用户名: 密码: 验证码:
金纳米红外光敏与稀土上转换荧光材料光学性质与生物应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵金属,稀土掺杂荧光上转换等红外光功能纳米材料在肿瘤靶向治疗,活体荧光成像和传感等生物医学应用领域展示了诱人的前景,但在实际应用中还存在一定的障碍和局限。金纳米棒在近红外区具有强表面等离子共振特性,可有效将吸收的光转化成热,是红外肿瘤热疗的理想光敏材料;然而,金纳米棒表面性质影响纳米粒子在溶液环境中的存在状态尤其是肿瘤治疗中靶向功能的实现。稀土红外-可见上转换纳米材料在活体成像中具有穿透深度深,可避免生物体干扰信号等优点,但其荧光上转换效率较低,且可见光发射在活体成像中难于在活体中直接探测。为解决以上问题,本论文以金纳米棒与稀土掺杂上转化纳米粒子为研究对象,一方面,合成了新的乳腺癌细胞SK-BR-3的靶向肽,并将其与聚丙烯酸(PAA)修饰的金纳米棒共价连接,应用于乳腺癌细胞(SK-BR-3)选择性光热治疗研究;采用新的表面层谷胱甘肽修饰金纳米棒,探讨了谷胱甘肽修饰金纳米棒与蛋白质的相互作用,并研究叶酸、罗丹明功能化金纳米棒的靶向成像及光热治疗作用;另一方面,比较了NaYF_4:Yb~(3+),Er~(3+)与NaLuF_4:Yb~(3+),Er~(3+)的结构与发光性质,确定了上转换发光与基质构成、晶体结构和尺寸的依赖关系;在此基础上选择结构易于调控的NaYF_4:Yb~(3+),Tm~(3+)作为纳米荧光体,利用其近红外上转换发射与金纳米棒间的荧光共振能量传递诱导的荧光猝灭检测亲和素蛋白。取得的主要成果有:
     [1]利用层层包覆法(Layer-by-Layer)制备了PAA修饰的金纳米棒,高分子量PAA修饰的金纳米棒在复杂溶液中具有更好的稳定性且无细胞毒性;通过噬菌体展示肽库技术成功获得与HER2阳性细胞特异性结合的12肽模拟物,模拟肽功能化的金纳米棒能够选择性靶向乳腺癌细胞(SK-BR-3)且具有优良的光热治疗效果。
     [2]通过配体交换作用即强健的Au-S键形成制备谷胱甘肽修饰的金纳米棒,修饰的金纳米棒不仅在酸、碱性缓冲液且在高浓度盐离子缓冲液中均具有非常好的稳定性;最重要的是,与蛋白质的非特异性吸附减弱;经过叶酸与罗丹明功能化的金纳米棒具有更好的靶向成像及光热治疗效果。
     [3]利用高温溶剂热法在不同反应温度合成NaREF_4(RE=Lu/Y);在NaREF_4合成过程中,用Lu3+取代Y3+后,NaLuF_4纳米晶生长更快,且更易形成立方相结构;NaLuF_4与NaYF_4荧光强度变化主要与纳米晶的尺寸、结构密切相关,与Lu/Y本身基质关系不大;提出一种新的物理模型解释了NaREF_4纳米晶尺寸、结构及浓度依赖的颜色变化性质。
     [4]利用水热法合成水溶性、近红外响应的PEI-NaYF_4:Yb~(3+),Tm~(3+);通过共价键将生物素分子连接到荧光纳米粒子表面,且通过静电吸附将亲和素连接到聚丙烯胺(PAH)修饰的金纳米棒表面;根据纳米粒子之间荧光共振能量转移产生的荧光猝灭检测亲和素浓度,提供了一种新型的近红外响应的荧光传感系统。
The infared functional nanomaterials such as noble metal and rare earth dopedupconversion luminescent nanoparticles have shown attractive prospects in tumortarget therapy, living fluorescence imaging, sensing and other biomedical applications.However, there are still existing some obstacles and limitations in practice. Strongsurface plasmon resonance properties of gold nanorods in near infrared region makeeffective light-heat conversion, which make gold nanorods being ideal photosensitivematerials in tumor hyperthermia. However, surface properties of gold nanorodsinfluence their stability, especially, the targeting function in tumor therapy in complexenvironment. With the advantages of deep penetration and low backgroundfluorescence, Rare-earth infared-visible upconversion luminescent nanoparticles haveapplied in living imaging, but the low fluorescence conversion efficiency makesvisible light emission be difficult to be detected in vivo imaging. To solve the aboveproblems, based on gold nanorods and rare earth doped upconversion luminescentnanoparticles in this paper, one hand, we modified gold nanorods with PAA andconjugated targeting peptide on the rods surface, and the prepared targetingconjugates were applied in selective photothermal thrapy; then, we discussed theinteraction between glutathione modified gold nanorods and protein, and studied thetargeting imaging and photothermal therapy of folic acid and rhodamine B conjugatedgold nanorods; the other hand, we compared the synthesis and optical properties ofNaLuF_4:Yb~(3+), Er~(3+)and NaYF_4:Yb~(3+), Er~(3+)and confirmed the dependencies ofupconversion luminescence with substrate composition, crystal structure and size;based on above, we chose the easily controlled NaYF_4:Yb, Tm as upconversionluminescence nanocrystalline and detected adivin concentration through fluorescentquenching between gold nanorods and NaYF_4:Yb, Tm. The results we obtained were shown as follows:
     [1] We prepared PAA modified gold nanorods (GNRs) through Layer-by-Layermethod and observed the higher weight of PAA modified GNRs with betterbiocompatibility and non-cytotoxity. And then we obtained targeting peptide throughphase display peptide library technology, which could specific interact with HER2positive cells. Finally, we obtained selective photothermal therapy with targetingpeptide functionalized GNRs.
     [2] We prepared glutathione modified gold nanorods (GSSG-GNRs) throughrobust Au-S bond information and demonstrated the GSSG-GNRs were stable inaqueous solution over a broad range of pH and high ionic strength values.Importantly, the glutathione coating greatly reduces non-specific protein adsorptionon GNRs. Then we obtained selective targeting imaging and photothermal therapywith folic acid and rhodamine B functionalized GNRs.
