用户名: 密码: 验证码:
纯电动汽车动力系统参数匹配及整车控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机、环境污染以及温室效应等问题的日益严重,对汽车行业提出了更高的节能减排要求,除了进一步对传统汽车进行技术创新提高节能减排效果外,发展新能源汽车已成汽车行业变革的必然趋势。纯电动汽车由于具有较大的节能环保潜力并且更易于产业化,因而受到了世界范围内的广泛关注。各国政府及汽车企业均已将纯电动汽车产业化作为其近期的发展目标,这同时也对纯电动汽车技术水平以及整车性能的提高提出了更为急切的实际需求。
     纯电动汽车整车技术及性能水平的提高需要整车厂及零部件供应企业的共同协作发挥各自的技术和产业优势。动力系统零部件供应企业应进一步提升动力系统部件的技术研发和制造工艺水平;整车企业则需依托现有的产品及技术平台,建立纯电动汽车关键技术研发体系,完成整车及动力总成部件的系统集成,开发并完善整车控制技术,最大限度发挥纯电动汽车的性能潜力,包括动力性、经济性以及成本特性,扩大市场及用户接受度,提高纯电动汽车产品的市场竞争力,推动纯电动汽车的产业化。本文依托国家863计划项目《一汽全新结构小型纯电动轿车设计与技术开发》
     (No.2011AA11A219)、国际科技合作项目《全新结构小型纯电动轿车动力系统技术平台的合作研究》(No.2012DFA61010)以及吉林省科技厅项目《全新结构小型纯电动轿车整车控制系统关键技术研究》(No.20116002),与一汽技术中心紧密合作,开展纯电动汽车动力系统技术平台、动力系统参数匹配及优化以及一汽下一代纯电动汽车整车控制技术的研究,主要研究内容入下:
     1、以整车运动力学特性分析为基础,对纯电动汽车的整车性能需求及其主要影响因素进行了研究。
     (1)从动力性、经济性以及成本特性三方面分析了纯电动汽车的性能需求以及相应的评价指标。着重提出将成本作为整车性能评价的关键指标之一,并提出将动力电池全生命周期续驶里程作为纯电动整车维护和使用成本的一项重要表征因素。
     (2)通过能耗敏感度的分析,明确了整车降重对提高整车经济性水平的重要性;并根据不同行驶工况的特征差异,提出以多工况加权平均作为整车经济性评价的基础;分析了两档变速器型式应用于纯电动汽车的优势,确定将两档作为变速器匹配的基本原则。
     通过对整车性能需求及影响因素的分析,为纯电动汽车性能优化提出了可行的方向和优化目标。
     2、通过机理分析和试验研究相结合的方式系统性地研究了纯电动汽车两大动力总成—电机和电池的部件特性及规律。
     (1)从车用永磁同步电机工作原理出发,研究了电机系统特征参数与系统特性以及整车性能之间的内在联系,包括动力电池电压对电机输出功率的影响,基速点变化对加速功率需求的影响,峰值转矩对电机系统质量的影响以及通过关键特征参数实现电机效率及分布区间的等效估算等。
     (2)通过对目标动力电池样品的试验研究,确定了与整车性能密切相关的车载动力电池特性的主要影响因素,分别研究了动力电池的开路电压、容量特性、倍率放电特性、内阻特性、能量效率特性以及循环寿命特性等的特性规律。
     通过对动力系统部件特性的研究,建立起纯电动整车与动力系统部件之间的桥梁纽带,有利于从整车角度对动力系统部件提出更为切实可行的技术需求,并为整车动力系统建模及性能优化提供更准确的数据支持和技术基础。
     3、针对纯电动汽车动力系统参数匹配技术进行了研究,以提升整车性能潜力为目标,完成对目标纯电动车型动力系统参数的匹配设计和优化,并进行了对比仿真分析。
     (1)将整备质量作为整车经济性和成本特性的关键表征因素,提出“整备质量最小”手动参数整定优化方案,以动力性指标为切入点,着重考虑单次续驶里程和全生命周期续驶里程的约束调节作用,通过手动参数循环整定的方式实现整车降重的匹配目标,该方案无需建立复杂的系统模型,通过较少的工作量即可实现对电机电池系统关键特征参数的匹配,基本满足整车经济性和成本特性的要求。
     (2)手动参数循环整定方案并未充分考虑实际行驶工况下的动力系统综合效率对整车性能的影响,针对这一问题,提出动力系统参数“全局优化法”,以经济性指标和整备质量作为综合优化目标,以动力性为约束条件,建立优化软件和纯电动整车性能仿真软件相联合的参数优化机制,对动力系统部件参数进行综合寻优操作,实现动力系统参数的全局优化,尽可能发挥动力系统参数匹配对整车性能提升的潜力。
     (3)在整车性能仿真软件平台上进行了优化前后车型参数的仿真对比,仿真结果表明,整备质量最小手动参数整定优化方案能够有效实现整车降重的基本要求,而全局优化方法则能够在此基础上进一步降低整车能耗水平,提升经济性潜力。
     针对目标车型动力系统参数的优化满足了在保证动力性的前提下实现整车降重及经济性水平提高的整车设计目标和要求。
     4、针对纯电动汽车的结构特点以及整车控制系统产品的开发目标,建立了包括动力模式、经济模式以及跛行模式的控制软件结构,并基于动力模式以及经济模式开发了基于基准转矩MAP加模糊转矩补偿的转矩控制方案。
     (1)动力模式下以突出整车动力性为目标,通过提高基准转矩对加速踏板的负荷系数,加大转矩补偿力度,并加入急加速意图识别和灵敏性更高的转矩控制策略,能够有效提升整车的动力性表现。
     (2)经济模式下则侧重整车经济性能表现,降低基准转矩MAP以减小相同加速踏板开度下的输出功率以及对电池的放电倍率需求,提高电池放电能量效率,延长续驶里程;另外,针对驾驶员的不同加速需求程度,在基准转矩MAP基础上予以适当的转矩补偿,在确保经济性的同时兼具了一定的驾驶性能考虑,提高驾驶感觉,能够增强经济模式的实用性。
     (3)针对电机过温和电池欠压等未上升至故障级别的异常现象,开发了跛行模式转矩约束控制策略,在避免对动力系统部件造成不可逆损伤的前提下,使车辆具备跛行回家的功能,提高纯电动整车对异常现象的应对处理能力。
     通过对整车控制策略的研究及开发,丰富了纯电动整车的控制功能,注重控制效果的提升,实现了控制系统开发目标要求。
     5、以dSPACE为快速控制原型,进行了目标车型控制策略的代码转化和参数调试,并在转毂试验台上完成了实车转矩控制和性能测试试验。着重验证了各控制模式下的控制功能实现及实际控制效果,试验结果表明各控制功能得以切实体现,符合预期的设计意图,整车性能测试结果满足整车的设计指标要求,验证了所开发控制策略的有效性。
