. hss-ltd.com/assets/files/DC%20for%20Newnes%20Whipp%20%20Bourne%20co ntribution%202. pdf.
    [52]J. Shullaw, DC Power Circuit Breaker Basics[C/OL]//IEEE HVCB Subcommittee Meeting, Nashville, TN [2011,10,12]. http://www. ewh. ieee. org/soc/pes/switchgear/minutes/2011f/FllHVCBa3. pdf.
    [53]张力超.高压直流断路器自激振荡问题的研究[D].北.京:清华大学,1991.
    [54]Walter M M, Franck C M. Influence of Arc Chamber Parameters on Passive Resonance Circuit of HVDC Circuit Breakers[C]//the Electric Power System of the Future Integrating Supergrids and Microgrids Internationa] Symposium. Bologna, Italy: CIGRE,13-15 September 2011.
    [55]Hara S, Hirose M, Hatano M, et al. Fault Protection of Metallic Return Circuit of KII Channel HVDC System[C]//the 7th International Conference on AC-DC Power Transmission,28-30 November 2001:132-137.
    [56]IPH Institute Ltd. Testing the commutation switching capacity of switchgear applied for high-voltage direct current transmission[R]. Berlin:IPH, CESI,2011.
    [57]Kempkes M, Roth I, Gaudreau M. Solid-state circuit breakers for Medium Voltage DC power[C]//Electric Ship Technologies Symposium (ESTS),2011 IEEE. IEEE,2011: 254-257.
    [58]EPRI PEAC Corporation. EPRI Family of Multi-Functional Low-Cost Solid-State Switchgear:Requirements Definition Phase[R]. Palo Alto, CA:EPRI,2005.
    [59]Zhou X. Electrical, Magnetic, Thermal Modeling and Analysis of a 5000A Solid-State Switch Module and Its Application as a DC Circuit Breaker[D]. Virginia Polytechnic Institute and State University,2005.
    [60]Meyer C, Kowal M, De Doncker R W. Circuit breaker concepts for future high-power DC-applications[C]//Industry Applications Conference,2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005. IEEE,2005,2:860-866.
    [61]Zyborski J, Czucha J, Sajnacki M. Thyristor circuit breaker for overcurrent protection of industrial dc power installations[C]//Proceedings of the Institution of Electrical Engineers. IET Digital Library,1976,123(7):685-688.
    [62]Dawson F P, Lansing L E, Dewan S B. A fast DC current breaker[J]. Industry Applications, IEEE Transactions on,1985(5):1176-1181.
    [63]Atmadji A M S. Direct current hybrid breakers:a design and its realization[J]. 2000.
    [64]Atmadji A M S, Sloot J G J. Hybrid switching:a review of current literature[C]//Energy Management and Power Delivery,1998. Proceedings of EMPD'98. 1998 International Conference on. IEEE,1998,2:683-688.
    [65]Anderson J M, Carroll J J. Applicability of a Vacuum Interrupter as the Basic Switch Element in HVDC Breakers[J]. IEEE Transactions on Power Apparatus and Systems,1978, 97(5):1893-1900.
    [66]Shimada R, Tani K, Tamura S, et al. Development of high current dc circuit breaker for large tokamak device[C]//Fusion technology 1978.1979,1:401-406.
    [67]Tamura S, Shimada R, Kito Y, et al. Parallel interruption of heavy direct current by vacuum circuit breakers[J]. Power Apparatus and Systems, IEEE Transactions on, 1980(3):1119-1129.
    [68]Yanabu S, Satoh Y, Tamagawa T, et al. Ten years'experience in axial magnetic field-type vacuum interrupters[J]. Power Delivery, IEEE Transactions on,1986, 1 (4):202-208.
    [69]KANAI Yasuharu. Power System for Tokamak Fusion Experiments DC Circuit Breaker Systems for the Ohmic Heating Coil Power Supply[J]. Journal of plasma and fusion research,1997,73(4):434-438.
    [70]Bareyt B. A 170-kA DC Circuit Breaker for the Quench Protection of the Central Solenoid Coil of the ITER Tokamak [J]. Fusion Engineering and Design,2001, 54(1):49-61.
    [71]昆野康二,清水直樹,菅野朋人.電気铁道变電所用新形直流高速度遮断器の性能検證[J].富士峙報,1999,72(2):118-121.
    [72]Niwa Y, Matsuzaki J, Yokokura K. the Basic Investigation of the High-speed VCB and Its application for the DC Power System[C]//the 23rd International Symposium on Discharges and Electrical Insulation in Vacuum. Bucharest:15-19 September 2008:107-112.