     [3] We synthesized NaREF_4:Yb~(3+), Er~(3+)(RE=Lu, Y) at different reactiontemperatures by the solvothermal method. In the NaREF_4preparation process, whenthe Y3+was replaced by Lu3+, NaLuF_4nanocrystals grew faster and were easier toform a cubic phase structure. The fluorescence intensity change of NaLuF_4andNaYF_4was closely related with the size and structure of the nanocrystalline and hadlittle to do with Lu/Y-matrix. On emphasis, we gave a universal explanation on thephase, and size dependent color-tuning behaviors of NaREF_4:Yb~(3+), Er~(3+)(RE=Y, Lu).
     [4] We prepared hydrophilic PEI coating NaYF_4: Yb, Tm nanoparticles throughhydrothermal method. The biotion and adivin molecules were conjugated to PEIcoating NaYF_4and PAH modified gold nanorods through covalent bonds,respectively. Adivin concentration was detected based on fluorescence resonanceenergy transfer (FRET) between upconversion nanopaticles and gold nanorods. Andwe provided a novel near-infared responsive sensor system.
引文
[1] O. C. Farokhzad, R. Langer, Impact of Nanotechnology on Drug Delivery [J].ACS Nano,2009,3,16-20.
    [2] D. A. LaVan, T. McGuire, R. Langer Small-scale systems for in vivo drugdelivery [J]. Nat. Biotechnol.,2003,21,1184-1191.
    [3] G. M. Whitesides, The 'right' size in nanobiotechnology [J]. Nat. Biotechnol.,2003,21,1161-1165.
    [4] K. K. Jain, Advances in the field of nanooncology [J]. BMC Med.,2010,8,83.
    [5] B. Y. S. Kim, J. T. Rutka and W. C. W. Chan, Current Concepts: Nanomedicine[J]. N. Engl. J. Med.,2010,363,2434–2443.
    [6] C. Burda, X. Chen, R. Narayanan and M. A. El-Sayed, Chemistry and propertiesof nanocrystals of different shapes [J]. Chem. Rev.,2005,105,1025–1102.
    [7] R. R. Arvizo, S. Bhattacharyya, R. A. Kudgus, K. Giri, R. Bhattacharya, P.Mukherjee. Intrinsic therapeutic applications of noble metal nanoparticles: past,present and future [J]. Chem. Soc. Rev.,2012,41,2943–2970.
    [8] F. Wang and X. G. Liu, Recent advances in the chemistry of lanthanide-dopedupconversion nanocrystals [J]. Chem.Soc.Rev.,2009,38,976–989.
    [9] J. E. Beesley, Colloidal gold: a new revolution in marking cytochemistry [J].Proc. R. Microsc. Soc.,1985,20,187–197.
    [10] W. P. Faulk and G. M. Taylor, An immunocolloid method for the electronmicroscope [J]. Immunochemistry,1971,8,1081–1083.
    [11] H. Liao, C. L. Nehl and J. H. Hafner, Biomedical applications of plasmonresonant metal nanoparticles [J]. Nanomedicine,2006,1,201–208
    [12] L. A. Dykman and V. A. Bogatyrev, Gold nanoparticles: preparation,functionalization, andapplications in biochemistry and immunochemistry.[J]. Russ. Chem. Rev.,2007,76,181–194.
    [13] R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella and W. J. Parak, Biologicalapplications of gold nanoparticles [J]. Chem. Soc. Rev.,2008,37,1896–1908.
    [14] D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel and C.A. Mirkin, Gold Nanoparticles for Biology and Medicine, Angew. Chem. Int. Ed.,2010,49,3280–3294.
    [15] C. M. Cobley, J. Chen, E. C. Cho, L. V.Wang and Y. Xia, Gold nanostructures: aclass of multifunctional materials for biomedical applications [J]. Chem. Soc. Rev.,2011,40,44–56.
    [16] L. Dykman, N. Khlebtsov, Gold nanoparticles in biomedical applications: recentadvances and perspectives [J].2012,41,2256-2282.
    [17] G. Mie, Beitrage zur Optik truber Medien, speziell kolloidaler Metaalosungen[J]. Ann. Phys.,1908,25,377–445.
    [18] E. Boisselier and D. Astruc,“Gold nanoparticles in nanomedicine: preparations,imaging, diagnostics, therapies and toxicity”, Chem.Soc.Rev.,2009,38,1759–1782.
    [19] Z. P. Qin, J. C. Bischof, Thermophysical and biological responses of goldnanoparticlelaser heating [J].Chem. Soc. Rev.,2012,41,1191–1217.
    [20] N. R. Jana, L. Gearheart and C. J. Murphy, Seed-mediated growth approach forshape-controlled synthesis of spheroidal and rod-like gold nanoparticles using asurfactant template [J]. Adv. Mater.,2001,13,1389-1393.
    [21] B. Nikoobakht and M. A. El-Sayed, Preparation and growth mechanism of goldnanorods (NRs) using seed-mediated growth method [J]. Chem. Mater.,2003,15,1957-1962.
    [22] T. K. Sau and C. J. Murphy, Seeded high yield synthesis of short Au nanorods inaqueous solution [J]. Langmuir,2004,20,6414–6420.
    [23] T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahishi, T. Kawano,Y. Katayama and Y. Niidome, PEG-modified gold nanorods with a stealth characterfor in vivo applications [J]. J. Controlled Release,2006,114,343–347.
    [24] T. B. Huff, M. N. Hansen, Y. Zhao, J.-X. Cheng and A. Wei, Controlling thecellular uptake of gold nanorods [J]. Langmuir,2007,23,1596–1599.
    [25] A. M. Alkilany, P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy and M. D.Wyatt, Cellular Uptake and Cytotoxicity of Gold Nanorods: Molecular Origin ofCytotoxicity and Surface Effects [J]. Small,2009,5,701–708.
    [26] E. C. Dreaden, M. A. Mackey, X. H. Huang, B. Kang and M. A. El-Sayed,Beating cancer in multiple ways using nanogold [J]. Chem. Soc. Rev.,2011,40,3391–3404.
    [27] H. C. Huang, S. Barua, D. B. Kay, K. Rege, Simultaneous Enhancement ofPhotothermal Stability and Gene Delivery Effcacy of Gold Nanorods UsingPolyelectrolytes [J]. ACS Nano,3,2941-2952.
    [28] C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides and R. G.Nuzzo, Formation of monolayer films by spontaneous assembly of organic thiolsfrom solution onto gold [J]. J. Am. Chem. Soc.,1989,111,321–335.
    [29] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo and G. M. Whitesides,Self-assembled monolayers of thiolates on metals as a form of nanotechnology [J].Chem. Rev.,2005,105,1103–1170.
