用户名: 密码: 验证码:
乙醇/生物柴油燃烧过程试验研究与理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙醇和生物柴油作为柴油机的替代燃料,得到了越来越广泛的关注和应用。乙醇、生物柴油与柴油的组成、分子结构不同,理化特性存在差异。这些燃料的理化特性也会影响燃烧过程和燃烧产物。论文围绕含氧燃料和石化燃料的燃烧过程及其生成的颗粒物开展了研究工作,针对乙醇、生物柴油与柴油的组分和分子结构特点,采用分子杂化轨道理论,运用相似相溶和溶剂化观点,对生物柴油可以提高乙醇与柴油互溶的机理进行了解释;从极性作用力的角度,探讨了乙醇、生物柴油对柴油机橡胶燃油管的腐蚀机理。在含氧燃料燃烧过程的的研究中,采用同步辐射燃烧试验装置、预混燃烧器、柴油机台架装置,研究含氧燃料不同燃烧方式的燃烧速率、温度、产物,示功图等的变化规律;针对含氧燃料燃烧方式的不同,建立了仿真模型,研究含氧燃料燃烧过程中自由基的变化特征、中间产物的生成特性及含氧燃料中氧元素的迁移路径;开展了含氧燃料分子结构特征与燃烧产物形成机理的研究;采用扫描电镜和同步辐射小角X散射装置表征了乙醇和生物柴油燃烧颗粒物的几何尺寸和微区结构。主要结论如下:
     对不同温度、不同比例的乙醇在柴油中的溶解进行了试验研究,采用生物柴油做为助溶剂,探讨了生物柴油增大乙醇在柴油中的溶解机理,结果表明:生物柴油分子一方面与柴油分子中的烃分子通过范德华力作用结合,另一方面通过极性分子作用与乙醇分子结合,结果表明生物柴油具有两向亲和作用,可以增大乙醇在柴油中的溶解能力。
     对柴油机燃油供给系中主要材料了腈橡胶的腐蚀溶胀进行了研究,采用浸泡和电镜扫描的试验方法,考察了橡胶管在乙醇、生物柴油中浸泡672小时前后的质量、体积、硬度等参数的变化,拍摄了橡胶管内表面照片,并与柴油进行了对比,分析分子极性作用力在燃汕和橡胶中的作用过程。结果表明:含氧燃料对丁腈橡胶有腐蚀溶胀作用。乙醇的极性最强,对丁腈橡胶的腐蚀最为强烈,提出了燃料分子的极性力是造成含氧燃料腐蚀柴油机燃油橡胶管的观点。
     应用同步辐射燃烧试验、常温常压预混和柴油机台架的试验方法,研究了不同压力、不同当量比、不同掺混比乙醇、生物柴油的燃烧过程,并与燃用柴油的燃烧过程进行了比较;分析了添加乙醇、生物柴汕对柴油机燃油过程及产物的影响,通过试验研究得到:燃料和空气混合的方式不同,当量比不同,燃烧速率就有区别,乙醇可以增大乙醇/柴油燃烧速率;乙醇的预混燃烧外焰、中焰、内焰温度分别是扩散燃烧的1.8、1.5、1.96倍,乙醇、生物柴汕在柴油机上燃烧降低颗粒物的效果明显,对NOx的影响较小。
     运用层流预混火焰反应器模型,提出了从化学反应动力学角度,采用反应生成率和敏感性分析方法,考察了柴油、乙醇和生物柴油的主要反应路径、自由基和中间体的生成特性,重点研究了含氧燃料中O元素的迁移途径,探讨了物柴汕燃烧过程中甲酯基的裂解路径。结果农明:燃料燃烧产:物中烯烃的摩尔分数大于同类的烷烃和炔烃,提出了乙醇燃烧过程中,乙醇分子经过脱氢、裂解,最终生成H2O、CO的观点;也提出了大分子生物柴汕甲酯基在自由基的进攻下,不同位置失去氢原子转化为不同的甲醛基,进一步失去C2H4生成奇数碳和偶数碳的裂解产物,奇数碳甲酯基燃烧产物摩尔分数大于偶数碳甲酯基的观点。
     考察了不同含氧量混合燃料的HCCI燃烧,探讨了温度、自由基摩尔分数随含氧量的变化规律。研究农明:曲轴转角上止点附近,自由基迅速生成并快速消耗,反应放出大量的热,温度度迅速升高。随掺混含氧燃料比例的增大,缸内温度下降,自由基摩尔分数峰值依次后移。
     研究了乙醇和其同分异构体二甲醚的预混燃烧过程,确定了燃烧过程中乙醇和二甲醚的反应速率,烯烃、炔烃的关键生成反应,结合了乙醇和二甲醚的分子结构特点,确定了乙醇可以直接裂解生成C2H4,二甲醚先经过脱氢,碳氧键断裂,最终聚合为C2H4的衍生过程,对乙醇和二甲醚中影响C2H4的敏感性进行了详细的解释。
     通过分析生物柴油裂解的路径、芳香烃苯的形成过程,结合生物柴油分子的结构特点,提出了从化学动力学方面,考察生物柴油芳香烃物质形成过程的影响因素,探讨了生物柴油的含氧量、饱和度、碳链长度对苯的影响规律。
     采集了常温常压下的不同比例的乙醇/生物柴油燃烧颗粒物的样本,采用扫描电子显微镜、同步辐射小角X散射测量的方法,从电子密度属性方面探讨含氧燃料燃烧颗粒物的微区结构和几何尺寸,总结了颗粒物的变化规律。研究表明,柴油中添加含氧燃料,随含氧燃料的增加,燃烧颗粒物粒径变小,回转半径和平均半径减小,平均界面厚度减小。颗粒物的Porod曲线都呈负偏离,颗粒和分散介质间的界面模糊,存在界面层。
Ethanol and biodiesel, as alternative fuels of diesel engine, have been widely concerned and used. The composition and molecular structure of ethanol, biodiesel are different from diesel, leading the difference of physical and chemical properties which influence the combustion process and combustion products. In this paper, the combustion process and particulate matter(PM) of oxygenated fuel and fossil fuel have been studied. According to the characteristics of component and molecularstructure of ethanol, biodiesel, diesel, based on the theory of molecular hybrid orbital, similarity and intermiscibility, and solvation, the mechanism that biodiesel can improve the mutual solubility of ethanol and diesel was explained. Besides, the corrosion mechanism of rubber fuel tube of diesel engine in ethanol and biodiesel was explored from the perspective of polar force. Synchrotron radiation, premix burner and diesel engine in bench test were adopted in the study of combustion process. Changing laws of burning rate, temperature, combustion products and indicator diagram under different combustion mode were studied. According to different combustion modes, the simulation model was established to research free radical variation characteristic, producing characteristic of intermediate products and migration path of oxygen in combustion progress. The molecular structure of oxygenated fuels and formation mechanism combustion products were studied. SEM (scanning electron microscope) and synchrotron radiation small angle X-ray scattering were used to characterize the geometry size and PM micro-region structure of ethanol and biodiesel. The main conclusions are following:
