用户名: 密码: 验证码:
GLARE复合材料的回收技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为最重要的金属材料之一,铝及其合金广泛应用于运输业,建筑产业以及消费类产品。铝合金废料的回收再利用对铝业可持续发展有着决定性影响。与从铝土矿制备原铝及其合金相比,铝及其合金废料回收再利用具有节能减排、资源充分利用以及良好经济效益等优势。高强度航空用铝合金是最重要的铝合金材料之一,含有2024高强铝合金的纤维增强金属压层材料GLARE已成功应用于空客A380机身,但GLARE材料的回收再利用仍未有人研究。Si元素是航空铝合金中常见杂质元素,需严格控制其浓度,而航空铝合金回收过程中由于污染以及不同牌号合金混杂难分离等原因,常使得Si浓度超出航空铝合金成分允许范围。目前并无可用于工业化生产的去除铝合金中杂质Si元素的方法。
     本文研究并开发了纤维金属压层材料GLARE废料的回收再利用工艺,讨论了不同热条件下GLARE中树脂材料的分解动力学,通过不同的盐熔剂对GLARE热分层后的2024高强铝合金废料进行了重熔精炼回收。研究了添加Ti元素的合金化法去除铝合金中杂质Si元素的可行性,考查了不同初始硅浓度的铝合金中加Ti除Si的净化效率,并通过第一性原理方法研究了加Ti合金化法的除Si潜力以及Si元素去除机制。
     非等温热条件下GLARE中树脂的分解由四个阶段组成,第一阶段由BR127的分解行为导致,后续三个阶段由FM94的分解行为导致。加热速率为1oC min~(-1)时,在氮气和空气气氛下,BR127的分解起始温度都为188oC,FM94的分解起始温度都为255oC,气体气氛对两种树脂的分解起始温度影响很小。GLARE试样在空气气氛下以1oC min~(-1)的加热速率加热至500oC时,GLARE中树脂的分解度为100%,而GLARE试样在氮气气氛下以同样的加热速率加热至600oC时,GLARE中树脂的分解度仅为89.8%,氧化气氛更有利于GLARE中树脂的分解。氮气气氛下,GLARE试样在230oC、310oC、350oC和450oC下保温3小时后,树脂分解度分别为4.4%、48.4%、57.8%和100%。而空气气氛下,相应的树脂分解度分别为7.2%、43.4%、69.4%和100%。在230oC和450oC下等温处理时,树脂分解遵循n级反应机制;在310oC和350oC下等温处理时,树脂分解遵循自催化反应机制。结合热分析结果和GLARE热分层优化实验确定了GLARE废料的最佳热分层工艺:空气气氛中,480oC下保温2小时。在此工艺条件下,GLARE中树脂BR127和FM94完全分解,2024铝合金薄板和S2玻璃纤维层可完全分离。回收的二次S2玻璃纤维的拉伸性能损失45%。
     NaCl-KCl-Na_3AlF_6熔剂对GLARE热分层后的2024铝合金废料(35mm×25mm)进行重熔精炼回收时,两种NaCl和KCl比例(70:30和44:56)的熔剂中最合适Na_3AlF_6添加量均为10wt.%。使用44wt.%NaCl-56wt.%KCl~(-1)0wt.%Na_3AlF_6熔剂对铝合金废料(35mm×25mm)进行回收时大尺寸金属豆回收率略高于使用70wt.%NaCl-30wt.%KCl~(-1)0wt.%Na_3AlF_6熔剂的情形,分别为97.34%和96.76%。重熔精炼过程中,铝合金废料中Mg与Na_3AlF_6发生反应使得全部Mg元素损耗,但回收得到的铝合金中合金元素Cu和Mn以及杂质元素浓度符合2024铝合金名义成分。
     大尺寸金属豆回收率随盐熔剂总量的减少而降低。使用44wt.%NaCl-56wt.%KCl~(-1)0wt.%Na_3AlF_6熔剂对尺寸为10mm×10mm铝合金废料进行回收,当NaCl-KCl混合盐与铝合金废料重量比分别为2:1、1.5:1、1:1和0.5:1时,大尺寸金属豆回收率分别为96.94%、97.10%、94.83%和92.42%。大尺寸金属豆回收率随重熔温度降低而降低。使用44wt.%NaCl-56wt.%KCl~(-1)0wt.%Na_3AlF_6熔剂对尺寸为35mm×25mm铝合金废料进行回收,重熔温度为720oC和760oC时大尺寸金属豆回收率分别为96.06%和96.82%。但所用熔剂为70wt.%NaCl-30wt.%KCl~(-1)0wt.%Na_3AlF_6,重熔温度为720oC和760oC时大尺寸金属豆回收率分别减小至92.14%和94.40%。铝合金废料尺寸小于10mm×10mm时,大尺寸金属豆回收率随铝合金废料尺寸的减小而快速降低。
     使用44wt.%NaCl-56wt.%KCl-MgF2熔剂对GLARE热分层后的2024铝合金废料(35mm×25mm)进行回收时,熔剂中MgF2添加量为5wt.%、10wt.%、15wt.%和20wt.%时大尺寸金属豆回收率依次为97.74%、97.65%、97.21%和96.84%。回收得到的铝合金中,合金元素Mg、Mn和Cu在铝合金中的浓度变化不大,均满足2024铝合金名义成分,且需严格控制的杂质元素Fe、Si和Ti的浓度也同样满足2024铝合金成分要求。大尺寸金属豆回收率随熔剂中MgF_2添加量的增加而降低。熔剂中氟化物添加量小于12wt.%时,添加MgF2的熔剂重熔回收所得的大尺寸金属豆回收率要高于添加Na_3AlF_6的熔剂。当熔剂中氟化物添加量大于12wt.%时,结论相反。
     研究了飞机机身上用于GLARE板间连结的Ti-6Al-4V材质Hi lock紧固件对GLARE旧废料回收后所得铝合金成分的影响。Ti-6Al-4V合金与2024铝合金在800oC重熔时Ti合金不会溶解进入到铝合金中,而是沉降至铝合金液底部。因此最终回收得到的铝合金中Ti浓度并未增加,满足2024铝合金名义成分。