    [73]Premerlani W J. Forced Commutation Performance of Vaccum Switches for HVDC Breaker Application[J]. IEEE Transactions on Power Apparatus and Systems,1982, 101(8):2721-2727.
    [74]郭增基,刘彦琴,郭祥玉.高压交流真空断路器开断直流电路的试验[J].高压电器,1996(3):7-11.
    [75]Hiromi Odaka, Masataka Yamada, Ryohei Sakuma, et al. DC Interruption Characteristic of Vacuum Circuit Breaker[J]. Electrical Engineering in Japan,2007, 161(1):687-694.
    [76]王景,武建文.纵向磁场下中频真空电弧的实验研究[J].中国电机工程学报,2009,29(25):126-132.
    [77]Shimada R, Tani K, Kishimoto H, et al. Analysis and full-scale test of DC circuit breaker for tokamak device JT-60[J]. Electrical Engineering in Japan,1979,99(6): 70-80.
    [78]Senda T, Tamagawa T, Higuchi K, et al. Development of HVDC circuit breaker based on hybrid interruption scheme[J]. Power Apparatus and Systems, IEEE Transactions on,1984(3):545-552.
    [79]郭增基.人工过零法开断电路的参数分析[J].高压电器,1992,2:7-9.
    [80]林莘.现代高压电器技术[M].机械工业出版社,2002.
    [81]王季梅.真空开关技术与应用[M].机械工业出版社,2008.
    [82]Rich J A, Prescott L E, Cobine J D. Anode Phenomena in Metal-Vapor Arcs at High Currents[J]. Journal of Applied Physics,1971,42(2):587-601.
    [83]王季梅.真空电弧理论研究及其测试[M].西安交通大学出版社,1993,
    [84]Schade E, Shmelev D. Numerical simulation of high-current vacuum arcs in external magnetic fields taking into account essential anode evaporation[C]//International Symposium on Discharges and Electrical Insulation in Vacuum.2004.
    [85]Landau L D, Lifshitz EM. Fluid Mechanics, Vol.6[J]. Course of Theoretical Physics, 1987:227-229.
    [86]Boxman R L, Goldsmith S. Model of the anode region in a uniform multi-cathode-spot vacuum arc[J]. Journal of applied physics,1983,54(2):592-602.
    [87]Boxman R L, Goldsmith S, Izraeli I, et al. A model of the multicathode-spot vacuum arc[J]. Plasma Science, IEEE Transactions on,1983,11(3):138-145.
    [88]Schade E, Dullni E. Recovery of breakdown strength of a vacuum interrupter after extinction of high currents[J]. Dielectrics and Electrical Insulation, IEEE Transactions on,2002,9(2):207-215.
    [89]Rich J A, Farrall G A. Vacuum arc recovery phenomena[J]. Proceedings of the IEEE, 1964,52(11):1293-1301.
    [90]Childs S E, Greenwood A N, Sullivan J S. Events associated with zero current passage during the rapid commutation of a vacuum arc[J]. Plasma Science, IEEE Transactions on,1983,11(3):181-188.
    [91]Paul B J. Calculation of eddy-current-induced magnetic fields in vacuum interrupters with axial magnetic field contacts[J]. Magnetics, IEEE Transactions on,1988,24(5):2204-2214.
    [92]Stoving P N, Bestel E F. Finite element analysis of AMF vacuum contacts[C]//Discharges and Electrical Insulation in Vacuum,1998. Proceedings ISDEIV. XVTIIth International Symposium on. IEEE,1998,2:522-529.
    [93]Fink H, Heimbach M, Shang W. Vacuum interrupters with axial magnetic field contacts based on bipolar and quadrupolar design[J]. Plasma Science, IEEE Transactions on, 2001,29(5):738-743.
    [94]Shi Z, Jia S, Fu J, et al. Analysis of electrode for vacuum interrupters with nonuniform axial magnetic field[C]//Power System Technology,2002. Proceedings. PowerCon 2002. International Conference on. IEEE,2002,3:1615-1618.
    [95]刘志远,王仲奕,王季梅,等.杯状纵磁触头纵向磁场滞后时间研究[J].高压电器,2004,40(2):87-90.
    [96]Jing W, Jianwen W, LiyingZ. Properties of intermediate-frequency vacuum arc under axial magnetic field[J]. Plasma Science, IEEE Transactions on,2009,37(8): 1477-1483.
    [97]Benfatto I, Maschio A, Manganaro S. DC breaking tests up to 55 kA in a single vacuum interrupter[J]. Power Delivery, IEEE Transactions on,1988,3(4):1732-1738.
