用户名: 密码: 验证码:
离心泵关死点性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的飞速发展,现代很多离心泵的设计都对关死点性能提出了越来越明确的要求,比如核电用泵、舰船用泵和可再生能源泵等。由于传统离心泵设计对于关死点性能一般不予考虑,导致目前有关离心泵关死点性能的研究相当缺乏。因此,迫切需要开展离心泵关死点性能的研究以丰富和发展现代离心泵设计理论和方法。本文在国家自然科学基金(51079062、51109095)的资助下,采用理论分析、数值计算与试验测试相结合的方法对离心泵关死点的特性进行了较为系统的研究,主要工作和创造性成果有:
     1.较为系统地总结了离心泵关死点性能、内流模拟、PIV测试、流固耦合计算、流动诱导振动以及性能预测的研究现状及其发展趋势。
     2.首次试验研究了离心泵叶轮叶片出口角、叶片出口宽度、叶片数、叶片包角和叶片进口冲角等叶轮主要几何参数对离心泵关死点扬程和关死点功率的影响规律,并根据各参数引起的关死点扬程及关死点功率的变化范围对各参数的影响大小进行了排序。各参数对关死点扬程影响从大到小的顺序依次为:叶片包角、叶片出口宽度、叶片数、叶片进口冲角和叶片出口角。各参数对关死点功率影响从大到小的顺序依次为:叶片出口宽度、叶片包角、叶片数、叶片出口角和叶片进口冲角。
     3.在总结研究离心泵关死点扬程计算方法的基础上,以34台离心泵关死点扬程的试验数据为依据,采用一元非线性回归分析方法对7种常用的离心泵关死点扬程计算方法进行了修正。实例计算表明修正后各公式的计算精度得到了明显提高。
     4.首次基于BP人工神经网络建立了离心泵关死点功率的预测模型,并给出了网络的输入模式和拓扑结构。采用46组不同比转数离心泵结构参数和关死点性能参数对网络模型进行了训练,采用另外3组不同比转数的离心泵模型对网络进行了检验,检验结果表明网络平均预测偏差为4%,具有比较高的工程应用价值。
     5.建立了离心泵关死点内流数值模拟方法,并对3台不同比转数的离心泵在关死点工况下的内部流动进行了全流场数值计算,基于数值模拟结果预测了各模型泵关死点扬程以及各模型泵过流部件内的流动结构与压力脉动规律。研究结果表明:(1)各模型关死点扬程预测值与试验值偏差均在5%以内,这说明提出的数值模拟方法是基本正确的;(2)叶轮内不稳定流动对进口管路内流的影响距离约为管径的10倍;叶频对进口管路压力脉动基本没有影响,轴频对进口管路内压力脉动有影响但比较小;(3)在关死工况下,随着比转数的增加叶轮出口处的漩涡面积比例有逐渐减小的趋势,而叶轮进口的漩涡面积比例有逐渐增大的趋势,同时叶轮出口的“射流-尾迹”现象也越来越明显;轴频对叶轮进口压力脉动影响较大,叶轮出口的压力脉动则受叶频的影响较大;蜗壳内各点的压力脉动最大幅值都是出现在叶频处,这说明动静干涉对蜗壳内的压力脉动有着较大的影响;(4)出口管路内各点压力脉动曲线基本一致,各曲线波峰波谷数与各模型叶片数相等,同时其最大幅值均出现在叶频处。
     6.对一比转数为65的离心泵关死点内部流动进行了PIV测试,并将内流测试结果与数值模拟结果进行了详细对比。对比结果表明除叶轮进口附近流场外,PIV试验测得的内流场与数值模拟计算得到的内流场都较为一致;叶轮进口流场的差异很有可能是PIV示踪粒子沉降而导致的。
     7.对一比转数为46.2的离心泵关死点工况下的结构场和内流场进行了流固耦合数值计算,对比了流固耦合前后关死点扬程预测精度和泵内流场分布的差异,并详细分析了叶轮的结构变形。研究结果表明:(1)考虑流固耦合作用后关死点扬程的预测精度有所提高;(2)考虑流固耦合作用后叶轮内各监测点的压力脉动现象呈现出明显的周期性且脉动幅度也明显增大;(3)叶轮盖板上越靠近隔舌的区域,其位移变形和等效应力越大;各叶片的位移变形从进口到出口逐渐增大,但各叶片的等效应力最大值并不在叶片出口边。
     8.采用加速度传感器对一比转数为65的离心泵关死工况下的流动诱导振动进行了测试,并对试验结果进行了详细分析。试验结果表明:(1)轴向振动加速度脉动呈现一定的弱周期性规律,径向振动加速度脉动没有任何周期性;(2)蜗壳隔舌处的振动加速度脉动幅值最大;(3)各测点的最大振动加速度均出现在1400Hz附近,大约是叶片通过频率的10倍;(4)蜗壳5断面处的轴向振动程度是最为剧烈的,而7断面处的径向振动程度是最弱的。
With the rapid development of social economy, the characteristics of centrifugal pumps at shut-off condition (SOC), such as nuclear power pumps, marine pumps, renewable energy pumps and so on, have become indispensable to the hydraulic design. The characteristics of centrifugal pumps at SOC are not considered in traditional design, which results in that the present study on characteristics at SOC is very few. Therefore, it is urgent to research characteristics at SOC to develop the modern design methods of centrifugal pumps. Under the financial support from National Natural Science Foundation of China (51079062,51179075), the characteristics of centrifugal pumps at SOC are researched deeply in this paper by using theory analysis, numerical simulation and test. The main research contents and important conclusions of this paper include:
     1. The present situations and development trends on related aspects of centrifugal pumps were summarized, such as characteristics at SOC, inner flow simulation, PIV test, fluid structure interaction, flow induced vibration and performance prediction and so on.