    [30] Z. L. Cheng, R. Skouta, H. Vazquez, J. R. Widawsky, S. Schneebeli, W. Chen,M. S. Hybertsen, R. Breslow and L. Venkataraman, In situ formation of highlyconducting covalent Au-C contacts for single-molecule junctions [J]. Nat.Nanotechnol.,2011,6,353–357.
    [31] E. C. Dreaden, A. M. Alkilany, X. H. Huang, C. J. Murphy and M. A. El-Sayed,The golden age: gold nanoparticles for biomedicine [J]. Chem. Soc. Rev.2012,41,2740-2779.
    [32] J. M. Harris and R. B. Chess, Effect of PEGylation on pharmaceuticals [J]. Nat.Rev. Drug Discovery,2003,2,214–221.
    [33] A. K. Iyer, G. Khaled, J. Fang and H. Maeda, Exploiting the enhancedpermeability and retention effect for tumor targeting [J]. Drug Discovery Today,2006,11,812–818.
    [34] F. X. Gu, R. Kamik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S.Langer, O. C. Farokhzad, Targeted nanoparticles for cancer therapy [J]. Nano Today,2007,2,14-21.
    [35] D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer,Nanocarriers as an emerging platform for cancer therapy [J]. Nature Nanotechnology,2007,2,751-760.
    [36] J. Li, J. Ji, L. M. Holmes, K. E. Burgin, L. B. Barton, X. Yu, T. E. Wagner, Y.Wei, Fusion protein from RGD peptide and Fc fragment of mouse immunoglobulinG inhibits angiogenesis in tumor [J]. Cancer Gene Ther.2004,11,363-370.
    [37] A. K. Oyelere, P. C. Chen, X. H. Huang, I. H. El-Sayed and M. A. El-Sayed,Peptide-Conjugated Gold Nanorods for Nuclear Targeting [J]. Bioconjugate Chem.2007,18,14901497.
    [38] R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, Targeted photothermal lysisof the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods [J]. NanoLett.2008,8,302-306.
    [39] J. Yguerabide and E. E. Yguerabide, Light-scattering submicroscopic particlesas highly fluorescent analogs and their use as tracer labels in clinical and biologicalapplications [J]. Anal. Biochem.,1998,262,157–186.
    [40] N. L. Rosi and C. A. Mirkin, Nanostructures in Biodiagnostics [J]. Chem. Rev.,2005,105,1547–1562.
    [41] J. Yguerabide and E. E. Yguerabide, Light-scattering submicroscopic particlesas highly fluorescent analogs and their use as tracer labels in clinical and biologicalapplications [J]. Anal. Biochem.,1998,262,137–156.
    [42] R. A. Zsigmondy, Colloids and the ultramicroscope-A manual of colloidchemistry and ultramicroscopy [J]. John Wiley and Sons, Inc., NY,1914.
    [43] K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan and R.Richartz-Kortum, Real-time vital optical imaging of precancer using anti-epidermalgrowth factor receptor antibodies conjugated to gold nanoparticles [J]. Cancer Res.,2003,63,1999–2004.
    [44] I. H. El-Sayed, X. Huang and M. A. El-Sayed, Surface plasmon resonancescattering and absorption of anti-EGFR antibody conjugated gold nanoparticles incancer diagnostics: Applications in oral cancer [J]. Nano Lett.,2005,5,829–834.
    [45] X. H. Huang, I. H. El-Sayed, W. Qian and M. A. El-Sayed, Cancer cell imagingand photothermal therapy in the near-infrared region by using gold nanorods [J]. J.Am. Chem. Soc.,2006,128,2115–2120.
    [46] E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A.Levi, F. C. J.M. van Veggel, D. N. Reinhoudt, M. Moller and D. I. Gittins,Fluorescence quenching of dye molecules near gold nanoparticles: Radiative andnonradiative effects [J]. Phys. Rev. Lett.,2002,89,203002-1–203002-4.
    [47] L. M. Demers, C. A. Mirkin, R. C. Mucic, A. Robert, I. Reynolds, R. L.Letsinger, R. Elghanian and G. Viswanadham, A fluorescence-based method fordetermining the surface coverage and hybridization efficiency of thiol-cappedoligonucleotides bound to gold thin films and nanoparticles [J]. Anal. Chem.,2000,72,5535–5541.
    [48] P. Ray, G. Darbha, A. Ray, J.Walker andW. Hardy, Gold nanoparticle basedFRET for DNA detection [J]. Plasmonics,2007,2,173-183.
    [49] X. Huang, I. H. El-Sayed, W. Qian and M. A. El-Sayed, Cancer cells assembleand align gold nanorods conjugated to antibodies to produce highly enhanced, sharp,and polarized surface Raman spectra: A potential cancer diagnostic marker [J]. NanoLett.,2007,7,1591–1597.
    [50] Y. L. Wang, S. Ravindranath and J. Irudayaraj, Separation and detection ofmultiple pathogens in a food matrix by magnetic SERS nanoprobes [J]. Anal.Bioanal. Chem.,2011,399,1271–1278.
    [51] G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Hook, A. Wax and A.Chilkoti, Label-free plasmonic detection of biomolecular binding by a single goldnanorod [J]. Anal. Chem.,2008,80,984–989.
    [52] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger and C. A. Mirkin,Selective colorimetric detection of polynucleotides based on the distance-dependentoptical properties of gold nanoparticles [J]. Science,1997,277,1078–1081.
    [53] E. B. Dickerson, E. C. Dreaden, X. H. Huang, I. H. El-Sayed, H. H. Chu, S.Pushpanketh, J. F.McDonald andM. A. El-Sayed, Gold nanorod assistednear-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma inmice [J]. Cancer Lett.,2008,269,57–66.
    [54] X. Huang, P. K. Jain, I. H. El-Sayed and M. A. El-Sayed, Plasmonicphotothermal therapy (PPTT) using gold nanoparticles [J]. Lasers Med. Sci.,2008,23,217–228.
    [55] G. P. Goodrich, L. Bao, K. Gill-Sharp, K. L. Sang, J. Wang and J. D. Payne,Photothermal therapy in a murine colon cancer model using near-infrared absorbinggold nanorods [J]. J. Biomed. Opt.,2010,15,018001.
    [56] W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim and G. Tae, TumorRegression In Vivo by Photothermal Therapy Based on Gold-Nanorod-Loaded,Functional Nanocarriers [J]. ACS Nano,2011,5,1995–2003.