     Solubility in diesel of ethanol with different proportion, at different temperature was tested. Biodiesel was used as cosolvent of ethanol and diesel, and the cosolvent mechanism was studied. Results showed that biodiesel molecule combined diesel molecule by Vad der Waals force on one hand, and combined ethanol molecule polar force on the other hand. Therefore, biodiesel molecule played a role as bidirectional affinity interaction to improve the solubility of ethanol in diesel.
     The corrosion and swelling performance of nitrile rubber which is the main material of diesel engine fuel injection system was studied by soak and SEM. Parameters like mass, volume and hardness before and after soaking in ethanol, biodiesel for672hours were studied. Inner surface of the rubber tube soaked in ethanol, biodiesel and diesel was photographed, and the action process of polar force in rubber was analyzed. Results showed that oxygenated fuels corroded and swelled nitrile rubber. Ethanol which had the strongest polar force corroded nitrile rubber most. Molecule polar force of oxygenated fuel was the reason that corroded rubber tube.
     The combustion process of ethanol, biodiesel, diesel under different pressure, different equivalence ratio and different blending ratio was studied, using the method of synchrotron radiation, normal pressure and temperature premixed and diesel engine bench test. The influence of ethanol, biodiesel in blends on combustion process and products was analyzed. Results showed that oil and gas mixing mode, equivalent ratio influenced the burned rate. Ethanol can improve the burning rate of ethanol/diesel. The ethanol premixed combustion temperature of outer flame, intermediate flame, and inner flame were respectively1.8,1.5and1.96times higher than diffusion combustion. Ethanol, biodiesel used in diesel engine can significantly reduce PM, but did influence NOX too much.
     Using laminar premixed flame reactor model, from the perspective of chemical reaction kinetics, the main reaction paths, free radicals and intermediate products producing characteristic of diesel, ethanol and biodiesel were studied by means of reaction rate and sensitivity analysis.The paper focused on the pathways of oxygen in oxygenated fuels to analyze the cracking paths of carbomethoxy in the combustion process of biodiesel. Results showed that the mole fraction of olefins was larger than kindred alkane and alkyne of combustion products. The point that ethanol generated into H2O, CO after dehydrogenation, cracking was proposed. The other point was also proposed that with the attack of free radicals, the biodiesel macromolecule would lose hydrogenatom at different positions and turn into different kinds of carbomethoxy, then lose C2H4further, turning into cracking products with odd and even carbon. And mole fraction of carbomethoxy with odd carbon was larger than carbomethoxy with even carbon.
     HCCI combustion of blends with different oxygen content was investigated. The variation law of temperature and free radicals were discussed. Results showed that free radicals were generated and consumed quickly near TDC, lots of heat was released and the temperature increased rapidly. With the increase of oxygenated fuel proportion, the in-cylinder temperature decreased, and the phase of peak mole fraction of radicals postponed.