     2. The effects of impeller main parameters on characteristics at SOC, including blade outlet angle, blade outlet width, blade numberm, blade wrapping angle and blade inlet attack angle, are studied by experiment test for the first time. The effects of those parameters are compared with each other in detail.
     3. The main calculation methods of head at SOC for centrifugal pums are summarized and the concrete formula of each mthod is presented. Based on experimental data of23centrifugal pumps, the7formulas of head at SOC which are used often are modified, and the coefficients are calculated by regression analysis method. The practical applications show that the modification can improve the accuracy of each formaula obviously.
     4. Based on BP artifical neural network, the prediction model of power at SOC for centrifugal pumps is established firstly, and the input model and topology of the network are presented. The different data of46centrifugal pumps are used to train the network model, and the different data of another3centrifugal pumps are used to check the network model. The resulats indicate thet the average prediction deviation of the networl is4%, and the predition model can be used in engineering application.
     5. The numercial simulation method for inner flow in centrifugal pumps at SOC is established, and the method is used to simulate the inner flow in3different centrifugal pumps. According to the simulation results, the charactersistics and inner flow structure of the3pumps are analyzed. The main conslusions are following.(1) The prediction deviations of head at SOC of the3pumps are all less than5%.(2) The unsteady flow in impeller has significant imapcts on flow in inlet pipe, and the influence distance is ten times pipe diameter. Only the rotation frequency has a few effects on pressure fluctuation in let pipe.(3) With the increase of specific speed, the vortex at impeller outlet gets smaller, while the vortex at impeller inlet becomes larger, and the "jet-wake" at impeller outlet gets more obvious. The rotation frequency has obvious impacts on pressure fluctuation at impeller inlet, while the pressure fluctuation at impeller outlet and volute is mainly affected by blade passing frequency.(4) The pressure fluctuation curves at all points in outlet pipe are same. The number of wave crest on each curve is equal to blade number, and the maximum fluctuation amplitude occurs at blade passing frequency.
     6. The inner flow in a centrifugal pump at SOC, whose specific speed is65, is tested by PIV technology, and the experiment results are compared with simulation results in detail. The comparison shows that except the flow field at the impeller inlet, the inner flow distribution obtained by PIV is basically similar to that obtained by numerical simulation. The difference of flow field at impeller inlet probably results from sedimentation of tracking particles.
     7. At SOC, the structure field and flow field of a centrifugal pump, whose specific speed is46.2, are calculated by fluid structure interaction (FSI), and the effects of FSI on head and inner flow field are discussed. Also, the impeller distortion is analyzed in detail. The following3results are obtained.(1) The calculation of FSI can improve the prediction accuracy of head at SOC.(2) The pressure fluctuation in impeller obtained by calculation of FSI presents more obvious periodicity, and the fluctuation amplitude gets bigger.(3) The displacement and stress at the location which is near to the volute tongue are bigger. The displacement increases gradually from blade inlet to outlet, but the biggest stress is not at the blade outlet.
     8. The flow induced vibration in a centrifugal pump at SOC, whose specific speed is65, is tested by using acceleration sensors, and the test results are analyzed carefully. The main conclusions are as follow.(1) The axial vibration presents weak periodicity, while the radial vibration has no periodicity.(2) The fluctuation amplitude at volute tongue is the biggest.(3) The biggest acceleration of each test point is at1400Hz, which is about10times blade passing frequency.(4) The axial vibration at section5of volute is the most violent, while the radial vibration at section7is weakest.