    [57] G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailorand S. N. Bhatia, Computationally Guided Photothermal Tumor Therapy UsingLong-Circulating Gold Nanorod Antennas [J]. Cancer Res.,2009,69,3892–3900.
    [58] S. Lal, S. E. Clare and N. J. Halas, Nanoshell-Enabled Photothermal CancerTherapy: Impending Clinical Impact [J]. Acc. Chem. Res.,2008,41,1842–1851.
    [59] J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.Y. Li, H. Zhang, Y.Xia and X. Li, Immuno gold nanocages with tailored optical properties for targetedphotothermal destruction of cancer cells [J]. Nano Lett.,2007,7,1318–1322.
    [60] AuzelF, Upconversion andante-Stokes Process with f and d Ions in Solid [J].Chem. Rev.,2004,104,139-173.
    [61] J. S. Chivian, W. E. Case and D. D. Eden, The photon avalanche: A newphenomenon in Pr3+-based infrared quantum counters [J]. Appl. Phys. Lett.,1979,35,124-125.
    [62] Z. Q. Li and Y. Zhang, An effcient and user-friendly method for the synthesis ofhexagonal-phase NaYF4: Yb, Er/Tm nanocrystals with controllable shape andupconversion fuorescence [J]. Nanotechnology,2008,19,345606.
    [63] Y. Zhang, X. Sun, R. Si, L. You and C. Yan, Single-crystalline andmonodisperse LaF3triangular nanoplates from a single-source precursor [J]. J. Am.Chem. Soc.,2005,127,3260-3261.
    [64] J. C. Boyer, L. A. Cuccia and J. A. Capobianco, Synthesis of colloidalupconverting NaYF4: Er3+/Yb3+and Tm3+/Yb3+monodisperse nanocrystals [J]. NanoLett.,2007,7,847-852.
    [65] J. C. Boyer, F. Vetrone, L. A. Cuccia and J. A. Capobianco, Synthesis ofcolloidal upconverting NaYF4nanocrystals doped with Er3+, Yb3+and Tm3+, Yb3+via thermal decomposition of lanthanide trifluoroacetate precursors [J]. J. Am. Chem.Soc.,2006,128,7444-7445.
    [66] X. Wang,J. Zhuang,Q. Peng,Y. D. Li, A general strategy for nanocrystalsynthesis [J]. Nature,2005,437,121-124.
    [67] G. Yi and G. Chow, Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4:Yb, Tm nanocrystals with efficient up-conversion fluorescence [J]. Adv. Funct.Mater.,2006,16,2324-2329.
    [68] L. Q. Xiong, T. S. Yang, Y. Yang, C. J. Xu, F. Y. Li, Long-term in vivobiodistribution imaging and toxicity of polyacrylic acid-coated upconversionnanophosphors [J]. Biomaterials,2010,31,7078-7085.
    [69] G. Yi and G. Chow, Water-soluble NaYF4: Yb,Er(Tm)/NaYF4/polymercore/shell/shell nanoparticles with significant enhancement of upconversionfluorescence [J]. Chem. Mater.,2007,19,341-343.
    [70] R. A. Jalil, Y. Zhang, Biocompatibility of silica coated NaYF4upconversionfuorescent nanocrystals [J]. Biomaterials,2008,29,4122–4128.
    [71] J. Zhou, Z. Liuand F.Y. Li, Upconversion nanophosphors for small-animalimaging [J]. Chem. Soc. Rev.,2012,41,1323–1349.
    [72] L. Wang, R. Yan, Z. Huo, L. Wang, J. Zeng, J. Bao, X. Wang, Q. Peng and Y. Li,Fluorescence Resonant Energy Transfer Biosensor Based onUpconversion-Luminescent Nanoparticles [J]. Angew. Chem., Int. Ed.,2005,44,6054-6057.
    [73] P. Zhang, S. Rogelj, K. Nguyen and D. Wheeler, Design of a Highly Sensitiveand Specific Nucleotide Sensor Based on Photon Upconverting Particles [J]. J. Am.Chem.Soc.,2006,128,12410-12411.
    [1] X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, Cancer cell imaging andphotothermal therapy in the near-infrared region by using gold nanorods [J]. J. Am.Chem. Soc.,2006,128,2115-2120.
    [2] I. H. El-Sayed, X. Huang and M. A. El-Sayed, Surface plasmon resonancescattering and absorption of anti-EGFR antibody conjugated gold nanoparticles incancer diagnostics: Applications in oral cancer [J]. Nano Lett.,2005,5,829-834.
    [3] E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed and M. A. El-Sayed,Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) ofsquamous cell carcinoma in mice [J]. Cancer Lett.,2008,269,57-66.
    [4] C. Loo, A. Lowery, N. Halas, J. West and R. Drezek, Immunotargeted Nanoshellsfor Integrated Cancer Imaging and Therapy [J]. Nano Lett.,2005,5,709-711.
    [5] D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne and J. L. West, Photo-thermaltumor ablation in mice using near infrared-absorbing nanoparticles [J]. Cancer Lett.,2004,209,171-176.
    [6] J. Y. Chen, D. L. Wang, J. F. Xi, Y. N. Xia and X. D. Li, Immuno gold nanocageswith tailored optical properties for targeted photothermal destruction of cancer cells[J]. Nano Lett.,2007,7,1318-1322.
    [7] J. Y. Chen, F. Saeki, Z. Y. Li, X. D. Li and Y. N. Xia, Gold Nanocages:Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents [J].Nano Lett.,2005,5,473-477.
    [8] P. Ghosh, G. Han, M. De, C. K. Kim and V. M. Rotello, Gold nanoparticles indelivery applications [J]. Adv. Drug Delivery Rev.,2008,60,1307-1315.
    [9] M. Prabaharan, J. J. Grailer, S. Pilla, D. A. Steeber and S. Q. Gong, Goldnanoparticles with a monolayer of doxorubicin-conjugated amphiphilic blockcopolymer for tumor-targeted drug delivery [J]. Biomaterials,2009,30,6065-6075.
    [10] P. S. Ghosh, C. K. Kim, G. Han, N. S. Forbes and V. M. Rotello, Efficient GeneDelivery Vectors by Tuning the Surface Charge Density of AminoAcid-Functionalized Gold Nanoparticles [J]. ACS Nano,2008,2,2213-2218.
    [11] Y. Cheng, A. C. Samia, J. D. Meyers, I. Panagopoulos, B. W. Fei and C. Burda,Highly efficient drug delivery with gold nanoparticle vectors for in vivophotodynamic therapy of cancer [J]. J. Am. Chem. Soc.,2008,130,10643-10647.