     DME is the isomer of ethanol. The premixed combustion of ethanol and DME were studied to determine the reaction rate in the combustion process, and the key formation reaction of olefins and alkyne. According to the molecule structure characteristics of ethanol and DME, it was found that ethanol can be directly cracked into C2H4, while DME would firstly be dehydrogenized, then C-O bonds broken, and eventually polymerized into C2H4. A detail explanation about the influence caused by ethanol and DME on the, sensitivity of C2H4formation was given.
     After analyzing biodiesel cracking paths and formation process of aromatic hydrocarbon benzene, combining the biodiesel molecule structure, the influencing factors of formation process of biodiesel was proposed from the perspective of chemical kinetics. The influence law of oxygen content, saturation and carbon chain length of biodiesel on benzene formation were discussed.
     Examples of combustion particulate matter of ethanol/biodiesel with different proportional under normal pressure and temperature were collected. The geometry size and micro-region structure of combustion particulate matter of oxygenated fuels were studied from the perspective of electron density properties, by the method of SEM and synchrotron radiation small angle X-ray scattering, and got the variation law of particulate matter. Results showed that with the increase of oxygenated fuel proportion, the size of combustion particulate matter decreased, the gyration radius and the mean radius reduced and the average thickness of the interface lowered. The Porod curve of particulate matter was negative deflected, and the interface between particulate matter and dispersion medium was fuzzy, indicating that interface layers were existent.
引文
[1].汪孝宗.中国石油对外依存度超50%严重影响能源安全[N].中国经济周刊,2010-01-26.
    [2].中华人民共和国环境保护部.《中国机动车污染防治年报(2010年度)》[R].中国:环保部.2010.
    [3].中华人民共和国环境保护部.《中国机动车污染防治年报(2011年度)》[R].中国:环保部.2011.
    [4].中华人民共和国环境保护部.《中国机动车污染防治年报(2012年度)》[R].中国:环保部.2012.
    [5].陈绪平.柴油乙醇组合燃烧及其在发动机上应用的研究[D].天津:天津大学,2010.
    [6].中国国家标准化管理委员会,GB/T-20828-2007,柴油机燃料调合用生物柴油(BD100)[S].北京:中国标准出版社,2007.
    [7]. M. Pugazhvadivu, K. Jeyachandran. Investigations on the performance and exhaust emissions of a diesel engine using preheated waste frying oil as fuel[J]. Renewable Energy,2005,30:2189-2202.
    [8]. Thomas D. Durbin, David R. Cocker, Aniket A. Samant, et al. Regulated emissions from biodiesel fuels from on/off-road application[J].Atmosphere Environment,2007,(2):124-136.
    [9]. Merritt M.P., Ulmet V, McCormick R.L, et al. Regulated and unregulated exhaust emissions comparison for three tier non-road diesel engines operating on ethanol-diesel blends [C]// SAE Paper Detroit USA,2005-01-2193.2005.
    [10].马骏骏.基于燃料设计与管理的HCCI/DI分层复合燃烧的试验研究[D].上海:上海交通大学,2009.
    [11].Libin Ji, Xingcai Lu, Junjun Ma,et al.Experimental Study on Influencing Factors of iso-Octane Thermo-atmosphere Combustion in a Dual-Fuel Stratified Charge Compression Ignition (SCCI) Engine[J].Energy & Fuels,2009,23:2405-2412.
    [12].Philippe Dagaut,Casimir Togbe. Experimental and modeling study of the kinetics of oxidationof ethanol-n-heptane mixtures in a jet-stirred reactor[J].Fuel 2010,89:280-286.
    [13].Can Cinar, zcr Can, Fatih Sahin, et al. Effects of premixed diethyl ether (DEE) on combustion and exhaust emissions in a HCCI-DI diesel engine[J]. Applied Thermal Engineering 2010,30:360-365.
    [14].Hu Chen, Shi-Jin Shuai, JianXin Wang. Study on combustion characteristics and PM emission of diesel engines using ester-ethanol-diesel blended fuels[J].Proceedings of the Combustion Institute 2007,31:2981-2989.
    [15].邢元,尧命发,张福银,等.乙醇与柴油混合燃料燃烧特性及排放特性的试验研究[J].内燃 机学报,2007,1:24-29.
    [16].任毅,黄佐华,李蔚,等.柴油机燃用柴油/乙醇混合燃料的性能与排放特性研究[J].西安交通大学学报,2007,3:285-290.
    [17].楼狄明,沈航泉,胡志远,等.基于不同原料生物柴油混合燃料的发动机性能研究[J].内燃机工程,2011(1):29-33.
    [18].王彦清.乙醇汽油均质压燃燃烧特性的研究[D].长春:吉林大学.2007.
    [19].耿莉敏.生物柴油/柴油混合燃料的理化性能分析与喷雾特性改善[D].西安:长安大学,2009.
    [20].谭满志.替代燃料理化性质对柴油机燃烧和排放特性的影响规律[D].长春:吉林大学.2012.
    [21].刘晓,熊云,许世海,等.乙醇柴油性能研究[J].石油炼制与化工,2010(5):71-76.
    [22].于世涛,郭英男,卓斌,等.乙醇-柴油混合燃料的理化特性的研究[J].内燃机程,2004(6):35-38.