引文
[1]关醒凡.现代泵理论与设计[M].北京:中国宇航出版社,2011.
    [2]Worster R C. The flow in volutes and its effect on centrifugal pump performance[J]. Proceedings of the Institution of Mechanical Engineers,1963,177(31):843-865.
    [3]Short T D, Oldach R. Solar powered water pumps:the past, the present-and the future[J]. Transactions of the ASME,2003,125(1):76-82.
    [4]郑诗程,苏建徽,沈玉梁,等.具有TMPPT功能的数字式光伏水泵系统的设计[J].农业工程学报,2004,20(5):270-274.
    [5]袁寿其,付强,朱荣生,等.核电站离心式上充泵多工况水力设计[J].排灌机械工程学报,2010,28(3):185-189.
    [6]Felix A M, Peter H, Philippe D. CFD calculation of a mixed flow pump characteristic from shutoff to maximum flow[J]. Journal of Fluids Engineering,2002,124(3):798-802.
    [7]Throne E W. Head and power at closed valve[C]//Proceedings of the Institution of Mechanical Engineers Conference on Part-load Pumping Operation, Control and Behaviour,1988, London, England,7-13.
    [8]Stirling T E. Analysis of the design of two pumps using NEL methods[C]//Proceedings of the Institution of Mechanical Engineers Conference on Centrifugal Pump-Hydraulic Design,1982, London, England,35-73.
    [9]Kala M, Steven F, Sadrul U. Solar photovoltaic water pumping for remote locations[J]. Renewable and Sustainable Energy Reviews,2008,12(2):472-487.
    [10]Dyson G. A review of closed valve head prediction methods for centrifugal pumps[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2002,216(4):329-337.
    [11]Newton T M. Rotor-stator Interaction in Radial Flow Pumps and Fans at Shut-Off Conditions[D]. Newcastle:Newcastle University,1998.
    [12]Throne E W. Head and power at closed valve[C]//Proceedings of the Institution of Mechanical Engineers Conference on Part-load Pumping Operation, Control and Behaviour,1988, London, England,7-13.
    [13]Stirling T E. Analysis of the design of two pumps using NEL methods[C]//Proceedings of the Institution of Mechanical Engineers Conference on Centrifugal Pump-Hydraulic Design,1982, London, England,55-73.
    [14]Frost T H, Nilsen E. Shut-off head of centrifugal pumps and fans[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,1991,205(3): 217-223.
    [15]王福军,黎耀军,王文娥,等.水泵CFD应用中的若干问题的思考[J].排灌机械,2005,23(5):1-10.
    [16]Dawes W N, Dhanasekaran P C, Demargne A A J, et al. Reducing bottlenecks in the CAD-to-mesh-to-solution cycle time to allow CFD to participate in design[J]. Journal of Turbomachinery,2001,123(3):552-557.
    [17]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [18]王汉青,王志勇,寇广孝.大涡模拟理论进展及其在工程的应用[J].流体机械,2004,32(7):23-27.
    [19]Marchioli C, Giusti A, Vittoria Salvetti M, et al. Directnumericalsimulation of particle wall transfer and deposition in upward turbulent pipe flow[J]. International Journal of Multiphase Flow,2003,29(6):1017-1038.
    [20]Byskov R K., Jacobsen C B, Padersen N. Flow in a centrifugal pump iImpeller at design and off-design conditions—Part Ⅱ:large eddy simulations[J]. Journal of Fluids Engineering,2003, 125(1):73-83.
    [21]Padersen N, Larsen P S, Jacobsen C B. Flow in a centrifugal pump impeller at deseign and off-design conditions—Part Ⅰ:particle image velocimetry (PIV) and laser doppler velocimetry (LDV) measurements[J]. Journal of Fluids Engineering,2003,125(1):61-72.
    [22]Takahide NAGAHARA, Yasuhiro INOUE, Toshiyuki SATO, et al. Investigation of the flow field in a multistage pump by using LES[C]//Proceedings of the ASME 2005 Fluids Engineering Division Summer Meeting, June 19-23,2005, Houston, TX, USA.
    [23]Tokay T E, Constantinescu S G. Validation of a large-eddy simulation model to simulate flow in pump intakes of realistic geometry[J]. Journal of Hydraulic Engineering,2006,132(12): 1303-1315.
    [24]Fukao Shinji, Yamanishi Nobuhiro, Qiao Xiangyu, et al. LES simulation of back flow vortex structure at the inlet of an inducer[J]. Transactions of the JSME, Part B,2004,70(700): 3058-3065.