    [98]Bellina F, Bettini P, Campostrini P, et al. Design, construction and operation of the 66 kA life test facility for the 1TER magnet protection vacuum circuit breakers[C]//Fusion Engineering,1997.17th IEEE/NPSS Symposium. IEEE,1997,2: 1137-1140.
    [99]Bonicelli T, De Lorenzi A, Hrabal D, et al. The European development of a full scale switching unit for the ITER switching and discharging networks[J]. Fusion engineering and design,2005,75:193-200.
    [100]韩旻,邹晓兵,张贵新.脉冲功率技术基础[M].清华大学出版社,2010.
    [101]中国国际标准化委员会.GB/T 11024.1-2010标称电压1000V以上交流电流系统用并联电容器第1部分:总则[S].北京:中国标准出版社,2010.
    [102]董恩源.基于电子操动的快速直流断路器的研究[D].大连理工大学,2004.
    [103]Koyama K, Sasao H, Maruyama N, et al. Development of the High Speed Switch and Its Application[C]//Industry Applications Conference, the 33rd IAS Annual Meeting. St. Louis, MO, USA:IEEE,12-15 October 1998:2321-2328.
    [104]娄杰,李庆民,孙庆森,等.快速电磁推力机构的动态特性仿真与优化设计[J].中国电机工程学报,2005,25(16):23-29.
    [105]董恩源,李博,邹积岩.超高速斥力机构与永磁机构的实验性能对比分析[J].高压电器,2007,43(2):125-126.
    [106]王子建,何俊佳,尹小根,等.电磁斥力机构的动力学特性仿真与实验研究[C]/第一届电器装备及其智能化学术会议论文集.西安:西安交通大学电力设备电气绝缘国家重点实验室,2007:124-131.
    [107]史宗谦,贾申利,朱天胜,等.真空直流断路器高速操动机构的研究[J].高压电器,2010,46(3):18-22.
    [108]张广军.机器视觉[M].科学出版社,2005.
    [109]黄瑜珑,王静君,徐国政,等.配永磁机构真空断路器运动特性控制技术的研究[J].高压电器,2005,41(5):321-323.
    [110]谢桢,叶志浩,吕昊.基于直流区域配电的舰船综合电力系统智能保护方式研究[J].船电技术,2009,29(1):56-60.
    [111]马伟明,吴昊,单潮龙,等.船舶综合电力系统的电制[C]//中国电工技术学会2004年(第一届)电工技术前沿问题学术论坛.北京:中国电工技术学会,2004:124-127.
    [112]Chung I Y, Liu W, Andrus M, et al. Integration of a bi-directional dc-dc converter model into a large-scale system simulation of a shipboard MVDC power system[C]//Electric Ship Technologies Symposium,2009. ESTS 2009. IEEE. IEEE,2009: 318-325.
    [113]付立军,陈波,叶志浩.直流网状网络短路电流计算[J].高电压技术,2008,34(8):1731-1736.
    [114]IEEE Recommended Practice for 1 kV to 35 kV Medium-Voltage DC Power Systems on Ships. IEEE Std 1709TM—2010 [S]// Petroleum and Chemical Industry committee. New York: The institute of Electrical and Electronics Engineering, 2010.
    [115]DC surge arresters for rolling stock. JIS E 5003-2004 [S]// Japan Association of Rolling Stock Industries, Japanese Standards Association. 2004.
    [116]Surge arrester MWK [EB/OL]. ABB Inc http://www05.abb.com/global/scot/scot245.nsf/veritydisplay/520369b239b393f5cl2 57aad0056fe94/$file/ABB_lHC0075865-revAA_EN_Surge%20arrester%20MWK. pdf.
    [117]Railway applications, fixed installations, dc switchgear, part 2: dc circuit-breakers. JIS E 2501-2-2010 [s] // Railway Electrical Engineering Association of Japan, Japanese Standards Association. 2010.
    [118]Sheng B. A synthetic test circuit for current switching tests of HVDC circuit breakers[C]//Transmission and Distribution Conference and Exposition, 2008. T&D. IEEE/PES. IEEE, 2008: 1-4.
    [119]Voshall R E, Lee A. Capacitor Energy Storage Synthetic Testing of HVDC Circuit Breakers[J]. Power Delivery, IEEE Transactions on, 1986, 1(1): 185-190.
    [120]建设5kV直流试验系统项目可行性分析报告[EB/OL].苏州电器科学研究院股份有限公司,2012.http://app.finance.ifeng.com/data/stock/ggzw.php?id=14007856&symbol=300215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700