The increasing severity of energy crisis, environmental pollution and greenhouse effecthas put forward higher requirements for energy-saving and emission reduction to theautomobile industry. In addition to further technological innovation to improve theenergy-saving effect of traditional automotive, the development of new energy vehicles hasbecome an inevitable trend of automobile industry reform. Pure Electric Vehicle (PEV) hasbeen widespread concern in the whole world because of its great potential for energy-savingand environmental protection, and easier industrialization. Governments and autocompanies have taken the industrialization of PEV as the recent development goal, whichsimultaneously puts forward more urgent and actual requirements to improve thetechnology level as well as the vehicle performance of PEV.
     The improvement of technology and performance of pure electric vehicle requires thecollaboration of OEMs and component suppliers, and they should fully play their respectivetechnical and industrial advantages. The component suppliers should further enhance theircomponents· level of technology R&D, production and manufacturing. And the OEMsshould establish a key technology R&D system of PEV relying on the existing product andtechnology platform, complete the integration of vehicle and powertrain components,develop and perfect vehicle control technology to play the full role of vehicle performanceincluding power performance, economy performance, and cost behavior, so to expand themarket and user acceptance of PEV and promote the industrialization.
     Relying on the requirements of the863Program The Design and Technical Development of FAW New Structure Small Pure Electric Vehicleμ (No.2011AA11A219),the International Science and Technology Cooperation Project Collaborative Research onPowertrain Technology Platform of New Structure Small Pure Electric Vehicleμ (No.2012DFA61010), and the Technology Development Plan of Jilin Province Research onKey Technology of Vehicle Control System for New Structure Small Electric Vehicleμ (No.20116002), and relying on the close cooperation with China FAW Group Corporation R&DCenter, this paper carries out the research on powertrain technology platform, powertrainparameters design and optimization, and FAW next generation PEV control technology. Themain contents of this paper are as follows.
     1. The vehicle performance requirements and their main influencing factors areresearched based on the analysis of the movement mechanical characteristics.
     (1). Analyze the vehicle performance requirements and the corresponding evaluationindexes from the three aspects of power, economy and cost characteristics. The cost ishighlighted as one of the key indicators of performance evaluation, and the driving rangewithin battery life cycle is taken as an important indicator of maintenance and operationcost of PEV.
     (2). The importance of reducing automotive weight to improve vehicle economy levelsis cleared by the energy consumption sensitivity analysis. And the weighted average ofmultiple driving cycles is taken as the basis of economy evaluation. Then analyze theadvantages of using two speed transmission in PEV, and take two speed as the basicprinciple of transmission selection.