     已发表的Al-Si-X(X为待考查元素)三元相图评估结果表明,Ti元素具备合金化法去除铝熔体中杂质Si元素的潜力。Si能取代Al_3Ti相中部分Al原子形成高熔点的(Al_(1-x),Si_x)_3Ti相,但未能形成TiSi或者其他富Si相。去除固溶有Si元素的(Al_(1-x),Si_x)_3Ti相可降低杂质Si元素浓度,但净化效率与铝合金中初始Si浓度密切相关。Ti添加量为1wt.%时,铝合金中Si浓度可从1.04wt.%降至0.87wt.%,但当原始Si浓度为0.14wt.%时,Si浓度仅减少0.01wt.%。Si在(Al_(1-x),Si_x)_3Ti相中的浓度随铝合金中初始Si浓度的降低而降低。基于1wt.%Ti添加量和净化前后杂质Si浓度变化可计算得到Al_3Ti中的Si浓度,结果表明当铝合金中初始Si浓度从0.14wt.%增加到1.04wt.%时,Al_3Ti中的Si浓度从0.57at.%增加至9.12at.%。当铝合金中初始Si浓度低于0.2wt.%时,静置温度对除Si效率影响很小。尽管在Al-0.21wt.%Si合金中增加Ti添加量能提升除Si效率,但会造成更大的铝损耗。在低浓度Si的铝合金中,加Ti除Si合金化方法除Si效率有限。
     第一性原理计算结果表明,Si在Al_3Ti中倾向于占据Al格点位置,而占据Al1和Al2格点的Si原子都倾向于跃迁至Al1空位来完成其在Al_3Ti中的扩散行为,受限于Al富集环境下Al_3Ti中主要空位为Ti空位,因此掺杂的Si原子在Al_3Ti中的扩散存在一定困难。所以,这一困难对加Ti除Si方法的效率会产生不利影响。
     因此,低Si工业纯铝生产中应选取SiO_2杂质较低的高品质氧化铝粉,以减少电解过程中杂质Si元素的引入。由于2xxx系和7xxx系对杂质Si元素浓度有严格限制,故在航空铝合金的回收过程中,应建立严格的铝废料分类存放制度。航空铝合金废料应尽可能按合金牌号分类堆放,以降低高Si铝合金以及其他杂质元素对最终二次航空铝合金成分的不利影响,提升二次航空铝合金的品质,增加其二次利用价值。
Aluminum as an important metal is widely used in transportation, consumerdurables, and building and construction. Al alloys recycling plays a significant role insustainable development of Al industry. Compared with primary aluminum productionfrom bauxite, several advantages can be achieved from Al alloy recycling: energysaving, emission reduction, waste disposal reduction and capital cost reduction. Highstrength aerial Al alloys are important members of Al alloy family. The fibrereinforced metal laminates GLARE which consists of2024Al alloy and S2glass fibrehas been used as fuselage in Airbus A380, but the solution for GLARE recycling isstill lacked. Moreover, Silicon is a usual impurity element in aerial Al alloys and Sicontent always increases during recycling and exceeds the permissible Siconcentration of aerial Al alloys. However, few methods have been introduced toremove impurity silicon from Al melts in industrial scale.
     In this thesis, a feasible solution for fiber metal laminates GLARE recycling wasdeveloped in industrial scale. The decomposition kinetics of resins in GLARE wasstudied, as well as the recycling of obtained2024Al alloy after thermal delamination.Furthermore, a basic research based on alloying method by using Ti addition wasexecuted to investigate the Si removal efficiency, and the first-principles method wasemployed to study the purification potential of Ti addition and Si removal mechanism.