    [25]瞿丽霞, 王福军,从国辉,等.隔舌间隙对双吸离心泵内部非定常流场的影响[J].农业机械学报,2011,42(7):50-55,74.
    [26]瞿丽霞,王福军,从国辉,等.双吸离心泵叶片压力脉动特性分析[J].农业机械学报,2011,42(9):79-84,78.
    [27]吴玉林,葛亮,陈乃祥.离心泵叶轮内固液两相流动的大涡模拟[J].清华大学学报(自然科学版),2001,41(10):93-96.
    [28]Xuelin Tang, Fujun Wang, Yulin Wu. An improved large eddy simulation of two-phase flows in a pump impeller[J]. Acta Mechanica Sinica,2007,23 (6):635-643.
    [29]王乐勤,李志峰,戴维平,等.离心泵启动过程内部瞬态流动的二维数值模拟[J].工程热物理学报,2008,29(8):1319-1322.
    [30]祝磊,袁寿其,袁建平,等.不同型式隔舌对离心泵动静干涉作用的数什模拟[J].农业工程学报,2011,27(10):50-55.
    [31]袁建平,付艳霞,刘阳,等.基于大涡模拟的离心泵蜗壳内压力脉动特性分析[J].排灌机械工程学报,2010,28(4):310-314.
    [32]康伟,祝宝山,曹树良.离心泵螺旋形压水室内流场的大涡模拟[J].农业机械学报,2006,37(3):62-65.
    [33]谈明高.离心泵能量性能预测的研究[D].镇江:江苏大学,2008.
    [34]从国辉,王福军.双吸离心泵隔舌压力脉动特性分析[J].农业机械学报,2008,39(6):60-63,67.
    [35]王文全,张立翔,闫妍,等.节能离心泵全流道内湍流的动态大涡模拟[J].流体机械,2008,36(1):14-18.
    [36]王福军.CFD在水力机械湍流分析与性能预测中的应用[J].中国农业大学学报,2005,10(4):75-80.
    [37]Jose Gonzalez, Joaquin Fernandez, Eduardo Blanco, et al. Numerical simulation of the dynamic effects due to impeller-volute interaction in a centrifugal pump[J]. Journal of Fluids Engineering,2002,124(2):348-354.
    [38]Jose Gonzalez, Jorge Parrondo, Carlos Santolaria, et al. Steady and unsteady radial forces for a centrifugal pump with impeller tongue gap variation[J]. Journal of Fluids Engineering,2006, 128(3):454-462.
    [39]Jose Gonzalez, Carlos Santolaria. Unsteady flow structure and global variables in a centrifugal pump[J]. Journal of Fluids Engineering,2006,128(5):937-946.
    [40]Jose Gonzalez, Jesus Manuel Fernandez Oro, Katia M Arguelles Diaz, et al. Unsteady flow pattern for a double suction centrifugal pump[J]. Journal of Fluids Engineering,2009,131(7): 071102.1-071102.9.
    [41]Jesus Manuel Fernandez Oro, Jose Gonzalez, Katia M Arguelles Diaz, et al. Decomposition of deterministic unsteadiness in a centrifugal turbomachine:nonlinear interactions between the impeller flow and volute for a double suction pump[J]. Journal of Fluids Engineering,2011, 133(1):011103.1-011103.10.
    [42]Souza B DE, Nvien A, McEvoy R. A Numerical investigation of constant-velocity volute design approach as applied to the single blade impeller pump[J]. Journal of Fluids Engineering,2010, 132(6):061103.1-061103.7.
    [43]Sano T, Yoshida Y, Tsujimoto Y, et al. Numerical study of rotating stall in a pump vaned diffuser[J]. Journal of Fluids Engineering,2002,124(2):363-370.
    [44]Guleren K M, Pinarbasi. Numerical simulation of the stalled flow within a vaned centrifugal Pump[J]. Journal of Mechanical Engineering Science,2004,218(4):425-435.
    [45]Kitano Majidi. Numerical study of unsteady flow in a centrifugal pump[J]. Journal of Turbomachniery,2005,127(2):363-371.
    [46]Shukla S N, Kshirsagar J T. Numerical experiments on a centrifugal pump[C]//Proceedings of the ASME 2002 Joint U.S.-European Fluids Engineering Division Conference, July 14-18,2002, Montreal, Quebec, Canada.
    [47]Sinha M, Katz J. Quantitative visualization of the flow in a centrifugal pump with diffuser vanes- Ⅰ:on flow dtructures and turbulence[J]. Journal of Fluids Engineering,2000,122(1): 97-107.