     Put forward the feasible direction and target for the vehicle performance optimization bythe analysis of the performance requirements and the corresponding influencing factors.
     2. Systematically research the characteristics and laws of the two major powertraincomponents (electric motors and power batteries) used in PEV by combining mechanismanalysis and experimental research.
     (1). Based on the working principle of Permanent Magnet Synchronous Motor used invehicle, research the internal relations between the feature parameters and componentcharacteristics of motor system and the vehicle performance, including the impact of batteryvoltage to the motor output power, the impact of motor base speed to the accelerating powerdemand of vehicle, the impact of peak torque to the quality of the motor system, and theequivalent estimation of motor efficiency and distribution range using key feasureparameters, and etc.
     (2). By the experimental research to the samples of the target battery, clear the maininfluencing factors of power battery characteristics which are closely related to the vehicleperformance, and research the characteristic laws of the open circuit voltage, the capacitycharacteristics, the rate discharge characteristics, the internal resistance characteristics, theenergy efficiency characteristics and the cycle life characteristics.
     Through the characteristics research of the powertrain components, establish the tie andbridge between PEV and powertrain components, conductive to put forward more practicaltechnology demands to the powertrain components from the point of vehicle, and providemore accurate data support and technology foundations for powertrain system modeling andperformance optimization.
     3. Research the powertrain parameters design technology of PEV, take the improvementof vehicle performance potential as the design target, complete the powertrain parametersdesign and optimization for the target vehicle, and carry out the simulation analysis.
     (1). Take the vehicle curb weight as the key representational factor of economy and costcharacteristics and put forward the minimum of vehicle curb weightμ manual parameterstuning program which takes the power performance indexes as the entry point and takes thesingle driving range and full life-cycle driving range as the restriction and adjustmentfactors, and realizes weight reduction target by manual tuning of powertrain parameters.This program doesn·t have to create complex system models and only needs less workload to realize the key feature parameters design to meet the requirement of economyperformance and cost characteristics of PEV.
     (2). Because of the influences of the overall efficiency of powertrain systems in the realdriving cycle on vehicle performance are not fully considered in the manual parameterstuning program, a global optimization method· for powertrain parameters is proposed,which takes the economic indicators and vehicle curb weight as the comprehensiveoptimization goals, and power performance as constraint, to realize the global optimizationof the powertrain parameters by establishing the optimization mechanism that combinedoptimization software and electric vehicle performance simulation software, maximizes thepotential to enhance the vehicle performance from powertrain parameters design.
     (3). Simulation comparison was carried out in the vehicle performance simulationplatform with the vehicle parameters before and after optimization, the results showed thatthe curb weight minimum manual parameter tuning optimization scheme could effectivelyachieve the basic requirements of the vehicle weight reduction, and on this basis the globaloptimization method could further reduce vehicle energy consumption level, and enhancethe economy potential.
     The optimization to the powertrain parameters of target vehicle can realize the expecteddesign goals and requirements that reduce the vehicle curb weight and improve theeconomy performance on the premise of ensuring the power performance.
     4. According to the structural characteristics of PEV and the development goal of thevehicle control system products, determine the vehicle control system software frameworkconsists of Power Mode, Economic Mode and Limp-home Mode, and develop a torquecontrol scheme of Ref-Torque MAP plus Fuzzy Torque Compensation based on the PowerMode and Eco Mode.
     (1). In Power Mode, take highlighting the vehicle power performance as the goal. Byincreasing the accelerator pedal load coefficient in the Ref-Torque MAP, increasing the torque compensation, and introducing hard acceleration intension recognition and torquecontrol strategy with higher sensitivity to effectively improve the vehicle's powerperformance.
     (2). In the Eco Mode, appropriately reduce the amplitude of Ref-Torque MAP in orderto reduce the demand on the output power and discharge rate of the power battery whenunder the same accelerate pedal position, to improve the energy efficiency, and to extend thedriving range. At the same time, for the different accelerate demand of the driver, provideappropriate compensation torque to the Ref-Torque MAP, to consider the basic drivability,and enhance the driving experience and the practicality of the Eco Mode.
     (3). Develop the torque constraint control strategy in allusion to the abnormalphenomena which have not evolved to the stoppage fault such as motor over-temperatureand power battery under-voltage, to make the PEV have limp home function on the premiseof avoiding irreversible damage to the powertrain components, and improve the PEV·scapacity of processing the abnormal phenomena.
     Develop the vehicle control strategy to rich the control functions, enhance the controleffect, and meet the objectives and requirements of vehicle control system.