     Under non-isothermal conditions, the decomposition of resins consists of four steps,the first step is attributed to the decomposition of BR127, and later three steps areattributed to the decomposition of FM94. The initial decomposition temperature ofBR127and FM94is188oC and255oC respectively in both oxidative and inertatmospheres when the heating rate of1oC min~(-1)is employed. The final conversion ofresins in air and nitrogen is100%and89.8%respectively when the GLARE sampleof60mg were heated up to500oC in air and to600oC in nitrogen with the sameheating rate of1oC min~(-1). Oxidative atmosphere is more preferred for resinsdecomposition. The conversion is respectively4.4%,48.4%,57.8%and100%whensamples were kept at230oC,310oC,350oC and450oC for3hours in nitrogen, whilethe conversion under the same conditions in air is7.2%,43.4%,69.4%and100%respectively. Two decomposition mechanisms, nth-order for decomposition at230oCand450oC and autocatalysis for decomposition at310oC and350oC, were found during isothermal analysis. The GLARE thermal delamination process is decided as480oC for2hours based on thermal analysis results and experimental optimization,the S2-glass fibres and2024Al alloys can be well separated. The tensile strengthdegradation of recycled S2-glass fibres is about45%after thermal delamination at480oC.
     NaCl-KCl-Na_3AlF_6flux was used for the recycling of obtained2024Al afterthermal delamination. The efficiencies of two different ratios of NaCl to KCl,70wt.%NaCl-30wt.%KCl and44wt.%NaCl-56wt.%KCl, were discussed.10wt.%additional cryolite is preferred for the two kinds of flux considering the recycled Alalloy quality together with the economic cost. But, the yield of big metal beads (>2mm) after Al alloy scrap (35mm×25mm) recycling with44wt.%NaCl-56wt.%KCl~(-1)0wt.%Na_3AlF_6is lightly increased compared to70wt.%NaCl-30wt.%KCl~(-1)0wt.%Na_3AlF_6, the big beads yield is97.34%and96.76%respectively. Itwas attributed to the lower melting point of equimolar NaCl-KCl system which has apositive influence on the metal coalescence due to the lower viscosity of melten flux.The concentrations of major alloying elements Cu, Mg and impurity elements inrecycled Al alloys are consistent with nomination composition of2024alloy exceptMg, and the Mg loss is caused by the reaction between Mg and cryolite.
     The big metal beads yield (>2mm) is obviously decreased with the amount of saltsflux. For44wt.%NaCl-56wt.%KCl~(-1)0wt.%Na_3AlF_6flux, the obtained big metalbeads yields after Al alloy scrap (10mm×10mm) recycling is97.10%,94.83%and92.42%when the weight ratio of NaCl-KCl salts flux to Al scraps is1.5,1and0.5respectively. The big metal beads yield is decreased with decreasing of refiningtemperature. The big metal bead yield after Al alloy scrap (10mm×10mm) recyclingwith44wt.%NaCl-56wt.%KCl~(-1)0wt.%Na_3AlF_6system is96.06%and96.82%when the re-melting temperature is720oC and760oC respectively. But the big sizebead yield is reduced to92.14%under720oC and94.40%under760oC when70wt.%NaCl-30wt.%KCl~(-1)0wt.%Na_3AlF_6flux was employed. The experimental resultsindicated that the scrap size of bigger than10mm×10mm should be preferred.
     For44wt.%NaCl-56wt.%KCl-MgF2flux, the big beads yield after Al alloy scrap(35mm×25mm) recycling is97.74%,97.65%,97.21%and96.84%when theadditional MgF2in salts flux is5wt.%,10wt.%,15wt.%and20wt.%respectively.Mg and other alloying elements are well controlled during recycling, andconcentrations of impurity elements in recycled Al alloy also meet the requirements of2024Al nominal concentration. Big metal beads yield is decreased with MgF_2 addition amount. The big beads yields after recycling with MgF2addition are biggerthan those with cryolite addition when the fluoride addition amount is lower than12wt.%, but the situation is reversed when the fluoride addition amount is above12wt.%.
     The effect of Ti-6Al-4V shear Hi lock in fuselage on the GLARE End of Liferecycling was discussed. The experimental results indicated that the Ti-6Al-4V Hilock did not dissolve into Al melt while settle down to the bottom of crucible due tothe higher melting point and bigger density of Ti-6Al-4V alloy compared to2024Al.Thus, the Ti concentration in the recycled Al alloy within the range of2024Al alloynominal composition can be obtained after re-melting.
     After the evaluation of Al-Si-X ternary phase diagrams, titanium is the possibleelement which can react with low concentration Si in Al melt and form binary orternary phases with high melting point which can be easily removed to decreaseimpurity Si concentration. Si can replace Al in Al_3Ti phase and form high meltingpoint (Al_(1-x),Si_x)_3Ti particles, but no TiSi or other Si-rich binary phases were found. Sipurification efficiency is heavily related to the initial Si concentration in Al melt. Withthe addition of1wt.%Ti, the decrement of Si concentration is0.01wt.%when theinitial Si concentration is0.14wt.%but the decrement is enhanced to0.17wt.%forAl melt with initial Si concentration of1.04wt.%. The calculation results based on1wt.%Ti addition amount and Si concentration decrement indicate the Si concentrationin Al_3Ti was increased from0.57at.%to9.12at.%when initial Si concentration in Almelt is enhanced from0.14wt.%to1.04wt.%. Though the increase of Ti additionamount can slightly improve Si purification efficiency in Al-0.2Si melt but willconsume more Al. Hence, the Si purification efficiency by alloying method with Tiaddition is poor for Al melt with low Si initial concentration.