    [12] X. H. Wang, Y. Li, H. F. Wang, Q. X. Fu, J. C. Peng, Y. L. Wang, J. Du and L. S.Zhan, Gold nanorod-based localized surface plasmon resonance biosensor forsensitive detection of hepatitis B virus in buffer, blood serum and plasma [J].Biosens. Bioelectron.,2008,26,404.
    [13] K. M. Mayer, S. H. Lee, H. W. Liao, B. C. Rostro, A. Fuentes and J. H. Hafner,A label-free immunoassay based upon localized surface plasmon resonance of goldnanorods [J]. ACS Nano,2008,2,687-692.
    [14] M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, Y. Niidome and T.Niidome, PEG-modified gold nanorods with a stealth character for in vivoapplications [J]. J. Control Release,2006,114,343-347.
    [15] X. H. Huang, S. Neretina and M. A. El-Sayed, Gold Nanorods: From Synthesisand Properties to Biological and Biomedical Applications [J]. Adv. Mater.,2009,21,4880-4910.
    [16] C. H. Wang, C. W. Chang and C. A. Peng, Gold nanorod stabilized by thiolatedchitosan as photothermal absorber for cancer cell treatment [J]. J. Nanopart. Res.,2011,13,2749-2758.
    [17] M. C. Daniel and D. Astruc, Gold nanoparticles: Assembly, supramolecularchemistry, quantum-size-related properties, and applications toward biology,catalysis, and nanotechnology [J]. Chem. Rev.,2004,104,293-346.
    [18] X. H. Huang, P. K. Jain, I. H. El-Sayed and M. A. El-Sayed, Gold nanoparticles:interesting optical properties and recent applications in cancer diagnostic and therapy[J]. Nanomedicine,2007,2,681-693.
    [19] G. von. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das and S. N.Bhatia, Computationally Guided Photothermal Tumor Therapy UsingLong-Circulating Gold Nanorod Antennas [J]. Cancer Res.,2009,69,3892-3900.
    [20] B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, Y. Choi, GoldNanorod-Photosensitizer Complex for Near-Infrared Fluorescence Imaging andPhotodynamic/Photothermal Therapy In Vivo [J]. ACS Nano,2011,5,1086-1094.
    [21] W. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim and G. Tae, TumorRegression In Vivo by Photothermal Therapy Based on Gold-Nanorod-Loaded,Functional Nanocarriers [J]. ACS Nano,2011,5,1995-2003.
    [22] A. K. Paul and R. B. Schwab, Efficacy and pharmacogenomic biomarkers inbreast cancer [J]. Biomark Med.,2012,6,211-221.
    [23] E. M. McGowan, N. Alling, E. A. Jackson, D. Yagoub and R. Martinello-Wilks,Evaluation of Cell Cycle Arrest in Estrogen Responsive MCF-7Breast Cancer Cells:Pitfalls of the MTS Assay [J]. PLos One,2011,6, e20623.
    [24] R. Yerushalmi, S. Tyldesley, H. Kennecke, C. Speers and R. Woods, Tumormarkers in metastatic breast cancer subtypes: frequency of elevation and correlationwith outcome [J]. Ann. Oncol.,2012,23,338-345.
    [25] V. Saxena, Y. Naguib and M. D. Hussain, Folate receptor targeted17-allylamino-17-demethoxygeldanamycin (17-AAG) loaded polymericnanoparticles for breast cancer [J]. Colloid Surface B,2012,94,274-280.
    [26] N. G. Karasseva, V. V. Glinsky, N. X. Chen, R. Komatireddy and T. P. Quinn,Identification and characterization of peptides that bind human ErbB-2selected froma bacteriophage display library [J]. J. Protein Chem.,2002,21,287-296.
    [27] H. W. Liao and J. H. Hafner, Gold nanorod bioconjugates [J]. Chem. Mater.,2005,17,4636-4641.
    [28] A. Wijaya and K. Hamad-Schifferli, Ligand customization and DNAfunctionalization of gold nanorods via round-trip phase transfer ligand exchange [J].Langmuir,2008,24,9966-9969.
    [29] D. K. Kirui, S. Krishnan, A. D. Strickland and C. A. Batt, PAA-Derived GoldNanorods for Cellular Targeting and Photothermal Therapy [J]. Macromol. Biosci.,2011,11,779-788.
    [30] C. L. Chen, L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee and Y.Y. Chen, In situ real-time investigation of cancer cell photothermolysis mediated byexcited gold nanorod surface plasmons [J]. Biomaterials,2010,31,4104-4112.
    [31] T. Xia, M. Kovochich, M. Liong, H. Meng, S. Kabehie, S. George and A. E.Nel, Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous SilicaNanoparticles and Allows Safe Delivery of siRNA and DNA Constructs [J]. ACSNano,2009,3,3273-3286.
    [32] J. F. Jin, Y. J. Gu, J. P. Cheng, Z. H. Xu, Y. Zhang and W. T. Wong,Polymer-Coated NaYF4:Yb3+, Er3+Upconversion Nanoparticles forCharge-Dependent Cellular Imaging [J]. ACS Nano,2011,10,7838-7847.
    [33] Y. F. Huang, H.T. Chang and W. H. Tan, Cancer cell targeting using multipleaptamers conjugated on nanorods [J]. Anal. Chem.,2008,80,567-572.
    [34] J. E. Schroeder, I. Shweky, H. Shmeeda, U. Banin, A. Gabizon,Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles[J]. J. Control Release,2007,124,28-34.
    [35] D. Arosio, L. Manzoni and C. Scolastico, Cyclic RGD Functionalized GoldNanoparticles for Tumor Targeting [J]. Bioconjugate Chem.,2011,22,664-672.
    [36] J. Baselga, L. Norton, J. Albanell, Y.M. Kim and J. Mendelson, Recombinanthumanized anti-HER2antibody (Herceptin) enhances the antitumor activity ofpaclitaxel and doxorubicin against HER2/neu overexpressing human breast cancerxenografts [J]. Cancer Res.,1998,58,2825-2831.
    [37] A. M. Alkilany, P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy and M. D.Wyatt, Cellular Uptake and Cytotoxicity of Gold Nanorods: Molecular Origin ofCytotoxicity and Surface Effects [J]. Small,2009,5,701-708.