     5. Taking dSPACE as the rapid control prototype, code transformation and parameterstesting were carried out to the target vehicle·s control strategy, and then the real vehicletorque control and performance testing experiments were completed on the roler bench,focusing on verification of control functions·realization and actual control effect under eachcontrol mode. The test results demonstrated the realization of each control function, andshowed the effectiveness of the control strategy developed.
引文
[1]王军方,丁焰,汤大钢.机动车污染防治政策与管理[J].环境保护,2011(24):14-17.
    [2]盂庆云.关于氢能在未来交通领域的应用和发展方向的思考[J].中国新能源,2010(001):1-3.
    [3]工信部数据, http://www.miit.gov.cn/n11293472/index.html.
    [4]陈清泉,孙立清.电动汽车的现状和发展趋势[J].科技导报,2005,23(4):24-28.
    [5]王宇宁.国外电动汽车的发展战略[J].汽车工业研究,2005(9):35-40.
    [6] Chan C C. The state of the art of electric and hybrid vehicles[J]. Proceedings of the IEEE,2002,90(2):247-275.
    [7]孙逢春.德国和法国电动汽车的现状和发展[J].科技潮,2004(8):38-39.
    [8]张平,胡安荣.我国电动汽车产业发展路线图研究[J].现代经济探讨,2012,10:007.
    [9]边耀璋.汽车新能源技术[M].人民交通出版,2003.
    [10] Gasworth S, Tankala T, Kancharla A, et al. Improved Battery Performance in Electric Vehicles viaReduced Glazing Thermal Conductivity[J]. SAE Technical Paper,2011:01-1341.
    [11]邓伟文.电气化与智能化技术——未来汽车的驱动力[J].汽车安全与节能学报,2010,1(003):179-189.
    [12]杨华,孙振东,刘玉光.纯电动汽车关键技术研究[J].北京汽车,2007,6:24-26.
    [13]姬芬竹,高峰,周荣.纯电动汽车传动系参数匹配的研究[J].汽车科技,2005(006):22-25.
    [14]杨易,江清华,周兵,等.纯电动汽车最佳动力性换挡规律研究[J].汽车技术,2011(3):1-5.
    [15]姬芬竹,高峰,吴志新.纯电动汽车传动系参数的区间优化方法[J].农业机械学报,2006,37(3):5-7.
    [16]黄康,罗时帅,王富雷.纯电动汽车动力系统传动比优化设计[J].中国机械工程,2011,22(5):625-629.
    [17]周兵,江清华,杨易,等.基于行驶工况的纯电动汽车比能耗分析及传动比优化[J].中国机械工程,2011,22(10):1236-1241.
    [18]周兵,江清华,杨易.两挡变速器纯电动汽车动力性经济性双目标的传动比优化[J].汽车工程,2011(9):792-797.
    [19]周保华.电动汽车传动系统参数设计及换挡控制研究[D].重庆:重庆大学,2010.
    [20]秦大同,周保华,胡明辉,等.两挡电动汽车动力传动系统的参数设计[J].重庆大学学报:自然科学版,2011,34(1):1-6.
    [21]汪学明.纯电动汽车传动系统参数优化的仿真研究[D].长春:吉林大学,2009.
    [22]杜发荣,吴志新.电动汽车传动系统参数设计和续驶里程研究[J].农业机械学报,2008(11).
    [23]姜辉.电动汽车传动系统的匹配及优化[D].哈尔滨工业大学,2006.
    [24]朱正礼,殷承良,张建武.基于遗传算法的纯电动轿车动力总成参数优化[J].上海交通大学学报,2004,38(11).
    [25]田德文.微型纯电动汽车电驱动系统的基础研究[D].哈尔滨工业大学,2006.
    [26] M. Kamachi, H. Miyamoto, and Y. Sano. Development of Power Management System forElectric Vehicle i-MiEVμ. The2010International Power Electronics Conference.2949-2955.
    [27] Shinsuke Nakazawa, NISSAN MOTOR CO., LTD. The Nissan LEAF electric powertrain[J].32.Internationales Wiener Motorensymposium2011.
    [28]田毅.电动汽车运行状态识别及HEV控制策略研究[D].北京交通大学,2010.
    [29]张晔.电动汽车智能控制系统研究[D].长安:中南大学,2005.
    [30]付永恒.基于路况信息的混合动力汽车控制策略研究[D].北京交通大学,2011.
    [31]马晶晶.基于隐马尔可夫理论的驾驶意图辨识研究[D].长沙理工大学,2012.
    [32]王晓原,杨新月.基于决策树的驾驶行为决策机制研究[J].系统仿真学报,2008,20(2):415-419.
    [33] TOGAI K. Inexperienced Drivers· Behavior, and Control Technology that Adapts PowertrainBehavior to Drivers[J].