     The first-principles calculations indicated that Si prefers to occupy Al site in Al_3Ti,both doped Si atoms in Al_3Ti on Al1site or Al2site prefer to diffuse via the Al1vacancy. But the most probable vacancy in Al_3Ti under Al-rich condition is Ti vacancy,resulting in difficulty of Si diffusion in Al_3Ti. This difficulty is unfavorable for Siremoval efficiency when alloying method of Ti addition is used.
     Therefore, the quality of Al2O3is important for the production of industrial pure Alwith low impurity Si concentration. Al2O3with low concentration of impurity SiO_2ispreferred for the production of electrolytic aluminum, which benefits the compositionof generated industrial pure Al. Considring that the upper limit of impurity Siconcentration is strictly controlled in aerospace Al alloys, e.g.2xxx Al alloys and 7xxx Al alloys, a strict classification should be conducted during the recycling ofaerospace Al alloys. The aerospace Al scrap should be pre-sorted by alloy type, mostimportantly by the separation of2xxx and7xxx series alloys. The classification issignificant to obtain preferred compositions of secondary aerospace Al alloys whichbenefit the quality as well as the market value of secondary aerospace Al alloys.
引文
[1] Brundtland GH et.al. Our common future. Oxford, UK: Oxford University press,1987.
    [2] Reh L. Challenges for progress industries in recycling. China Particuolugy2006;4:47.
    [3] Robèrt KH, Schmidt-Bleek B, Larderel JA, Basile G, Jansen JL, Kuehr P, Thomas PP,Hawken P, Wackernagel M. Journal of Cleaner Production2002;10:197.
    [4] Walker S. Sustainable by design: Explorations in theory and practice. Earthscan, London,UK,2006.
    [5] Pimenta P, Pinho ST. Waste Management2011;31:378.
    [6] Vlot A, Gunnink JW. Fibre Metal Laminates: An Introduction. Dordrecht: KluwerAcademic Publishers,2001.
    [7] Vlot A. Glare: History of the Development of a New Aircraft Material. Kluwer Academicpublishers,2001.
    [8] http://www.fokker.com/Innovations-GLARE
    [9] Tjarko de Jong. Formation of Laminates. PhD thesis, Delft University of Technology,2004.
    [10] Plokker HM. Crack closure in GLARE. Master thesis, Delft University of Technology,2005.
    [11] Plokker HM, Alderliesten RC, Benedictus R. Fatigue Fract. Engng. Mater. Struct.2007;30:608-620
    [12] Hinz S, Omoori T, Hojo M, Schulte K. Composites: Part A2009;40:925.
    [13] http://www.premium-aerotec.com/en/Manufacturing_2.html
    [14] Pickering SJ. Composites Part A2006;37:1206.
    [15] Fitch PE, Cooper JS. Trans ASME2004;126:798.
    [16] Das S. JOM2000;52:41.
    [17] Offce of industrial technologies. Energy, environmental and economics handbook. USDepartment of Energy;1997.
    [18] Yang YX, Boom R, Irion B, van Heerden DJ, KuipeR P, de Wit H. Chemical Engineering&Processing: Process Intensification.2012; In Press.
    [19] Panesar S. Converting composite waste into high quality reusable carbon fbre. JECComposites Show. JEC Composites, Paris, France,2009.
    [20] Liu YY, Shan GH, Meng LH. Materials Science and Engineering A2009;520:179.
    [21] Songa YS, Younb JR, Gutowski TG. Composites Part A2009;40:1257.
    [22] Asokan P, Osmani M, Price ADF. Journal of Cleaner Production2009;17:821.
    [23] Dang WR, Kubouchi M, Sembokuya H, Tsuda K. Polymer2005;46:1905.
    [24] Lester E, Kingman S, Wong KH, Rudd C, Pickering S, Hilal N. Materials Research Bulletin2004;39:1549.
    [25] Bai YP, Wang Z, Feng LQ. Materials and Design2010;31:999.
    [26] Ogi K, Shinoda T. Compos Part A2005;36:893.
    [27] Gallet C, Kermarrec M. JEC Compos2006;22:71.
    [28] El Gersif K, Durand G, Tersac G. Polymer Degradation and Stability2006;91:690.
    [29] Braun D, Gentzkow W, Rudolf AP. Polymer Degradation and Stability2001;74:25.
    [30] Dang W, Kubouchi M, Yamamoto S, Sembokuya H, Tsuda K. Polymer2002;43:2953.
    [31] Pinero-Hernanz R, Garcia-Serna J, Dodds C, Hyde J, Poliakoff M, Cocero MJ, Kingman S,Pickering S, Lester E. Journal of Supercriticcal Fluids2008;46:83.
    [32] Pinero-Hernanz R, Dodds C, Hyde J, Garcia-Serna J, Poliakoff M, Lester E, Cocero MJ,Kingman S, Pickering S, Wong KH. Composites Part A2008;39:454.
    [33] Meyer LO, Schulte K, Grove-Nielsen E. Journal of Composite Materials2009;43:1121.
    [34] Palmer J, Ghita OR, Savage L, Evans KE. Composites Part A2009;40:490.
    [35] ECRC Services Company. Offcial website at: http://www.ecrc-greenlabel.org.
    [36] Kouparitsas CE, Kartalis CN, Varelidis PC, Tsenoglou CJ, Papaspyrides CD. PolymerComposites2002;23:682.