    [38] B Nikoobakht and M A. El-Sayed,Preparation and growth mechanism of goldnanorods (NRs) using seed-mediated growth method [J]. Chem. Mater.,2003,15,1957-1962.
    [39] A. Gole and C. J. Murphy, Polyelectrolyte-coated gold nanorods: Synthesis,characterization and immobilization [J]. Chem. Mater.,2005,17,1325-1330.
    [40] J. A. Barreto, W. O’Malley, M. Kubeil, H. Stephan and L. Spiccia,Nanomaterials: Applications in Cancer Imaging and Therapy [J]. Adv. Mater.,2011,23, H18-H40.
    [41] B. Du, M. Qian, Z. L. Zhou, P. Wang and X. P. Zhang, In vitro panning of atargeting peptide to hepatocarcinoma from a phage display peptide library [J].Biochem. Bioph. Res. Co.,2006,342,956-962.
    [42] A. Berezov, J. Q. Chen, Q. D. Liu, M. I. Greene and R. Murali, Disablingreceptor ensembles with rationally designed interface peptidomimetics [J]. J. Biol.Chem.,2002,277,28330-28339.
    [43] R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy and T. L. Sabo-Attwood,Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa,with gold nanorods [J]. Nano Lett.,2008,8,302-306.
    [44] H. C. Huang, S. Barua, D. B. Kay and K. Rege, Simultaneous Enhancement ofPhotothermal Stability and Gene Delivery Efficacy of Gold Nanorods UsingPolyelectrolytes [J].ACS Nano,2009,3,2941-2952.
    [45] T. S. Hauck, T. L. Jennings, T. Yatsenko, W. C. Chan, Enhancing the Toxicity ofCancer Chemotherapeutics with Gold Nanorod Hyperthermia [J]. Adv. Mater.,2008,20,3832-3838.
    [1] S. Eustis and M. A. el-Sayed, Why gold nanoparticles are more precious thanpretty gold: Noble metal surface plasmon resonance and its enhancement of theradiative and nonradiative properties of nanocrystals of different shapes [J]. Chem.Soc. Rev.,2006,35,209-217.
    [2] R. Alvarez-Puebla, B. Cui, J. P. Bravo-Vasquez, T. Veres, H. Fenniri,Nanoimprinted SERS-active substrates with tunable surface plasmon resonances [J].J. Phys. Chem. C,2007,111,6720-6723.
    [3] K. C. Hribar, M. H. Lee, D. Lee and J. A. Burdick, Enhanced Release of SmallMolecules from Near-Infrared Light Responsive Polymer-Nanorod Composites [J].ACS Nano,2011,5,2948-2956.
    [4] A. Agarwal, M. A. Mackey, M. A. El-Sayed and R. V. Bellamkonda, RemoteTriggered Release of Doxorubicin in Tumors by Synergistic Application ofThermosensitive Liposomes and Gold Nanorods [J]. ACS Nano,2011,5,4919-4926.
    [5] Z. Y. Wang, S. F. Zong, J. Yang, J. Li, Y. P. Cui, Dual-mode probe based onmesoporous silica coated gold nanorods for targeting cancer cells [J]. Biosens.Bioelectron.,2011,26,2883-2889.
    [6] W. Q. Zhang, J. Meng, Y. L. Ji, X. J. Li, H. Kong, X. C. Wu, H. Y. Xu, Inhibitingmetastasis of breast cancer cells in vitro using gold nanorod-siRNA delivery system[J]. Nanoscale,2011,3,3923-3932.
    [7] M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, Y. Niidome and T.Niidome, PEG-modified gold nanorods with a stealth character for in vivoapplications [J]. J. Control Release,2006,114,343-347.
    [8] A. J. Gormley, K. Greish, A. Ray, R. Robinson, J. A. Gustafson, H. Ghandehari,Gold nanorod mediated plasmonic photothermal therapy: A tool to enhancemacromolecular delivery [J]. Int. J. Pharmaceut.,2011,415,315-318.
    [9] G. P. Goodrich, L. L. Bao, K. Gill-Sharp, K. L. Sang, J. Wang, J. D. Payne,Photothermal therapy in a murine colon cancer model using near-infrared absorbinggold nanorods [J]. J. Biomed. Opt.,2010,15,018001.
    [10] X. H. Huang, I. H. El-Sayed, M. A. El-Sayed, Applications of Gold Nanorodsfor Cancer Imaging and Photothermal Therapy [J]. Cancer Nanotechnol.2010,624,343-357.
    [11] D. K. Kirui, S. Krishnan, A. D. Strickland and C. A. Batt, PAA-Derived GoldNanorods for Cellular Targeting and Photothermal Therapy [J]. Macromol. Biosci.,2011,11,779-788.
    [12] C. L. Chen, L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee and Y.Y. Chen, In situ real-time investigation of cancer cell photothermolysis mediated byexcited gold nanorod surface plasmons [J]. Biomaterials,2010,31,4104-4112.
    [13] E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, M. D. Wyatt, Goldnanoparticles are taken up by human cells but do not cause acute cytotoxicity [J].Small,2005,1,325-327.
    [14] Q. Dai, J. Coutts, J. H. Zou and Q. Huo, Surface modification of gold nanorodsthrough a place exchange reaction inside an ionic exchange resin [J]. Chem.Commun.,2008,25,2858-2860.
    [15] B. P. Khanal and E. R. Zubarev, Rings of Nanorods [J]. Angew. Chem. Int. Ed.,2007,46,2195-2198.
    [16] E. C. Dreaden, A. M. Alkilany, X. H. Huang, C. J. Murphy and M. A. El-Sayed,The golden age: gold nanoparticles for biomedicine [J]. Chem. Soc. Rev.,2012,41,2740-2779.
    [17] S. M. Moghimi, H. Hedeman, I. S. Muir, L. Illum, S. S. Davis, An investigationof the filtration capacity and the fate of large filtered sterically-stabilizedmicrospheres in rat spleen [J]. Biochim. Biophys. Acta,1993,1157,233-240.
    [18] M. S. Ehrenberg, A. E. Friedman, J. N. Finkelstein, J. L. McGrath, Theinfluence of protein adsorption on nanoparticle association with cultured endothelialcells [J]. Biomaterials,2009,30,603-610.
    [19] J. Blummel, N. Perschmann, D. Aydin, J. Drinjakovic, T. Surrey, M.Lopez-Garcia, H. Kessler, J. P. Spatz, Protein repellent properties of covalentlyattached PEG coatings on nanostructured SiO2-based interfaces [J]. Biomaterials,2007,28,4739-4747.