    [34] Sajith A H, Babu S N, Kumar V, et al. Optimisation of an Electric Drive Train for OnRoad·Electric Vehicle[J].2009.
    [35]刘吉顺,李骏,刘明辉,等.纯电动轿车整车控制策略开发与试验研究[J].第六届中国智能交通年会暨第七届国际节能与新能源汽车创新发展论坛优秀论文集(下册)——新能源汽车,2011.
    [36]王立国.纯电动客车动力总成控制策略研究[D].吉林大学,2009.
    [37]顾强.两档双离合器自动变速器的纯电动汽车传动系统协调控制技术研究[D].吉林大学,2012.
    [38]姜海斌.纯电动车整车控制策略及控制器的研究[D].上海交通大学,2010.
    [39]窦国伟,刘奋,程浩,等.纯电动轿车整车驱动控制策略开发实践[J].上海汽车,2010,5:002.
    [40]张毅.纯电动轿车动力总成控制系统的研究[D].上海:上海交通大学,2007.
    [41]候泽跃.纯电动汽车转矩控制策略的研究[J].中国高新技术企业,2012,237(30):12-14.
    [42]秦大同,周孟喜,胡明辉,胡建军,陈淑江.电动汽车的加速转矩补偿控制策略[J].公路交通科技,2012,29(5):146-151.
    [43]王佳,杨建中,蔡志标,等.基于模糊控制的纯电动轿车整车优化控制策略[J].汽车工程,2009,31(4):362-365.
    [44]华梦新.纯电动车整车控制策略的研究[D].哈尔滨:哈尔滨工业大学,2010.
    [45]万仁君.电动汽车分布式控制系统的总线调度与整车控制策略的研究[D].天津大学博士论文,2004.
    [46] Guzzella L, Sciarretta A. Vehicle propulsion systems: introduction to modeling andoptimization[M]. Springer Verlag,2005.
    [47] Hucho W, Sovran G. Aerodynamics of road vehicles[J]. Annual review of fluid mechanics,1993,25(1):485-537.
    [48]何洪文,余晓江,孙逢春,等.电动汽车电机驱动系统动力特性分析[J].中国电机工程学报,2006,26(6):136-140.
    [49] Larminie J, Lowry J. Electric vehicle technology explained[M]. Wiley,2012.
    [50]郭建龙,陈世元.电动汽车驱动用电机的选择[J].汽车电器,2007(001):9-12.
    [51]国家高技术研究发展计划(863计划)现代交通技术领域电动汽车关键技术与系统集成(一期)重大项目课题申请指南,2010.
    [52]张承宁.电动汽车电机驱动系统测试与评价情况报告[R].北京理工大学,国家电动车辆工程实验室,2009.
    [53] Meissner E, Richter G. Battery monitoring and electrical energy management: Precondition forfuture vehicle electric power systems[J]. Journal of power sources,2003,116(1):79-98.
    [54] Zhu Z Q, Howe D. Electrical machines and drives for electric, hybrid, and fuel cell vehicles[J].Proceedings of the IEEE,2007,95(4):746-765.
    [55] Zeraoulia M, Benbouzid M E H, Diallo D. Electric motor drive selection issues for HEVpropulsion systems: A comparative study[J]. Vehicular Technology, IEEE Transactions on,2006,55(6):1756-1764.
    [56] Husain I. Electric and hybrid vehicles: design fundamentals[M]. CRC PressI Llc,2010.
    [57] Gao D W, Mi C, Emadi A. Modeling and simulation of electric and hybrid vehicles[J].Proceedings of the IEEE,2007,95(4):729-745.
    [58] Fu Z X, Xiang J, Reynolds W C, et al. Vector control of an IPM synchronous machine capable offull range operations for hybrid electric vehicle application[C]//Industry Applications Conference,2003.38th IAS Annual Meeting. Conference Record of the. IEEE,2003,3:1443-1450.
    [59] Ira Bloom. Battery Testing and Life Estimation in the US[R]. US-China EV Initiative Workshop,Argonne National Laboratory,2011.
    [60] GB/T18385-2005,电动汽车动力性能试验方法[S].2005.
    [61] GB/T18386-2005,电动汽车能量消耗率和续驶里程试验方法[S].2005.
    [62] Guzzella L, Sciarretta A. Vehicle propulsion systems: introduction to modeling andoptimization[M]. Springer Verlag,2005.
    [63] Hayes J G, de Oliveira R P R, Vaughan S, et al. Simplified electric vehicle power train modelsand range estimation[C]//Vehicle Power and Propulsion Conference (VPPC),2011IEEE. IEEE,2011:1-5.
    [64] ADVISOR,2002. www.ctts.nrel.gov/analysis.