    [48]Chen K W, Lee TS, WINOTO S H, et al. Numerical flow simulation in a centrifugal pump at design and off-design conditions[J]. International Journal of Rotating Machinery, Volume 2007, Article ID 83641,8pages.
    [49]唐辉,何枫.离心泵内流场的数值模拟[J].水泵技术,2002(3):3-7,14.
    [50]舒敏骅,刘厚林,谈明高,等.不同比转数离心泵设计工况下湍流模型的适用性研究[J].中国农村水利水电,2011(2):142-145.
    [51]张伟,余运超,陈红勋.离心泵叶轮非设计工况下内部湍流流场的模拟[J].排灌机械工程 学报,2010,28(1):38-42.
    [52]江帆,陈维平,王一军,等.基于动网格技术的离心泵内部流场数值模拟[J].流体机械,2007,35(7):20-24.
    [53]任涛,闫永强,梁武科.CFD技术在离心泵优化设计中的应用[J].排灌机械,2007,25(1):25-28.
    [54]施卫东,蒋婷,曹卫东,等.高扬程无过载潜水排污泵的优化设计与试验[J].农业工程学报,2011,27(5):151-155.
    [55]黄思,王国玉.离心泵内流场非对称性及受力的三维数值分析[J].农业机械学报,2006,37(10):66-69.
    [56]张淑佳,胡清波,朱保林,等.IS80-65-160离心泵三维内流场数值模拟[J].水泵技术,2006(3):24-26,23.
    [57]徐朝晖,吴玉林,陈乃祥,等.高速泵三维非定常动静干涉流动计算[J].机械工程学报,2004,40(3):1-4.
    [58]成立,薛坚,刘超,等.CFD技术在泵装置水力优化设计中的应用[J].南水北调和水利科技,2007,5(3):33-37.
    [59]Dyson G, Teixeira J. Investigation of closed valve operation using computational fluid dynamics[C]//Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting, August 2-5,2009, Vail, Colorado, USA.
    [60]黄萍.离心泵关死点内部流场数值模拟及实验研究[D].镇江:江苏大学,2008.
    [61]袁建平,袁寿其,何志霞,等.离心泵内部流动测试研究进展[J].农业机械学报,2004,35(4):188-191.
    [62]杨敏官,王军锋,罗惕乾,等.流体机械内部流动测量技术[M].北京:机械工业出版社,2006.
    [63]Moore J. A wake and an eddy in a radial flow passage, part I:Experimnetal observations[J]. Journal of Engineering for Power,1973,95(3):205-212.
    [64]Koyama H S, Uchikawa K, Nigim H H. Effects of Coriolis force on How in rotating diffusers[J]. AIAA journal,1997,35(7):1164-1170.
    [65]黄建德.离心泵进口回流的发生机理及预估[J].上海交通大学学报,1998,32(7):10-13.
    [66]范洁川.近代流动显示技术[M].北京:国防工业出版社,2002.
    [67]Paone N, Riethmuller M L, Braembussche R A. Experimental investigation of the How in the vaneless diffuser of a centrifugal pump by particle image displacement velocimetry[J]. Experiments in Fluids,1989,7(6):371-378.
    [68]Feng Jianjun, Benra Friedrich-Karl, Dohmcn H J. Time-resolved particle image Velocimetry (PIV) measurements in a radial diffuser pump[C[//Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting,2009:323-329.
    [69]Westra R W, Broersma L. PIV measurements and CFD computations of secondary How in a centrifugal pump impeller[J]. Journal of Fluids Engineering,2010,132(6):061104.1-061104.8.
    [70]Krause N, Zahringer K, Pap E. Time-resolved particle imaging velocimetry for the investigation of rotating stall in a radial pump[J]. Experiments in Fluids,2005,39(2):192-201.
    [71]Sinha M, Pinarbashi A, Katz J. The flow structure during onset and developed states of rotating stall within a vaned diffuser of a centrifugal pump[J]. Journal of Fluids Engineering,2001, 123(3):490-499.
    [72]Dong R, Chu S, Katz J. Effect of modification to tongue and impeller geometry on unsteady flow, pressure fluctuations, and noise in a centrifugal pump[J]. Journal of Turbomachinery, 1997,119(3):506-515.
    [73]Oldenburg M. Velocity measurement in the impeller and in the volute of a centrifugal pump by particle image displacement velocimetry[C]//Proceedings of the 8th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon,1996.