    [20] V. Dixit, J. Van den Bossche, D. M. Sherman, D. H. Thompson, R. P. Andres,Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticlesfor selective targeting of folate receptor-positive tumor cells [J]. Bioconjugate Chem.,2006,17,603-609.
    [21] Y. Akiyama, T. Mori, Y. Katayama, T. Niidome, The effects of PEG graftinglevel and injection dose on gold nanorod biodistribution in the tumor-bearing mice[J]. J. Controlled Release,2009,139,81-84.
    [22] C. X. Yu, L. Varghese and J. Irudayaraj, Surface modification ofcetyltrimethylammonium bromide-capped gold nanorods to make molecular probes[J]. Langmuir,2007,23,9114-9191.
    [23] W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim and G. Tae, TumorRegression In Vivo by Photothermal Therapy Based on Gold-Nanorod-Loaded,Functional Nanocarriers [J]. ACS Nano,2011,5,1995-2003.
    [24] X. A. Zhang, W. F. Lin, S. F. Chen, H. Xu and H. C. Gu, Development of aStable Dual Functional Coating with Low Non-specific Protein Adsorption and HighSensitivity for New Superparamagnetic Nanospheres [J]. Langmuir,2011,27,13669-13674.
    [25] T. A. Larson, P. P. Joshi and K. Sokolov, Preventing Protein Adsorption andMacrophage Uptake of Gold Nanoparticles via a Hydrophobic Shield [J]. ACS Nano,2012,6,9182-9190.
    [26] S. Charan, K. Sanjiv, N. Singh, F. C. Chien, Y. F. Chen, N. N. Nergui, S. H.Huang, C. W. Kuo, T. C. Lee and P. L.Chen, Development of ChitosanOligosaccharide-Modified Gold Nanorods for in Vivo Targeted Delivery andNoninvasive Imaging by NIR Irradiation [J]. Bioconjugate Chem.,2012,23,2173-2182.
    [27] J. Park, J. Nam, N. Won, H. Jin, S. Jung, S. Jung, S. H. Cho and S. Kim,Compact and Stable Quantum Dots with Positive, Negative, or Zwitterionic Surface:Specific Cell Interactions and Non-Specific Adsorptions by the Surface Charges [J].Adv. Funct. Mater.,2011,21,1558-1566.
    [28] M. X. Yu, C. Zhou, J. B. Liu, J. D. Hankins and J. Zheng, Luminescent GoldNanoparticles with pH-Dependent Membrane Adsorption [J]. J. Am. Chem. Soc.,2011,133,11014-11017.
    [29] C. A. Simpson, K. J. Salleng, D. E. Cliffel, D. L. Feldheim, In vivo toxicity,biodistribution, and clearance of glutathione-coated gold nanoparticles [J].Nanomedicine: Nanotechnology, Biology, and Medicine,2013,9,257-263.
    [30] C. P. Leamon, P. S. Low, Folate-mediated targeting: from diagnostics to drugand gene delivery [J]. Drug. Discov. Today,2001,6,44-51.
    [31] P. Q. Zhao, H. J. Wang, M. Yu, Z. Y. Liao, X. H. Wang, F. Zhang, W. Ji, B. Wu,J. H. Han, H. C. Zhang, H. Q. Wang, J. Chang, R. F. Niu, Paclitaxel loaded folic acidtargeted nanoparticles of mixed lipid-shell and polymer-core: In vitro and in vivoevaluation [J]. Eur. J. Pharm. Biopharm.,2012,81,248-256.
    [32] X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, Cancer cell imagingand photothermal therapy in the near-infrared region by using gold nanorods [J]. J.Am. Chem. Soc.,2006,128,2115-2120.
    [33] B. Thierry, J. Ng, T. Krieg and H. J. Griesser, A robust procedure for thefunctionalization of gold nanorods and noble metal nanoparticles [J].Chem.Commun.,2009,13,1724-1726.
    [34] A. M. Alkilany, P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy and M. D.Wyatt, Cellular Uptake and Cytotoxicity of Gold Nanorods: Molecular Origin ofCytotoxicity and Surface Effects [J]. Small,2009,5,701-708.
    [35] R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella and W. J. Parak, Biologicalapplications of gold nanoparticles [J]. Chem. Soc. Rev.,2008,37,1896-1908.
    [36] S. Park and K. Hamad-Schifferli, Nanoscale interfaces to biology [J].Curr. Opin.Chem. Biol.,2010,14,616-622.
    [37] C. X. Fan, W. H. Gao, Z. X. Chen, H. Y. Fan, M. Y. Li, F. J. Deng, Z. L. Chen,Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxidenanoparticles [J]. Int. J. Pharm.,2011,404,180-190.
    [38] Z. L. Jiang, B. Dong, B. Y. Chen, J. Wang, L. Xu, S. Zhang, h. W. Song,Multifunctional Au@mSiO2/Rhodamine B Isothiocyanate Nanocomposites: CellImaging, Photocontrolled Drug Release, and Photothermal Therapy for Cancer Cells[J]. Small,2013,9,604-612.
    [1] P. Zhang, P. Steelant, M. Kumar and M. Scholfield, Versatile photosensitizers forphotodynamic therapy at infrared excitation [J]. J. Am. Chem. Soc.,2007,129,4526-4527.
    [2] H. Lin, G. Meredith and S. B. Jiang, Optical transitions and visible upconversionin Er-3+doped niobic tellurite glass [J]. J. Appl. Phys.2003,93,186-191.
    [3] J. C. Zhou, Z. L. Yang, W. Dong, L. D. Sun and C. H. Yan, Bioimaging andtoxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tmnanocrystals [J]. Biomaterials,2011,32,9059-9067.
    [4](a) R. A. Jalil and Y. Zhang, Biocompatibility of silica coated NaYF4upconversion fluorescent nanocrystals [J]. Biomaterials,2008,29,4122-4128.(b) L.Q. Xiong, Z. G. Chen, Q. W. Tian, T. Y. Cao and F. Y. Li, High ContrastUpconversion Luminescence Targeted Imaging in Vivo Using Peptide-LabeledNanophosphors [J]. Anal. Chem.2009,81,8687-8694.(c) J. Zhou, Z. Liu and F. Y.Li, Upconversion nanophosphors for small-animal imaging [J]. Chem. Soc. Rev.2012,41,1323-1349.(d) A. Xia, M. Chen, Y. Gao, D. M. Wu, W. Feng and F. Y. Li,Gd3+complex-modified NaLuF4-based upconversion nanophosphors for trimodalityimaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomographyand magnetic resonance [J]. Biomaterials,2012,33,5394-5405;(e) R. Liu, D. T. Tu,Y. S. Liu, H. M. Zhu, R. F. Li, E. Ma and X. Y. Chen, Controlled synthesis andoptical spectroscopy of lanthanide-doped KLaF4nanocrystals [J]. Nanoscale,2012,4,4485-4491.