    [65] Brundell-Freij K, Ericsson E. Influence of street characteristics, driver category and carperformance on urban driving patterns[J]. Transportation Research Part D: Transport andEnvironment,2005,10(3):213-229.
    [66] Manfred Mischke.汽车动力学[M].北京:清华大学出版社,2009.
    [67] Goetz M, Levesley M C, Crolla D A. Integrated powertrain control of gearshifts on twin clutchtransmissions[J]. SAE paper,2004:01-1637.
    [68] Ehsani M, Gao Y, Emadi A. Modern electric, hybrid electric, and fuel cell vehicles: fundamentals,theory, and design[M]. CRC,2009.
    [69] Husani I. Electric and hybrid vehicles[J].2003.
    [70] Miller J M. Propulsion systems for hybrid vehicles[M]. Peter Peregrinus Limited,2004.
    [71]王星刚.纯电动汽车驱动系统优化及分析策略[J].汽车与配件,2012(50):30-31.
    [72] Wicke V, Brace C J, Vaughan N D. The potential for simulation of driveability of CVT vehicles[J].SAE transactions,2000,109(6):1205-1210.
    [73] Tenberge P. Efficiency of chain-CVTs at constant and variable ratio: a new mathematical modelfor a very fast calculation of chain forces, clamping forces, clamping ratio, slip, andefficiency[C]//International Continuously Variable and Hybrid Transmission Congress, SanFrancisco.2004:23-25.
    [74] Srnik J, Pfeiffer F. Dynamics of CVT chain drives[J]. International journal of vehicle design,1999,22(1):54-72.
    [75] Sorniotti A, Subramanyan S, Turner A, et al. Selection of the optimal gearbox layout for anelectric vehicle[J]. SAE International Journal of Engines,2011,4(1):1267-1280.
    [76]舍弗勒公司, http://www.schaeffler.com/.
    [77]天津大学电气工程系课件,永磁同步电机工作原理及控制策略[R].2012.
    [78] Seref Soylu, Electric Vehicles-Modeling and simulations[M]. Intech Web.org,2011.
    [79] Casanellas F. Losses in PWM inverters using IGBTs[C]//Electric Power Applications, IEEProceedings-. IET,1994,141(5):235-239.
    [80] Xu L, Zhang Y, Guven M K. A new method to optimize q-axis voltage for deep flux weakeningcontrol of IPM machines based on single current regulator[C]//Electrical Machines and Systems,2008. ICEMS2008. International Conference on. IEEE,2008:2750-2754.
    [81]徐性怡.电动汽车用电机控制器的设计方法与实践[R].上海大郡自动化系统工程有限公司.2009.
    [82]徐衍亮.电动汽车用永磁同步电动机及其驱动系统研究[D].沈阳工业大学博士学位论文,2001.
    [83]罗苏华.电动车用PMSM驱动系统研究[D].哈尔滨工业大学,2011.
    [84] Thompson M G, Hoff C J, Gover J E. A model to estimate the effect of DC bus voltage on HEVpowertrain efficiency[C]//Vehicle Power and Propulsion Conference (VPPC),2010IEEE. IEEE,2010:1-5.
    [85] Ta C M, Chakraborty C, Hori Y. Efficiency maximization of induction motor drives for electricvehicles based on actual measurement of input power[C]//Industrial Electronics Society,2001.IECON'01. The27th Annual Conference of the IEEE. IEEE,2001,3:1692-1697.
    [86] Zeraoulia M, Benbouzid M E H, Diallo D. Electric motor drive selection issues for HEVpropulsion systems: A comparative study[J]. Vehicular Technology, IEEE Transactions on,2006,55(6):1756-1764.
    [87]唐任远.现代永磁电机:理论与设计[M].机械工业出版社,1997.
    [88]简述永磁电机的体积与电磁转矩关系[R].2012.
    [89] Rahman Z, Butler K L, Ehsani M. Effect of extended-speed, constant-power operation of electricdrives on the design and performance of EV-HEV propulsion system[J]. Society of AutomotiveEngineers (SAE) Journal,2000.
    [90] Gao Y, Ehsani M. Parametric design of the traction motor and energy storage for series hybridoff-road and military vehicles[J]. Power Electronics, IEEE Transactions on,2006,21(3):749-755.
    [91] Finken T, Hameyer K. Design of electric motors for hybrid-and electric-vehicleapplications[C]//Int. Conf. Electrical Machines Syst.2009.
    [92]王海峰.纯电动汽车锂动力电池能量状态估算算法研究[D].吉林大学,2012.
    [93]蒋新华.锂离子电池组应用电路研究[D].中国科学院研究生院(上海微系统与信息技术研究所),2005.