    [74]Hayami H. Flow measurement in a rotation impeller passage using PIV[C]//Proceedings of the Third International Conference on Pumps and Fans, Tsinghua University Press,1998:13-19.
    [75]Lee Young-Ho. Animation technique applied to a fixed and pitching airfoil by particle image velocimetry[C]//Proc.2nd ISFMFE, China Science & Technology Press,2000:11-17.
    [76]Mekhail T, Li Z, Zhaohui D, et al. The application of PIV in the study of impeller-diffuser interaction in centrifugal fan-Part Ⅱ:impeller-vaned diffuser interaction[C]//Proceedings of the ASME Fluid Engineering Division-IMECE2001/FED-24953, November 11-16,2001, New York, USA.
    [77]Stickland M T, Scanlon T J, Fernandez Francos J, et al. A numerical and experimental analysis of flow in a centrifugal pump[C]//Proceedings of the ASME 2002 Fluids Engineering Division Summer Meeting/FEDSM2002-31175, July 14-18,2002, Montreal, Canada.
    [78]邵春雷,顾伯勤,陈哗.PIV测量用模型泵的设计及测量中的误差分析[J].流体机械,2007,35(12):39-44.
    [79]邵春雷,顾伯勤,黄星路,等.低比转速泵叶轮流道内部流动的PIV试验[J].航空动力学报,2010,25(9):2091-2096.
    [80]邵春雷,顾伯勤,陈哗.吸水室内部流动的粒子图像测速试验[J].航空动力学报,2009,24(1):157-161.
    [81]靳茂明,宋高峰,王志亮.PIV测量用模型泵的水力设计及性能分析[J].化工机械,2010,37(4):439-443.
    [82]杨华,汤方平,刘超,等.离心泵叶轮内二维PIV非定常流动测量[J].农业机械学报,2011,42(7):56-60.
    [83]陈松山,周正富,葛强,等.低比转数离心泵叶轮内部流动的测量[J].扬州大学学报(自然科学版,2006,9(1):74-78.
    [84]杨敏官,刘栋,康灿,等.离心泵叶轮内部伴有盐析流场的分析[J].农业机械学报,2006,37(12):83-86.
    [85]杨敏官,刘栋,顾海飞,等.盐析固-液两相流场的PIV测量方法[J].江苏大学学报(n然科学版1,2007,28(4):324-327.
    [86]万毅,柯坚.离心泵流道和泵腔内流场的试验研究[J].机械工程学报,2005,41(10)226-230.
    [87]袁寿其,何有世,袁建平,等.带分流叶片的离心泵叶轮内部流场的PIV测量与数值模拟 [J].机械工程学报,2006,42(5):60-63.
    [88]Wu Yulin, Liu Shuhong, Yuan Huijing, et al. PIV measurement in internal instaneous flows of a centrifugal pump[J]. Science China Technological Science,2011,54(2):270-276.
    [89]Wang K, Liu H L, Yuan S Q, et al. Numerical simulation and stereo PIV test of inner flow in a double blades pump[C]//Proceedings of ASME-JSME-KSME Joint Fluids Engineering Conference 2011, July 24-29,2011, Hamamatsu, Japan..
    [90]邵杰,刘树红,张桂英,等.大出口角离心泵叶轮内部流动的PIV测量分析[J].水泵技术,2010,(2):1-7.
    [91]赵斌娟,袁寿其,刘厚林,等.双流道及双叶片式叶轮内流场的PIV测量与比较[J].农业机械学报,2008,39(12):82-85.
    [92]王凯,刘厚林,袁寿其,等.零流量工况下双叶片泵内部流场三维PIV测量[J].农业机械学报,2011,42(7):61-65.
    [93]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38.
    [94]郭术义,陈举华.流固耦合应用研究进展[J].济南大学学报,2004,18(2):123-126.
    [95]袁启明.轴流泵叶片流固耦合振动特性分析[D].扬州:扬州大学,2009.
    [96]Gorla R S R, Pai S S, Blankson I, et al. Unsteady fluid structure interaction in a turbine blade[C]//Proceedings of GT 2005, ASME Turbo Expo:Power for Land, Sea and Air, June 6-9, 2005, Reno-Tahoe, Nevada, USA.
    [97]Ausoni P, Farhat M, Avellan F, et al. Cavitation effects on fluid structure interaction in the case of a 2D hydrofoil[C]//Proceedings of ASME 2005 Fluids Engineering Division Summer Meeting and Exhibition, June 19-23,2005, Houston, TX, USA.
    [98]Rodriguez C G, Equsquiza E, Escaler X, et al. Experimnetal investigation of added mass effects on a Francis turbine runner in still water[J]. Journal of Fluids and Structure,2006,22(5): 699-712.