    [37] Takahashi J, Matsutsuka N, Okazumi T, Uzawa K, Ohsawa I, Yamaguchi K, Kitano A. In:ICCM-16, Japan Society for Composite Materials, Kyoto, Japan,2007.
    [38] Ogi K, Nishikawa T, Okano Y, Taketa I. Advanced Composite Materials2007;16:181.
    [39] Jiang G, Pickering SJ, Lester EH, Turner TA, Wong KH, Warrior NA. Composite ScienceTechnology2009;69:192.
    [40] Nakagawa M, Shibata K, Kuriy H. Second International Symposiumon fiber recycling.The Fiber Recycling2009Organizing Committee, Atlanta, Georgia, USA,2009.
    [41] Marsh G. Reinforced Plastics2009;53:22.
    [42] Gosau JM, Wesley TF, Allred RE. SAMPE’09Conference. SAMPE, Baltimore, MD, USA,2009.
    [43] Warrior NA, Turner TA, Pickering SJ. Carbon fibre recycling and reuse2009Conference,IntertechPira, Hamburg, Germany,2009.
    [44] Liu YY, Meng LH, Huang YD, Du JJ. Journal Applied Polymer Science2004;94:1912.
    [45] ATI.1994.Adherent Technologies Inc. Offcial website at: http://www.adherenttech.com.
    [46] Hyde JR, Lester E, Kingman S, Pickering S, Wong KH. Composites Part A2006;37:2171.
    [47] Cunliffe AM, Jones N, Williams PT.2003. Environmental Technology2003;24:653.
    [48] Wong KH, Pickering SJ, Turner TA, Warrior NA. SAMPE’09Conference. SAMPE,Baltimore, MD, USA,2009.
    [49] Alsop SH. SAMPE’09Conference. SAMPE, Baltimore, MD, USA,2009.
    [50] RCFL. Recycled Carbon Fibre Ltd. Offcial website at: http://www.recycledcarbonfbre.com
    [51] JCMA,2006. The Japan Carbon Fiber Manufacturers Association. Offcial website at:http://www.carbonfber.gr.jp
    [52] MIT, Materials Innovation Technologies, LLC. Offcial website at:http://www.emergingmit.com
    [53] CFK. CFK Valley Stade Recycling GmbH&Co. KG. Offcial website at:http://www.cfk-recycling.com
    [54] Karborek, Karborek S.p.a. Offcial website at: http://www.karborek.it/fbra
    [55] Wood K. High Performance of Composites.2010;3:1.
    [56] HADEG. HADEG Recycling GmbH. Offcial website at: http://www.hadeg-recycling.de
    [57] Pickering SJ, Carbon Fibre Recycling and Reuse2009Conference, IntertechPira, Hamburg,Germany,2009.
    [58] Jiang G, Pickering SJ, Walker GS, Wong KH, Rudd CD. Applied Surface Science2008;254:2588.
    [59] Wong KH, Pickering SJ, Turner TA, Warrior NA. Composites Innovation2007–ImprovedSustainability and Environmental Performance, Net Composites, Barcelona, Spain,2007.
    [60] Turner TA, Pickering SJ, Warrior NA. SAMPE’09Conference. SAMPE, Baltimore, MD,USA,2009.
    [61] Pickering SJ, Kelly RM, Kennerley JR, Rudd CD, Fenwick NJ. Composite ScienceTechnology2000;60:509.
    [62] Yip HLH, Pickering SJ, Rudd CD. Plastics, Rubber and Composites2002;31:278.
    [63] Kennerley JR, Kelly RM, Fenwick NJ, Pickering SJ, Rudd CD. Composites Part A1998;29:839.
    [64] Schlesinger ME. Aluminum recycling. Taylor&Francis Group, Boca Raton, London,2007.
    [65] Rombach G. Material for the future: Aluminum production and processes. DMG BusinessMedia, Ltd., Surrey, UK,1998.
    [66] Wolf S, Hoberg H.3rd ASM international conference of recycling of metals. ASMinternational, Brussels, Belgium,1997.
    [67] Lave LB, Hendrickson CT, Conway-Schempf NM, McMichael FC. Journal of environmentEngineering1999;125:944.
    [68] Martchek KL. Proceedings of the Air and Waste Management Association90th. annualmeeting and exhibition, Paper97-RP124B.01,1997.
    [69] Tang W, Reynolds AP. Journal of Materials Processing Technology2010;210:223.
    [70] Xiao Y, Reuter MA. Minerals Engineering2002;15:963.
    [71] Xiao YP, Reuter MA, Boin U. Journal of Environment Science and Health2005;40:1861.
    [72] Mashhadi HA, Moloodi A, Golestanipour M, Karimi EZV.2009;209:3138.
    [73] Tenorio JAS, Carboni MC, Espinosa DCR. Journal of Light Metals2001;1:195.
    [74] Tang W, Reynolds, AP. Journal of Materials Processing Technology2010;210:2231.
    [75] Fogagnolo JB, Ruiz-Navas EM, Simón MA, Martinez MA. Journal of Materials ProcessingTechnology2003;143-144:792.