    [94] Sun F, He H, Yu X. Power Battery Modeling Based on the Characteristic Field Theory[J]. SAETechnical Paper,2003:01-0091.
    [95] Joshi A, Ezzat H, Bucknor N, et al. Optimizing Battery Sizing and Vehicle Lightweighting for anExtended Range Electric Vehicle[J]. SAE Technical Paper,2011:01-1078.
    [96] Moawad A, Singh G, Hagspiel S, et al. Impact of real world drive cycles on PHEV fuel efficiencyand cost for different powertrain and battery characteristics[C]//EVS24International Battery,Hybrid, and Fuel Cell Electric Vehicle Symposium, Stavanger, Norway.2009.
    [97] Hellgren J. Life cycle cost analysis of a car, a city bus and an intercity bus powertrain for year2005and2020[J]. Energy policy,2007,35(1):39-49.
    [98] QC/T743-2006,电动道路车辆用锂离子蓄电池[S].2006.
    [99]戴维,林登,托马斯B,等.电池手册(原著第三版)[J].电化学,13(3):348-348.
    [100] Thomas E V, Case H L, Doughty D H, et al. Accelerated power degradation of Li-ion cells[J].Journal of power sources,2003,124(1):254-260.
    [101]张宾,林成涛,陈全世.电动汽车用LiFePO4/C锂离子蓄电池性能[J].电源技术,2008,32(2):95-98.
    [102]桂长清,柳瑞华.蓄电池内阻与容量的关系[J].通信电源技术,2011,28(1):32-34.
    [103]徐玮,基于单电池寿命模型的电池一致性研究[D].上海,同济大学,2009.
    [104]郑敏信,齐铂金,吴红杰.锂离子动力电池组充放电动态特性建模[J].电池,2008,38(003):149-151.
    [105]魏五星,磷酸铁锂动力电池组性能测试与分析[D].武汉理工大学,2010.
    [106]桂长清.温度对LiFePO4锂离子动力电池的影响[J].电池,2011,41(2):88-91.
    [107]陈德兵,叶磊,杨杰.低温对纯电动汽车续驶里程的影响分析[J].客车技术与研究,2012(2):49-51.
    [108] MPower Solutions Ltd, http://www.mpoweruk.com/.
    [109]陈清泉,孙逢春.混合电动车辆基础[M].北京.北京理工大学出版社,2001,11.
    [110] Doerffel D, Sharkh S A. A critical review of using the Peukert equation for determining theremaining capacity of lead-acid and lithium-ion batteries[J]. Journal of power sources,2006,155(2):395-400.
    [111] Shen W X, Chan C C, Lo E W C, et al. Estimation of battery available capacity under variabledischarge currents[J]. Journal of power sources,2002,103(2):180-187.
    [112]仝猛,卢兰光,欧阳明高,等. Peukert方程的适用性分析及基于二阶段放电法的Peukert模型修正[J].机械工程学报,2010(010):121-125.
    [113]仝猛,邵静玥,卢兰光,等.基于二阶段放电试验的磷酸铁锂电池的Peukert模型[J].清华大学学报:自然科学版,2010(2):295-298.
    [114] Onda K, Ohshima T, Nakayama M, et al. Thermal behavior of small lithium-ion battery duringrapid charge and discharge cycles[J]. Journal of power sources,2006,158(1):535-542.
    [115] FreedomCAR电池试验手册FreedomCAR Battery Test Manual for Power-Assist HybridElectric Vehicles.INEEL, October,2003.
    [116]谷书华,王红芳,李荣福,等.锂离子电池LiCoO2正极的交流阻抗研究[J].郑州轻工业学院学报:自然科学版,2006,21(2):19-22.
    [117] MacNeil D D, Dahn J R. Can an electrolyte for lithium-ion batteries be too stable?[J]. Journal ofThe Electrochemical Society,2003,150(1): A21-A28.
    [118]任保福.大容量锂离子动力电池充放电过程热特性研究[D].北京交通大学,2012.
    [119]黄万友,程勇,王宏栋,等.纯电动汽车磷酸铁锂电池组放电效率模型[J].华中科技大学学报(自然科学版),2012,5:029.
    [120] Delucchi M A, Burke A, Lipman T, et al. Electric and gasoline vehicle lifecycle cost andenergy-use mode[M]. Davis: University of California Publications,2000:213-214.
    [121]曾曦.高容量18650锂离子电池的制备及容量循环衰减的研究[D].湖南大学,2007.
    [122] Ikeya T, Sawada N, Murakami J, et al. Multi-step constant-current charging method for an electricvehicle nickel/metal hydride battery with high-energy efficiency and long cycle life[J]. Journal ofpower sources,2002,105(1):6-12.