    [23].李浔,谢丹,王艳宜,等.柴油-生物柴油-乙醇溶解性及其调和燃料特性的研究[J]-应用化工.2011,12(3):16-22.
    [24].Trakarnpruk W, Porntangjitlikit S. Palm oil biodiesel synthesized with potassium loaded calcined hydrotalcite and effect of biodiesel blend on elastomer properties [J]. Renewable Energy 2003,3:1558-1563.
    [25].Maru M.M, Lucchese M.M. Legnani C, et al. Biodiesel compatibility with carbon steel and HDPE parts [J]. Fuel Processing Technology,2009,90:1175-1182.
    [26].Canakci M,Van Gerpen J.H. Comparison of Engine Performance and Emissions for Petroleum Diesel Fuel, Yellow Grease Biodiesel, and Soybean Oil Biodiesel [C]. ASAE No.016050.
    [27].Trakarnpruk Wimonrat, Suriya Porntanqjitlikit. Palm Oil Biodiesel Synthesized with Potassium Loaded Calcined Hydrotalcite and Effect of Biodiesel Blend on Elastomer Properties[J]. Renewable Energy,1998,33 (7):1558-1563.
    [28].陈林,陈凯,邓冰清,等.生物燃料对金属腐蚀的试验研究[J].腐蚀与防护,2009(3):25-31.
    [29].于世涛,郭英男,刘金山,等.柴油/乙醇混合燃料的性质及其对发动机性能的影响[J].上海交通大学学报,2005(8):1256-1260.
    [30].余红东,黄锦成,李双定,等.乙醇-柴油混合燃料的燃烧特性研究[J].小型内燃机与摩托车,2009(4):78-81.
    [31].孙俊,李格升.乙醇重整富氢混合气燃烧特性的理论分析[J].华中科技大学学报(自然科学版),2010(3):129-132.
    [32].方显忠,刘巽俊,金文华,等.乙醇喷射定时对乙醇柴汕双燃料发动机性能的影响[J].农业 机械学报,2007(11):28-31.
    [33].姚春德,陈绪平,杨建军,等.柴油/乙醇组合燃烧降低增压中冷发动机排放的研究[J].内燃机学报,2009(4):30-36.
    [34].邬齐敏,孙平,梅德清,等.助溶剂对乙醇柴油燃烧和排放特性的影响[J].汽车工程学报,2012,(5):327-333.
    [35].中国汽车工程学会代用燃料汽车分会.代用燃料汽车国际学术会议论文集[c].成都.中国汽车工程学会.2006.
    [36].Chinese Renewable Energy Society International Conference on Biomass Energ Technologies Proceeding(Volume 1)[C].2008
    [37].雷基林,中立中,毕玉华,等.乙醇-生物柴油-柴油混合燃料对柴油机性能和排放的影响[J].农业机械学报,2012,(11):21-25.
    [38].陈虎,王建昕,帅石金.乙醇-甲酯-柴油含氧燃料对柴油机性能与燃烧特性的影响[J].燃烧科学与技术,2007(3):57-61.
    [39].何邦全,王建昕.乙醇/柴油/甲酯混合燃料的燃烧与排放特性[J].内燃机学报,2005(4):34-347.
    [40].王晶.C_2-C_4醇类燃料的热解及低温等离子体研究[D].合肥:中国国科学技术大学,2008.
    [41].Kitamura T, Ito T, Senda J, at al. Extraction of the Suppression Effects of Oxygenated Fuels on Soot Formation Using a Detailed Chemical Kinetic Model[J]. JSAE Review,2001(22): 139-145.
    [42].郑朝蕾.正庚烷均质压燃燃烧反应动力学数值模拟研究[D].天津:天津大学,2005.
    [43].[Katharina Kohse-H inghaus,Patrick O wald,Terrill A,. Cool,Tina Kasper, et al. Biofuel Combustion Chemistry:From Ethanol to Biodiesel [J]. Angew Chem. Int. Ed. 2010,49:3572-3597
    [44].Fisher E. M, W. J. Pitz, H. J. Curran,at al. Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuels[J] Proceedings of the Combustion Institute 2000,28:1579-1586.
    [45].黄豪中,陈晖.生物柴油燃烧化学动力学数值模拟[J].内燃机学报,2012(5):17-22.
    [46].essica L.Brakora, Youngchul Ra, Rolf D.Reitz. Development and Validation of a Reduced Mechanism for Biodiesel-Fueled Engine Simulations [C]//SAE Paper Detroit USA, 2008-01-1378,2008.
    [47].赵陆明,何旭,郑亮,等.高喷射压力下生物柴油喷雾特性试验与仿真[J].农业机械学报,2012,(9):6-1().
    [48].王忠,袁银南,梅德清,等.生物柴油燃烧过程内窥镜高速摄影试验研究[J].内燃机学报,2007,(2):163-166.
    [49].廖世勇,井明科,程前,等.乙醇-空气预混层流火焰特性的试验研究[J].内燃机学 报,2007,(5):469-474.
    [50].张尊华,李格升,沈宇,等.含水乙醇-空气预混层流燃烧特性的试验[J].内燃机学报,2013,(1):59-64.