    [76] Gronostajski J, Matuszak A. Journal of Materials Processing Technology1999;92-93:35.
    [77] Sherafat Z, Paydar, MH, Ebrahimi R. Journal of Alloys and Compounds.2009;487:395.
    [78] Samuel M. Journal of Materials Processing Technology2003;135:117.
    [79] Puga H, Barbosa J, Soares D, Silva F, Ribeiro S. Journal of Materials ProcessingTechnology2009;209:5195.
    [80] Martin RM. Electronic structure: Basic theory and practical methods. Cambridge UniversityPress, Cambridge,2004.
    [1] Vlot A, Gunnink JW. Fibre Metal Laminates, An Introduction. Dordrecht: Kluwer AcademicPublishers,2001.
    [2] Hinz S, Omoori T, Hojo M, Schulte K. Composites: Part A2009;40:925.
    [3] Alderliesten RC, Homan JJ. International Journal of Fatigue2006;28:1116.
    [4] http://www.fokker.com/Innovations-GLARE.
    [5] Asokana P, Osmania M, Price ADF. Journal of Cleaner Production2009;17:821.
    [6] Pickering SJ. Composites Part A2006;37:1206.
    [7] Pimenta S, Pinho ST. Waste Management2011;31:378.
    [8] Yoshioka T, Sato T, Okuwaki A. Journal of Applied Polymer Science1994;52:1353.
    [9] Chen J, Ober C, Poliks M. Polymer2003;43:131.
    [10] Tempelman E. Sustainable transport and advanced materials. PhD Thesis, Delft University ofTechnology, Netherlands, March1999.
    [11] Dang WR, Kubouchi M, Sembokuya H, Tsuda K. Polymer2005;46:1905.
    [12] Allred RE, Gosau JM, Shoemaker JM. SAMPE2001Symposium&Exhibition. SAMPE,Longbeach, CA, USA.2001.
    [13] Pinero-Hernanz R, Garcia-Serna J, Dodds C, Hyde J, Poliakoff M, Cocero MJ, Kingman S,Pickering S, Lester E. The Journal of Supercritical fluids2008;46:83.
    [14] Jiang G, Pickering SJ, Lester EH, Turner TA, Wong KH, Warrior NA. Composites ScienceTechnology2009;69:192.
    [15] Shokrolahi F, Sadi M, Shokrolahi P. Journal of Thermal Analysis and calorimetry.2005;82-151.
    [16] Lee JY, Choi HK, Shim MJ, Kim SW. Thermochimica Acta.2000;343:111.[17]
    [17] Guo ZS, Du SY, Zhang MB, Wu ZJ. Journal of Applied Polymer Science.2004;92:3338.
    [18] Barral L Cano J, López J, López-Bueno I, Nogueira P, Abad MJ, Ramírez C. EuropeanPolymer Journal2000;36:1231.
    [19] Wu GC, Yang JM. JOM2005;1:72.
    [20] Jen MHR, Sung YC, Lai YD. Advanced Materials Research2008;47-50:592.
    [21] Bamford CH, Tipper CFH, editors. Comprehensive chemical kinetics. New York: Elsevier;1980.
    [22] Park JW, Oh SC, Lee HP, Kim HT, Yoo KO. Polymer Degradation and Stability2000;67:535.
    [23] Jankovi B. Chemical Engineering Journal2010;162:331.
    [24] Sorai M. Comprehensive handbook of calorimetry&thermal analysis. Chichester: JohnWiley&Sons Ltd,2004.
    [25] Hatakeyama T, Quinn FX. Therrnal analysis fundamentals and applications to polymerscience (Second Edtion). Chichester: John Wiley&Sons Ltd,1999.
    [26] esták J, Berggren G. ThermochimActa1971;3:1.
    [27] Lee JH, Lee JW. Polymer Engineering Science1994;34:742.
    [28] Kamal MR, Sourour S. Polymer Engineering Science1973;13:59.
    [29] Ryan ME, Dutta A. Polymer1979;20:203.
    [30] Boey FYC, Qiang W. Polymer1999;41:2081.
    [31] Hseih HK, Su CC, Woo EM. Polymer1998;39:2175.
    [32] www.agy.com/technical_info/graphics_PDFs/Advanced_Materials.pdf
    [1] Totten GE, Mackenzie DS. Handbook of Aluminum: Volume2-Alloy production andmaterials manufacturing. New York: Marcel Dekker publisher,2003.
    [2] http://www.crct.polymtl.ca/fact/phase_diagram.php?file=KCl-NaCl.jpg&dir=FTsalt
    [3] Ho FK, Sahai Y. In: International symposium recycling of metals and engineered materials,2, Warrendale,1990, Proceedings, TMS,1990;85.
    [4] Roy RR, Sahai Y. Materials Transactions JIM1997;38:546.
    [5] Martin-Grain L, Dinet A, Hicter JM. Journal of Materials Science1979;14:2366.
    [6] Ho FK, Sahai Y. Light Metals1990, The Minerals, Metals&Materials Society1990;717.
    [7] Roy RR, Sahai Y. Light Metals1993, The Minerals, Metals&Materials Society1992;1067.
    [8] Roy RR, Sahai Y. Materials Transactions JIM1997;38:571.