    [123]王雪非.基于工况仿真的锂动力电池寿命研究[D].哈尔滨理工大学,2011.
    [124]魏学哲,徐玮,沈丹.锂离子电池内阻辨识及其在寿命估计中的应用[J].电源技术,2009,33(3):217-220.
    [125] Takei K, Kumai K, Kobayashi Y, et al. Cycle life estimation of lithium secondary battery byextrapolation method and accelerated aging test[J]. Journal of power sources,2001,97:697-701.
    [126] Battery Testing and Life Estimation in the US,Ira Bloom,US-China EV Initiative Workshop,Argonne National Laboratory,August4-5,2011
    [127]陈晓丽,陈文强,曲毅.纯电动汽车驱动电机的设计[J].汽车与配件,2011,35:013.
    [128]张翔,赵韩,钱立军,等.电动汽车优化设计技术的研究[J].上海汽车,2004(006):26-30.
    [129]王杉.插电式串联混合动力客车参数匹配及控制策略研究[D].吉林大学,2009.
    [130] Xiaohua Z, Haitao M, Xing X, et al. Parameter design for power train and performancesimulation of electrical city bus[C]//Vehicle Power and Propulsion Conference,2008. VPPC'08.IEEE. IEEE,2008:1-5.
    [131] ZHU Z, YIN C, ZHANG J. Genetic Algorithm Based Optimization of Electric Vehicle PowertrainParameters[J]. Journal of Shanghai Jiaotong University,2004,11:030.
    [132] Hegazy O, Van Mierlo J. Particle Swarm Optimization for optimal powertrain component sizingand design of fuel cell hybrid electric vehicle[C]//Optimization of Electrical and ElectronicEquipment (OPTIM),201012th International Conference on. IEEE,2010:601-609.
    [133]龚纯,王正林.精通MATLAB最优化计算[M].电子工业出版社,2009.
    [134]史峰,王辉,郁磊,等. MATLAB智能算法30个案例分析[M].2011.
    [135]王望予,汽车设计[M].北京:机械工业出版社,2007.
    [136]李炳宇,萧蕴诗,吴启迪.种基于粒子群算法求解约束优化问题的混合算法[J].控制与决策,2004,19(7).
    [137]刘华蓥,林玉娥,王淑云.粒子群算法的改进及其在求解约束优化问题中的应用[J].吉林大学学报:理学版,2005,43(004):472-476.
    [138]张春慨,邵惠鹤.自适应乘子在工程优化问题中的应用[J].控制与决策,2001,16(6):669-672.
    [139] Sato Y, Ishikawa S, Okubo T, et al. Development of High Response Motor and Inverter Systemfor the Nissan LEAF Electric Vehicle[J]. SAE Technical Paper,2011:01-0350.
    [140] Kawamura H, Ito K, Karikomi T, et al. Highly-Responsive Acceleration Control for the NissanLEAF Electric Vehicle[J]. SAE Technical Paper,2011:01-0397.
    [141]王佳,杨建中,蔡志标,等.基于模糊控制的纯电动轿车整车优化控制策略[J].汽车工程,2009,31(4):362-365.
    [142]孙勇.智能控制理论及应用[J].中国科技博览,2011(29):622-622.
    [143] Choi J J. Fuzzy parameter adaption in neural systems. Proceedings of Internation Joint on NeuralNetworks,1992:232~235
    [144]金耀初,蒋静坪.最优模糊控制的两种设计方法[J].中国电机工程学报,1996,16(003):201-204.
    [145]李陶深,人工智能[M].重庆:重庆大学出版社,2002:233-271.
    [146] Goldberg D E. Genetic algorithms in search, optimization, and machine learning[J].1989.
    [147]顾峻,沈炯,陈来九.遗传算法对模糊控制的优化及其应用[J].东南大学学报,1998,28:109-119.
    [148] Ruspini E H. A new approach to clustering[J]. Information and control,1969,15(1):22-32.
    [149] Koprubasi K, Pezzini A, Bezaire B, et al. Application of Model-Based Design Techniques for theControl Development and Optimization of a Hybrid-Electric Vehicle[J]. SAE Technical Paper,2009:01-0143.
    [150]在SIMULINK里把模糊逻辑生成查寻表. http://foundy.blog.163.com/blog/static/2633834420100150439615.
    [151] Zhu Y, Hu H, Xu G, et al. Hardware-in-the-loop simulation of pure electric vehicle controlsystem[C]//Informatics in Control, Automation and Robotics,2009. CAR'09. International AsiaConference on. IEEE,2009:254-258.
    [152] Kamachi M, Miyamoto H, Yoshida H. Development of electric vehicle for on-road test[C]//Proc.8th International Symposium on Advanced Vehicle Control.2008:665-669.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700