    [51].王忠,李铭迪,李立琳,等.乙醇/正庚烷燃烧过程PAH形成的数值模拟[J].燃烧科学与技术,2013,(1):9-14.
    [52].李立琳,王忠,秦先锋,等.生物柴油组成及结构对苯生成量的数值模拟[J].郑州大学学报(工学学版),2011,(6):67-70.
    [53].李毅,张秀丽,贺泓,等.Ag/Al_2O_3催化氧化乙醇与选择性还原NOx的同步辐射分子束质谱研究[A].中国化学会催化委员会.第六届全国环境催化与环境材料学术会议论文集[C].中国化学会催化委员会,2009:2.
    [54].许汉君,姚春德,杨广峰,等.柴油在乙醇高温热氛围中着火和燃烧的特性[J].内燃机学报,2010(3):207-213.
    [55].吕晓辉,孙俊,李格升,等.含水乙醇重整混合气层流燃烧的实验研究[J].武汉理工大学学报,2011(4):71-74.
    [56].何旭,郑亮,赵陆明,等.生物柴油喷雾、着火和燃烧特性试验研究[J].内燃机工程,2012,(5):41-45.
    [57].宋金瓯,姚春德,许汉君,等.正庚烷裂解及乙醇的影响[J].工程热物理学报,2009(8):1434-1436.
    [58].南北,刘文佳,李振华,等.利用激波管测量丁醇着火延时的试[J].上海交通大学学报,2012(3):156-160.
    [59]. http://image.baidu.com/i?ct=503316480&z=&tn=%26c0&H318&T8752&S 108&TPjpg.
    [60].T.S. Kasper, P. O wald, M. Kamphus, at al. Ethanol flame structure investigated by molecular beam mass spectrometry[J] Combustion and Flame,2007,150:220-231.
    [61].唐华浩,孙俊,李格升,等.乙醇预混层流火焰结构的模拟研究[J].武汉理工大学学报,2009(2):72-75.
    [62].徐涛,杨泽亮,甘云华,等.微细尺度下液体乙醇层流扩散火焰的特性分析[J].海军工程大学学报,2011(2):36-41.
    [63].昌兴才,李德钢,杨剑光,等.柴油机燃用乙醇柴油燃料的燃烧与排放特性[J].汽车工程,2004(2):131-135.
    [64].姚春德,夏琦,陈绪平,等.柴油在甲醇氛围中高效清洁燃烧机理[J].天津大学学报,2011(8):17-22.
    [65].李玉阳,袁涛,张奎文,等.乙基苯低压预混火焰中间体构成的研究[J].工程热物理学报,2010(3):535-539.
    [66].李步照,李博,李俊,等.柴油/乙醇燃料发动机缸内燃烧过程的数值模拟[J].农机化研 究,2010(9):223-226.
    [67].张志强,赵福全,于冠军,等.乙醇/柴油燃料配制和对柴油机性能影响的模拟[J].同济大学学报(自然科学版),2012(8):136-142.
    [68].汪家全,孙平,梅德清,等.乙醇柴油发动机的颗粒排放及其热解动力学分析[J].农业工程学报,2011,(S2):110-113.
    [69].王建昕,陈虎,帅石金.欧Ⅲ柴油机燃用乙醇-甲酯-柴油时微粒排放的研究[J].工程热物理学报,2007(3):153-156.
    [70].陈虎,陈文淼,王建昕,等.柴油机燃用乙醇-甲酯-柴油时PM排放特性的研究[J].内燃机学报,2007(1):51-56.
    [71].胡冰峰.白木通种子油的理化特性及制备生物柴油的研究[D].南昌:南昌大学,2012.
    [72].毛功平,王忠,倪培永,等.生物柴油的酯类组成和理化特性对燃烧温度的影响[J].小型内燃机与摩托车,2011(6):70-73.
    [73].焦杨.甲醇柴油理化特性的研究[D].哈尔滨:东北林业大学,2012.
    [74].魏秋兰.生物柴油调合油理化特性与排放特性研究[D].西安:长安大学,2007.
    [75].胡江.乙醇/柴油混合燃油技术的试验研究与燃烧功效关联分析[D].昆明:昆明理工大学,2007.
    [76].蔡北勤,周水洪.代用燃料分子结构对燃料性质和排放性能的影响[J].拖拉机与农用运输车,2004(4):43-45.
    [77].李昕光,崔淑华,付强.几种代用燃料的排放性能对比试验研究[J].武汉理工大学学报(交通科学与工程版),2012(5):1013-1016.
    [78].乔莉.解读《柴油机燃料调合用生物柴油(BD100)》国家标准[J].《石油商技》.2007.
    [79].鲁崇贤,杜洪光.有机化学[M].第一版.北京:科学技术出版社,2003.
    [80].Ayhan Demirbas. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesteritications and other methods:a survey[J].Energy Conversion and Management,2005,33 (5):466-487.
    [81].Gerhard Knothe, Andrew C. Matheaus, Thomas W. Ryan. Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester[J].Fuel,2003,82 (8):971-979.