    [9] Peterson RD. In: International symposium recycling of metals and engineered materials,2,Warrendale,1990, Proceedings, TMS,1990;69.
    [10] Tenório JAS, Carboni MC, Espinosa DCR. Journal of Light Metals2001;1:195.
    [11] Roy RR, Ye J, Sahai Y. Materials Transactions, JIM1997;38:556.
    [12] Tenório JAS, Delgado F. In: Light Metals97, Orlando, FL, TMS,1997:505.
    [13] Utigard TA, Friesen K, Roy RR, Lim J, Silny A, Dupuis C. JOM1998;11:38.
    [14] Ye J, Sahai Y. In: International symposium recycling of metals and engineered materials,3,Warrendale,1995, Proceedings, TMS,1995;639.
    [15] Hryn JN, et al. In: International symposium recycling of metals and engineered materials,3,Warrendale,1995, Proceedings, TMS,1995;905.
    [16] Rossel H. In: International symposium recycling of metals and engineered materials,3,Warrendale,1995, Proceedings, TMS,1995;663.
    [17] Van Linden JHL, Stewart Jr. DL. Light Metal1988:391.
    [18] Johnston TJ, Peterson RD. In: International symposium on recycle and secondary recoveryof metals and fall extractive and process metallurgy meeting, Fort Lauderdale,1985,Proceedings, AIME,1985:417.
    [19] Xiao Y, Reuter MA. Minerals Engineering2002;15:963.
    [20] Schlesinger ME. Aluminum recycling. CRC Press, New York: Taylor&Francis Group,2007.
    [21] Smith MR. Conservation and Recycling1983;5:33.
    [22] Xiao Y, Reuter MA, Boin U. Journal of Environmental Science and Health2005;40:1861.
    [23] Reynolds RM, Olper M. In: International symposium recycling of metals and engineeredmaterials,2, Warrendale,1990, Proceedings, TMS,1990;69.
    [24] Narayanan R, Sahai Y. Materials Transactions1997;38:85.
    [25] Xie G, Ohashi O, Yamaguchi N, Song M, Mitsuishi K, Furuya K, Noda T. Jpn. J. Appl. Phys.2003;42:4725.
    [26] Scherm F, V lkl R, Van Smaalen S, Plamondon P, L’espérance G, Bechmann F, Glatzel U.Mater. Sci. Eng. A2009;518:118.
    [27] Masson DB, Taghiei MM. Materials Transactions1989;30:411.
    [28] Born M, Green HS. Pro. R. Sco. Lond. Ser. A-Math. Phys. Sci. A1947;190:455.
    [29] Love JR, Rushton JH. M.Sc. Thesis, Purdue University,1965.
    [30] http://www.hi-shear.com/brochures/Hilok_Hitigue_Installation.PDF.
    [31] http://www.fokker.com/Innovations-GLARE
    [32] Müller RPG. An experimental and analytical investigation on the fatigue behavior offuselage riveted lap joints. PhD thesis, Delft University of Technology,1995.
    [33] Rans CD, Alderliesten RC, Straznicky PV. International Journal of Fatigue.2009;31:300.
    [34] Vlot A, Gunnink JW. Fibre Metal Laminates: An Introduction. Dordrecht: Kluwer AcademicPublishers,2001.
    [1] Ramanan RA, Sharkawy SW, El-zeky MA. Scripta Metallurgica et Materialia1992;27:821.
    [2] Yuan SP, Liu G. et al. Scripta Materialia2007;57:865.
    [3] Фридляндер ин et al.轻金属1988,5:48.
    [4] Srivatsan TS. Mater. Sci. Eng. A2000;281:292.
    [5] Yang YS, Zhang QS, He YL and Hu ZQ. Sci. Technol. Adv. Mater.2001;2:271.
    [6] Mondolfo LF. Aluminum Alloys: Structure and Properties.1976, Butterworth, London.
    [7] Z. Pan, Y. Du, B.Y. Huang. Z. Metallkd.2005,96:1301.
    [8] T. Suzuki. VCH1993,8:338.
    [9] E.S. Kadaner, N.I. Turkina, Kuz'mlna V.I.:"ALUMINIUM-RICH RANGE OF THE Al-Si-LiPHASE DIAGRAM", Russ. Metall.1(1976)150.
    [10] L.L. Hans. Refractory Metal Systems: Phase Diagrams, Crystallographic and Thermo-dynamic Data, Springer-Verlag Berlin Heidelberg,2009.
    [11] J. Gr bner, D. Mirkovic, R. Schmid-Fetzer. Mater. Sci. Eng. A2005,395:10.
    [12] P. Rogl, J.C. Schuster. ASM Int.1992:131.
    [13] M. Hillert, S. Jonsson. Calphad1992,16:199.
    [14] J. Lacaze, R. Valdes. Monatsh Chem.2005,136:1899.
    [15] H. Feufel, T. Godecke, H.L. Lukas, F. Sommer. J. Alloys Compd.1997,247:31.
    [16] M. Zuo, X.F. Liua, Q.Q. Sun, K. Jiang. Journal of Materials Processing Technology2009,209:5504.
    [17] M. Nagao, K. Oosumi, T. Nakamura. Journal of Japan Institute of Light Metals.1996,46:588.