    [99]毛军,杨立国,郗艳红.大型轴流风机叶片的气动弹性数值分析研究[J].机械工程学报,2009,45(11):134-139.
    [100]谷朝红,姚熊亮,陈起富.水轮机部件流固耦合振动特性研究[J].大电机技术,2001,(6):47-52.
    [101]Dubas M, Schuch M. Static and dynamic calculation of a francis turbine runner with some remarks on accuracy[J]. Computers and structure,1987,27(5):645-655.
    [102]Zhu Shi lin. The dynamic property research for Francis Turbine Runer in water[C|// Proceedings of the 4th Asian International Conference on Fluid Machinery,1993, Su zhou, China.
    [103]王正伟.考虑液固耦合作用的水轮轮机叶片动力特性分析[D].北京:清华大学,1996.
    [104]Zhang Lixiang, Guo Yakun, Wang Wenquan. FEM simulation of turbulent flow in a turbine blade passage with dynamical fluid-structure interaction[J]. International Journal for Numerical Methods in Fluids,2009,61(12):1299-1330.
    [105]Zhang Lixiang, Guo Yakun, Wang Wenquan. Large eddy simulation of turbulent flow in a true 3D Francis hydro turbine passage with dynamical fluid-structure interaction[J]. International Journal for Numerical Methods in Fluids,2007,54(5):517-541.
    [106]Brennen CE. Hydrodynamics and Cavitation of Pumps[M]. Vienna:Springer,2008.
    [107]Friedrich-Karl B, Hans J D. Comparison of pump impeller orbit curves obtained by measurement and FSI simulation[C]//Proceedings of the 2007 ASME Pressure Vessels and Piping Conference, July 22-26,2007, San Antonio, TX, United States.
    [108]Nobuhiro Yamanishi, Miki Nishimoto, Syuusuke Hori, et al. Numerical analysis of fluid-induced vibration in the LE-7A liquid hydrogen pump[C]//Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,21-23 July,2008, Hartford, CT.
    [109]Chisachi Kato, Shinobu Yoshimura, Yoshinubo Yamade, et al. Prediction of the noise from a multi-stage centrifugal pump[C]//Proceedings of ASME 2005 Fluids Engineering Division Summer Meeting and Exhibition, June 19-23,2005, Houston, TX, USA.
    [110]裴吉,袁寿其,袁建平.流固耦合作用对离心泵内部流场影响的数值计算[J].农业机械学报,2009,40(12):107-112.
    [111]刘厚林,徐欢,吴贤芳,等.流固耦合作用对离心泵内外特性的影响[J].农业工程学报,2012,28(13):82-86.
    [112]钱玉琴.高速离心泵流固耦合动力特性研究高速泵诱导轮静应力及模态分析[D].镇江:江苏大学,2010.
    [113]王洋,于洪玉,张翔,等.基于流固耦合理论的离心泵冲压焊接叶轮强度分析[J].农业工程学报,2011,27(3):131-136.
    [114]王勇.离心泵空化及其诱导振动噪声研究[D].镇江:江苏大学,2011.
    [115]克里斯托弗.厄尔斯.布伦南著,潘中永译.泵流体力学[M].镇江:江苏大学出版社,2012.
    [116]Dong R, Chu S, Katz J. Relationship between unsteady flow, pressure fluctuations, and noise in a centrifugal pump[J]. Journal of Fluids Engineering,1995,117(1):24-29.
    [117]Srivastav O P, Pandu K R, Gupta K. Effect of radial gap between impeller and diffuser on vibration and noise in a centrifugal pump[J]. Journal of the Institution of Engineers (India), Part MC, Mechanical Engineering Division,2003,84(1):36-39.
    [118]Langthjem M A, Olhoff N. Optimum design of the volute tongue against flow-induced noise in a centrifugal pump[C]//Proceedings of the Fourth World Congress of Structural and Multidisciplinary Optimization, June 4-8,2001, Dalian, China.
    [119]Langthjem M A, Olhoff N. A numerical study of flow-induced noise in a two-dimensional centrifugal pump Part Ⅰ:hydrodynamics[J]. Journal of Fluids and Structures,2004,19(3): 349-368.
    [120]Langthjem M A, Olhoff N. A numerical study of flow-induced noise in a two-dimensional centrifugal pump Part Ⅱ. hydroacoustics[J]. Journal of Fluids and Structures,2004,19(3): 369-386
    [121]Jiang Y Y, Yoshimura S, Imai R, et al. Quantitative evaluation of flow-induced structural vibration and noise in turbomachinery by full-scale weakly coupled simulation[J]. Journal of Fluids and Structures,2007,23(4):531-544.