    [82].陈秀,袁银南,孙平,等.脂肪酸甲酯结构对生物柴油十六烷值的影响[J].石油与天然气化工,2007(6):53-57.
    [83].刘赵淼,郝海舟,金艳梅,等.化学反应速率模型对高温空气燃烧特性的影响[J].北京工业大学学报,2007(4):413-418.
    [84].陈秀,袁银男,来永斌.生物柴油的着火性[J].中国粮油学报,2010(3):73-76.
    [85].朱磊.生物柴油发动机燃烧控制与排放特性试验研究[D].上海:上海交通大学,2012.
    [86].耿莉敏,董元虎,边耀璋,等.生物柴油与轻柴油混合燃料的理化特性[J].长安大学学报(自然科学版)2008,28(3):88-91.
    [87].L.G韦德JR organic chemistry Fifth Edition[M]北京.化学工业出版社,2006.4
    [88].John A. Byers. Table values from Phenomenex catalog, [CP/DK] http://www.chemical-ecology.net/java/solvents.htm2003.
    [89].何强,贾奇博,卢咏来,等.硫化硅橡胶交联结构与物理性能关系研究[J].橡胶工业,2010(5):268-273.
    [90].娄志刚.乙醇汽油及其应用性能研究[D].重庆:重庆大学,2008.
    [91].栗印环,郭鹏.液体溶解度参数的计算[J].信阳师范学院学报(自然科学版),2002(1):52-53.
    [92].马群锋.晶态非极性聚合物内聚能密度的估算[J].高分子通报,2011(7):103-106.
    [93].陆向红,杨云财,计建炳.溶解度参数在脂肪酸甲酯溶解性研究中的运用[J].中国粮油学报,2011(6):60-65.
    [94].王学昭,沈容,路阳,等.极性分子型电流变液导电机理研究[J].物理学报,2010(10):7144-7148.
    [95].何邦全,王建昕,闫小光,等.乙醇-柴油在线混合燃料的燃烧排放特性[J].清华大学学报(自然科学版),2003(11):1523-1525.
    [96].刘春兰,许月峰.增溶剂的增溶原理及其在制剂生产中的应用[J].中国药业,2008(4):17-18.
    [97].中国国家标准化管理委员会,GB/T1690-2010,硫化橡胶或热塑性橡胶耐液体试验方法[S].北京:中国标准出版社,2010.
    [98].中国国家标准化管理委员会,GB/T2411—-2008,塑料和硬橡胶使用硬度计测量压痕硬度(邵氏硬度)[s].北京:中国标准出版社,2008.
    [99].Richard C.Solvents and solvent effects in organic chemistry[M].New York:Verlag Chemie Weinheim,1988:6-7.
    [100].舒本勤.高耐压高硬度橡胶材料的研究[D].武汉:武汉理工大学,2009.
    [101].梁悦,许逵,王风祥,等.橡胶喷霜的防护研究进展[J].广东化工,2012(14):68-69.
    [102].解茂昭.内燃机计算燃烧学[M].大连:大连理工大学出版社,2005,6.
    [103].张佳心,杨宝才.火焰电子温度的测量[J].工程热物理学报,1992,13(1):80-88.
    [104].暴秀超,张诗波.预混层流燃烧的试验方法综述[J].西华大学学报(自然科学版),2012,(5):34-36.
    [105].刘宇,刘文清,阚瑞峰,等.基于准分子激光器火焰中OH自由基测量技术研究[J].光谱学与光谱分析,2012,(11):2897-2901.
    [106].张尊华,李格省,沈宇,等.含水乙醇-空气预混层流燃烧特性的试验[J].内燃机学 报,2013,(1):59-64.
    [107].齐飞.燃烧:一个不息的话题—同步辐射单光子电离技术在燃烧研究中的应用[J].物理,2006(1):1-6.
    [108]. Fristrom R M. Flame Structure and Processes[M].New York:Oxford University Press. 1995.
    [109].张志远,郑建军,黄佐华,等.不同初始条件下乙醇-空气预混合气层流燃烧火焰结构分析[J].装甲兵工程学院学报,2011(1):40-44.
    [110].王启,严荣松,渠艳红.二甲醚火焰传播速度的试验研究[J].煤气与热力,2007(3):43-45.
    [111].周龙保.内燃机学[M].北京:机械工业出版社(第二版),2010:38-40.
    [112]. Oh J, Noh D. Laminar burning velocity of oxy-methane flames in atmospheric condition[J].Energy,2012,45:669-675.
    [113].王清成.层燃炉煤燃烧碳黑形成机理的实验研究与排放控制方法[D].上海:上海交通大学,2007.
    [114].许广举.生物柴油非常规污染物形成机理的理论分析与试验研究[D].镇江:江苏大学,2012.
    [115].解茂昭.内燃机计算燃烧学[M].大连:大连理工大学出版丰社,2005,3.
    [116]. Guillaume.Pilla,David F. Davidson,Ronald K.HansonShock tube/laser absorption measurements of ethylenetime-histories during ethylene and n-heptane pyrolysis[J]. Proceedings of the Combustion Institute,2011,33:333-340.