    [18] G. Doan. Z. Metallkd.1926,18:350.
    [19] B. Hubera, S.E. Herta, K.W. Richter. Intermetallics2010,18:606–615.
    [20] P. Esslinger, F. Quatrehomme, H. Bleidorn. Z. Metallkd.1965,56:735.
    [21] H.L. Chen, F. Weitzer, J.C. Schuster, Y. Du, H. Xu. J. Alloys Compd.2007,436:313.
    [22] N. Krendelsberger, F. Weitzer, J.C. Schuster. Metall. Mater. Trans. A2002,33:3311.
    [23] Y. Du, J.C. Schuster, F. Weitzer, N. Krendelsberger, B. Huang, Z. Jin, W. Gong, Z. Yuan, H.Xu. Metall. Mater. Trans. A2004,35:1613.
    [24] G. Ghosh. VCH1992:394.
    [25] V. Raghavan. J. Phase Equilibria2002,23:362.
    [26] Z.K. Liu, Y.A. Chang. Metall. Mater. Trans. A1999,30:1081.
    [27] J.G. Barlock, L.F. Mondolfo. Z. Metallkde1975,66:605.
    [28] J.A. Reynolds, G.R. Tottle. J. Inst. Met.1951,80:93.
    [29] K.W. Richter, D.T. Gutierrez. Intermetallics2005,13:848.
    [30] X.M. Pan, Z.P. Jin, J.C. Zhao. Metall. Mater. Trans. A2005,36:1757.
    [31] H.W.L. Phillips. J. Inst. Metals (London)1954,82:9.
    [32] X.M. Pan, C. Lin, J.E. Morral, H.D. Brody. J. Phase Equilb. Diffus.2005,26:225.
    [33] I.N. Ganiev, A.V. Vakhobov, T.D. Dzhurayev. Russ. Metall.1977,4:175.
    [34] M.E. Drits, V.I. Kuz'mina, N.I. Turkina. Russ. Metall.1980,3:178.
    [35] D. Srinivasan. Materials Science and Engineering A2001,304-306:534.
    [36] F.R. Schmid. VCH1990,3:310.
    [37] J. Gr bner, D. Mirkovi, and R. Schmid-Fetzer. Metall. Mater. Trans. A.2004,35:3349.
    [38] A. Raman, K. Schubert. Z. Metallkde.1965,56:44.
    [39] P.S. Mohanty, J.E. Gruzleski. Acta Mater.1996,44:3755.
    [40] M.K. Hoffmeyer, J.H. Perepezko. Light Metals1991:1105.
    [41] W.V. Youdelis. Metals Sci.1979,13:540.
    [42] X.M. Gao, A. Jha, R. Brydson. Mater. Sci. Eng.2004, A364:340.
    [43] Y. Birol. J. Alloys Compd.2007,433:96.
    [44] G.K. Sigworth. Metall. Trans. A.1984,15A:278
    [1]严辉,杨巍,宋雪梅等.第一原理方法在材料科学中的应用.北京工业大学学报2004,30:210.
    [2] M.W. Finnis. The theory of metal-ceramic interfaces. Journal of Physics: Condensed Matter1996,8:5811.
    [3]朱梓忠,黄梅纯,张志鹏等.复杂材料体系的第一原理研究.厦门大学学报(自然科学版)2001,40:260.
    [4] W. Koch, M.C. Holthausen. A chemist’s guide to density functional theory, second edition.D-69469Weinheim: Wiley-VCH Verlag GmbH,2001.
    [5] Martin RM. Electronic structure: Basic theory and practical methods. Cambridge UniversityPress, Cambridge,2004.
    [6] M.D. Segall, P.J.D. Lindan, M.J. Probert, et al. First-principles simulation: ideas, illustrationsand the CASTEP code. Journal of physics: Condensed Matter,2002,14:2417.
    [7] W. Keiji, S. Masatoshi, T. Hideaki. J. Electroanal Chem.1999,473:250.
    [8] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.Physical Review B1990,41:7892.
    [9] N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, J. Andzelm. Comp. Mater. Sci.2003,28:250.
    [10] J.Y. Wang, Y.C. Zhou, T. Liao, J. Zhang, Z.J. Lin. Scripta Materialia2008,58:227.
    [11] S. Srinivasan, P.B. Desch, R.B. Schwartz. Scripta Mater.1991,25:2513.
    [12] R.E. Watson, M. Weinert. Phys. Rev. B1998,58:5981.
    [13] H. Ershbaumer, R. Podloucky, G. Temnitschka, P. Rogl. Intermetallics1993,1:104.
    [14] W. Wolf, P. Podloucky, H. Erschbaumer. Intermetallics1996,4:201.
    [15] J. Zou, C.L. Fu, M.H. Yoo. Philos. Mag.1995,71:45.
    [16] J.H. Xu, T. Oguchi. Phys. Rev. B1987,36:4186.
    [17] Z. Alahmed, H. Fu, Phys. Rev. B2007,76:224101.
    [18] S.H. Wei, S.B. Zhang, Phys. Rew. B2002,66:155211.
    [19] X. Zhang, C. Wang, Acta Mater.2009,57:224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700