    [122]Choi J S, Mclaughlin D K, Thompson D E. Experiments on the unsteady flow field and noise generation in a centrifugal pump[J]. Journal of Sound and Vibration,2003,263(3):493-514.
    [123]何希杰,于禧民.离心泵水力设计对振动的影响[J].水泵技术,1995(1):17-21.
    [124]吴仁荣,陈文毅.降低离心泵运行振动的水力设计[J].机电设备,2004(4):18-22.
    [125]吴仁荣.降低离心泵运行振动和噪声的结构设计(一)[J].船舶科学技术,1980(4):23-26.
    [126]吴仁荣.降低离心泵运行振动和噪声的结构设计(二)[J].船舶科学技术,1980(5):79-84.
    [127]黄国富,常煜,张海明,等.低振动噪声船用离心泵的水力设计[J].船舶力学,2009,13(2):313-318.
    [128]黄国富,常煜,张海民.基于CFD的船用离心泵水动力振动噪声源分析[J].水泵技术,2008(3):20-24.
    [129]叶建平.离心泵振动噪声分析及声优化设计研究[D].武汉:武汉理工大学,2006.
    [130]马群南,吴仁荣,徐琼琰,等.吸入压力对泵振动和噪声的影响[J].水泵技术,2005(2):34-38.
    [131]冯涛,刘克,李晓宏,等.离心泵水动力噪声测试系统的研制[J].流体机械,2005,33(4):27-30.
    [132]吴简彤,王建华.神经网络技术及其应用[M].哈尔滨:哈尔滨工程大学出版社,1998.
    [133]许东,吴铮.基JMATLAB6.X的系统分析与设计—神经网络[M].西安:西安电子科技大学出版社,2002.
    [134]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003.
    [135]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2005.
    [136]聂书彬,关醒凡,刘厚林.利用人工神经网络预测离心泵性能的探索[J].水泵技术,2002(5):16-18
    [137]刘光临,蒋劲,符向前.BP神经网络法预测水泵全性能曲线的研究[J].武汉水利电力大学学报,2000(2):37-39
    [138]丛小青,袁寿其,袁丹青,等.基于改进BP神经网络的离心泵性能预测[J].农业机械学报,2006,37(11):56-59.
    [139]刘厚林,王勇,谈明高,等.基于神经网络的离心泵汽蚀性能预测[J].排灌机械,2008,26(3):15-18.
    [140]谈明高,刘厚林,袁心其,等.基于神经网络的离心泵能量性能预测[J].农业机械学报,2010,4](11):52-56.
    [141]Mustafa Golcii. Neural network analysis of head-flow curves in deep well pumps[J]. Energy Conversion and Management,2006,47(7-8):992-1003.
    [142]Mustafa Golcii. Artificial neuralnetwork based modeling of performance characteristics of dcepwellpumps with splitter blade[J]. Energy Conversion and Management,2006,47(18-19): 3333-3343.
    [143]谈明高,袁寿其,刘厚林.离心泵性能预测的研究现状及展望[J].水泵技术,2005(3):23-25.
    [144]谈明高,刘厚林,袁寿其.离心泵能量性能预测的对比[J].农业工程学报,2008,24(11):95-98.
    [145]董长虹MATLAB神经网络与心用[M].北京:科·学出版社,2005.
    [146]闻新,周露,李翔,等MATLAB神经网络仿真与应用[M].北京:科学出版社,2003.
    [147]Launder B E, Spalding D B. Lectures in Mathematical Models of Turbulence[M]. Academic Press, London,1972.
    [148]V Yakhot, S A Orzag. Renormalization group analysis of turbulence:basic theory[J]. Journal of Scientific Computation,1986 (1):3-11.
    [149]Wilcox D C. Reassessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal,1988,26 (11):1299-1310.
    [150]Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal,1994,32(8):1598-1605.
    [151]Abramian M, Howard J H G. Experimental investigation of the steady and unsteady relative flow in a model centrifugal impeller passage[J]. Journal of Turbomachinery,1994, 116(2):269-279.
    [152]党小建.水轮机导叶流固耦合振动特性计算[D].西安理工大学,2004.
    [153]钱伟长.变分法及有限元[M].北京:科学出版社,1980.
    [154]王孚懋,任勇生,韩宝坤.机械振动与噪声分析基础[M].北京:国防工业出版社,2006.
    [155]杨建刚.旋转机械振动分析与工程应用[M].北京:中国电力出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700