    [117]. Philippe Dagau,Casimir Togbe. Experimental and modeling study of the kinetics of oxidation of ethanol-n-heptane mixtures in a jet-stirred reactor[J].Fuel 2010,89:280-286.
    [118]. Md.Nurun Nabi. Theoretical investigation of engine thermal efficiency,adiabatic flame temperature, NOx emission and combustion-related parameters for different oxygenated fuels[J].Applied Thermal Engineering,2010,30:39-844.
    [119].张延峰,唐青龙,裴毅强,等.碳氢燃料预混火焰中苯的生成规律[J].燃烧科学与技术,2012,(4):319-325.
    [120]. Curran, H. J, P. Gaffuri, W. J. Pitz, et al. A Comprehensive Modeling Study of n-Heptane Oxidation[J].Combustion and Flame,1998,114:149-177.
    [121]. Mehl M., WJ. Pitz, H.J. Curran, et al. Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions[J].Proceedings of the Combustion Institute,2011,33(1):193-200.
    [122]. Caroline Marchal, Jean-Louis Delfau, Christian Vovelle,et al. Modeling of aromatics and soot formation from large fuel molecules[J].Proceedings of the Combustion Institute,2009,32:753-759.
    [123.].钟北京,席军.正庚烷对冲扩散火焰中多环芳烃形成机理的简化[J].燃烧科学与技术,2007,13(2):163-168.
    [124].赵昌普,陈生齐,李艳丽,等.正庚烷燃烧详细化学动力学模型的简化及其有效性分析[J].内燃机学报,2008,26(4):346-353.
    [125]. Wang H,Frenklach M.A detailed kinetic modeling studyof aromatics formation in laminar premixed acetylene and ethylene flames[J].Combustion and Flamc,1997,110(1/2):173-221.
    [126].曾文.当量比对正庚烷预混燃烧下多环芳烃生成影响[J].深圳大学学学报(理工版),2012(5):76-81.
    [127]. Marinov Nick M.A detailed chemical kinetic model for high temperature ethanol oxidation [J]. International Journal of Chemical Kinetics,1999,31(3):183-220.
    [128]. M. Mehl, H. J. Curran, W. J. Pitz, et al. Chemical kinetic modeling of component mixtures relevant to gasoline[C].European Combustion Meeting,Vienna, Austria,2009.
    [129]. Olivier Hcrbinet,William J.Pitz,Charles k, et al.Detailed Chemical Kinetic Oxidation Mechanism for a Biodiesel Surrogate[J].Combustion and Flame.2008.154(3):507-528.
    [130]. P. Dagaut, S. Gail, M. Sahasrabudhe.Rapeseed oil methyl ester oxidation over extended ranges of pressure, temperature, and equivalence ratio:Experimental and modeling kinetic study[J].Proceedings of the Combustion Institute,2007,31 (2):2955-2961.
    [131]栗工,高泰荫,陈中洲,等.甲烷-空气燃烧过程中NOx生成机理和影响因素分析[J].燃烧科学与技术,2005,11(2):142-148.
    [132]. Fischer S L, Dryer F L, Curran H J. The reaction kinetics of dimethyl ether. Ⅰ:high temperature pyrolysis and oxidation in flow reactors[J].international Journal of Chemical Kinetics,2000,32:713-740.
    [133]. Kaiser E W, Wallington T J, Hurley M D, et al. Experimental and modeling study of premixed atmospheric-pressure dimethyl ether-air flames[J].J Phys Chem A,2000,104(35):8194-8206.
    [134].张立志,高健,赵黛青,,等.含氧燃料燃烧中燃料氧迁移路径及含氧中间体生成特性[J].物理化学学报,2011(8):18091815.
    [135].李会学,李志锋,王晓峰,等。CH_2CO+CH_2的多通道反应的理论研究[J].化学学报2010,(2):115-124.
    [136].袁涛.正更烷、异辛烷热解和预混火焰的实验及动力学模型研究[D].合肥:中国科学技术大学,2010.
    [137].李铭迪,王忠,许广举,等.乙醇柴油混合燃料燃烧过程与排放试验研究[J].农业工程学报,2012(2):36-41.
    [138].李玉阳.芳烃燃料低压预混火焰的实验和动力学模型研究[J].合肥:中国科学技术大学,2010.
    [139]. V. Warth, F. Battin-Leclerc, R. Fournet, P.A. Glaude, G.M. Come, G. Scacchi, Comput. Chem.2000,24 (5):541-560.
    [140]. Wang H, Frenklach M. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames [J].Combustion and Flame. 1997,110:173-221.
    [141]. Kee R.J, Rupley F.M, Miller A.The Chemkin thermodynamic database, Sandia National Laboratories, Technical Report SAND87-8215.
    [142]. J. Herzler, L. Jerig, P. Roth. Shock tube study of the ignition of lean n-heptane/air mixtures at intermediate temperatures and high pressures[J].Proceedings of the Combustion Institute. 2005,30:47-1153.
    [143]. Molina, A, Shaddix,C. R. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion[J].Proceedings of the Combustion Institute,2007,31:1905-1912.
    [144]. D.R. Haylett, P.P. Lappas, D.F. Davidson,et al. Application of an aerosol shock tube to the measurement of diesel ignition delay times[J].Proceedings of the Combustion Institute,009, 32:77-484.
    [145].高健,赵黛青,汪小憨,等.二甲醚和乙醇低压层流预混火焰的对比研究[J].物理化学学报,2010,26(1):3-28.
    [146]. Shukia B,Susa A,Miyoshi A,et al. Role of phenylradicals in the growth of polycyclic aromatic hydrocarbons[J].Journal of Physical Chemistry A,2008,112:2362-2369.
    [147].王忠,黄慧龙,许广举,等.生物柴油氧化改质对NOx和碳烟排放的影响[J].燃烧科学与技术2010,16(4):23-27.
    [148].陈秀,袁银男,王利平,等.脂肪酸甲酯结构对生物柴油低温流动性的影响[J].江苏大学学报(自然科学版)2010,31(1):31-35.
    [149]. Desantes J M, Arregle J, Pastor J V. et al. Influence of the fuel characteristics on the injection process in a DI diesel engine[c]//SAE 980802,1998.
    [150].王宪成,孙志新,肖建华,等.含氧组分燃料降低装甲车辆柴油机碳烟排放的研究[J].兵工学报2010,31(5):611-615.
    [151].张旭升,赵晖,胡宗杰,等.共轨柴油机燃用生物柴油的排气颗粒粒径分布及核态纳米颗粒生成机理研究[J].中国科学(E辑:技术科学),2009,(9):1589-1594.
    [152].谭丕强,胡志远,楼狄明.车用发动机燃用生物柴油的颗粒数量排放[J].汽车安全与节能学报,2010,(1):83-88.
    [153]丁焰,葛蕴珊,王军方,等.生物柴油发动机PM排放的理化特性研究[J].内燃机工程,2010,(3):39-43.
    [154].谭丕强,楼狄明,胡志远.发动机燃用生物柴油的核态颗粒排放[J].工程热物理学报,2010,(7):1231-1234.
    [155].马其华,宋建桐.燃用小比例乙醇柴油对降低柴油机碳烟排放的试验研究[J].交通节能 与环保,2007,(6):18-21.
    [156].马志豪,张小玉,王鑫,徐斌,吴健.基于热重分析法的生物柴油-柴油发动机颗粒排放研究[J].农业机械学报,2011,(9):26-29.
    {157].胡志远,林建军,谭不强,楼狄明.柴油轿车燃用生物柴油的模态颗粒排放特性[J].同济大学学报(自然科学版),2012,(6):937-941.
    [158].蔡忆昔,下攀,林琳.含氧燃料对柴油机尾中颗粒理化特性的影响[J]内燃机工程2009,30(1):6-9.
    [159].宁智,刘双喜,资新运.柴油机排气微粒特性的试验研究[J]环境科学学报,2003,23(6):765-769.
    [160].莫润阳.用原子力显微镜研究葡聚糖包覆纳米氧化铁微粒的形貌特征[J]理化检测-物理分册,2009,45(10):60-62.
    [161]. Glatter.O,Kratky.O..Small angle X-ray scattering[M]. London:Academic press 1982:454
    [162]曾贵玉,李长智.小角散射(XSAS)技术在含能材料结构表征中的应用[J].含能材料,2005,13(2),130-132.
    [163].李志宏,巩雁军,蒲敏SAXS测定二氧化硅胶体粒子结构[J]无机化学报2003,3:252-255.
    [164].张丽娜,薛奇.高分子物理近代研究方法[M].武汉:武汉大学出版社,2003.
    [165].朱育平.小角X射线散射(理论、测试、计算及应用)[M].北京:化学工业业出版社,2008:118.
    [166].李浩虎,余笑寒,何建华.上海光源介绍[J].现代物理知识,2010,22(3):14-19.
    [167]. Glatter O., Kratky O.. Small Angle X-ray Scattering[M].1982:300-450.
    [168]. Lapuerta M.,Armas O,allesteros R. Diesel Particulate Emissions from Biofuels derived from Spanish Vegetable Oils[C].SAE paper2002-01-1657,2002.
    [169]. Rakopoulos C D. Rakopoulos D C, Hountalas D T, et al. Performance and Emissions of Bus Engine using Blends of Diesel Fuel with Biodiesel of Sunflower or Cottonseed Oils derived from Greek Feed stocks[J].Fuel,2008,87(2):147-157.
    [170].谭不强,胡志远,楼狄明,等.非直喷式增压柴油机燃用生物柴油的性能与排放特性[J].内燃机学报,2006,24(2):110-115.
    [171].李志宏,赵军平,吴东,等.小角X射线散射中Porod i王偏离的校正[J].化学学报2000,58(9):1147-1150.
    [172].李志宏,巩雁军,吴东,等小角X射线散射法测定溶胶平均界面厚度[J].理学报,2001,50(6):1128-1131.
    [173]. Brinker C J, Scherer G W. Sol-gel science:the physics and chemistry of sol-gel processing[M]. Academic Pr,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700