    [5](a) M. Wang, W. Hou, C. C. Mi, W. X. Wang, C. B. Mao and S. K. Xu,Immunoassay of Goat Antihuman Immunoglobulin G Antibody Based onLuminescence Resonance Energy Transfer between Near-Infrared ResponsiveNaYF4:Yb, Er Upconversion Fluorescent Nanoparticles and Gold Nanoparticles [J].Anal. Chem.2009,81,8783-8789.(b) D. T. Tu, L. Q. Liu, Q. Ju, Y. S. Liu and X. Y.Chen, The Time-Resolved Fluorescence Resonance Energy Transfer Detection ofBiomolecules [J]. Angew. Chem. Int. Ed.2011,50,6306-6310.(c) Y. S. Liu, D. T.Tu, H. M. Zhu, E. Ma and X. Y. Chen, Lanthanide-doped luminescentnano-bioprobes: from fundamentals to biodetection [J]. Nanoscale,2013,5,1369-1384;(d) Q. Ju, D. T. Tu, Y. S. Liu, R. F. Li, Z. Chen and X. Y. Chen,Amine-Functionalized Lanthanide-Doped KGdF4Nanocrystals as PotentialOptical/Magnetic Multimodal BioProbes [J]. J. Am. Chem. Soc.2012,134,1323-1330.
    [6](a) H. X. Mai, Y. W. Zhang, R. Si, L. D. Sun, L. P. You and C. H. Yan,High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis andoptical properties [J]. J. Am. Chem. Soc.2006,128,6426-6436.(b) Z. Q. Li and Y.Zhang, An efficient and user-friendly method for the synthesis of hexagonal-phaseNaYF4: Yb, Er/Tm nanocrystals with controllable shape and upconversionfluorescence [J]. Nanotechnology,2008,19,345606-345610.(c) H. Schafer, P.Ptacek, H. Eickmeier and M. Haase, Synthesis of Hexagonal Yb3+,Er3+-DopedNaYF4Nanocrystals at Low Temperature [J]. Adv. Funct. Mater.2009,19,3091-3097.(d) F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, C. Zhang, M.H. Hong and X. G. Liu, Simultaneous phase and size control of upconversionnanocrystals through lanthanide doping [J]. Nature,2010,463,1061-1065.
    [7](a) T. Y. Cao, Y. Yang, Y. Gao, J. Zhou, Z. Q. Li and F. Y. Li, High-qualitywater-soluble and surface-functionalized upconversion nanocrystals as luminescentprobes for bioimaging [J]. Biomaterials,2011,32,2959-2968.(b) D. K. Chatterjee,A. J. Rufaihah and Y. Zhang, Upconversion fluorescence imaging of cells and smallanimals using lanthanide doped nanocrystals [J]. Biomaterials,2008,29,937-943.(c)H. S. Mader, P. Kele, S. M. Saleh and O. S.Wolfbeis, Upconverting luminescentnanoparticles for use in bioconjugation and bioimaging [J]. Curr. Opin. Chem. Biol.2010,14,582-596.
    [8] J. Chen, C. R. Guo, M. Wang, L. P. Wang, C. B. Mao and S. K. Xu, Controllablesynthesis of NaYF4: Yb,Er upconversion nanophosphors and their application to invivo imaging of Caenorhabditis elegans [J]. J. Mater. Chem.2011,21,2632-2638.
    [9] D. K. Chatterjee, M. K. Gnanasammandhan and Y. Zhang, Small UpconvertingFluorescent Nanoparticles for Biomedical Applications [J]. Small,2010,6,2781-2795.
    [10](a) Y. Wei, F. Q. Lu, X. R. Zhang and D. P. Chen, Synthesis of oil-dispersiblehexagonal-phase and hexagonal-shaped NaYF4[J]. Chem. Mater.2006,18,5733-5737.(b) H. X. Mai, Y. W. Zhang, L. D. Sun and C. H. Yan, Size-andphase-controlled synthesis of monodisperse NaYF4: Yb,Er nanocrystals from aunique delayed nucleation pathway monitored with upconversion spectroscopy [J]. J.Phys. Chem. C2007,111,13730-13739.
    [11](a) M. Laroche, S. Girard, R. Moncorge, M. Bettinelli, R. Abdulsabirov and V.Semashko, Beneficial effect of Lu3+and Yb3+ions in UV laser materials [J].Opt.Mater.2003,22,147-154.(b) X. Cheng, S. Zhang, J. Xu, H. Peng and Y. Hang,High-power diode-end-pumped Tm:LiLuF4slab lasers [J]. Opt. Express2009,17,14895-14901.(c) G. Jia, Y. H. Zheng, K. Liu, Y. H. Song, H. P. You and H. J. Zhang,Facile Surfactant-and Template-Free Synthesis and Luminescent Properties ofOne-Dimensional Lu2O3:Eu3+Phosphors [J]. J. Phys. Chem. C2009,113,153-158.(d) A. Pirri, G. Toci and M. Vanniji, First laser oscillation and broad tunability of1at.%Yb-doped Sc2O3and Lu2O3ceramics [J]. Opt. Lett.2011,36,4284-4286.
    [12] V. Sudesh and K. Asai, Spectroscopic and diode-pumped-laser properties ofTm,Ho: YLF; Tm,Ho: LuLF; and Tm,Ho: LuAG crystals: a comparative study [J].J. Opt. Soc. Am. B2003,20,1829-1837.
    [13](a) A. A. Lagatsky, O. L. Antipov and W. Sibbett, Broadly tunable femtosecondTm:Lu2O3ceramic laser operating around2070nm [J]. Opt. Express2012,20,19346-19354.(b) F. Shi, J. S. Wang, X. S. Zhai, D. Zhao and W. P. Qin, Facilesynthesis of beta-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultravioletupconversion luminescence [J]. CrystEngComm2011,13,3782-3787.
    [14] N. Niu, P. P. Yang, X. Zhang, S. L. Gaia and J. Lin, Tunable multicolor andbright white emission of one-dimensional NaLuF4:Yb3+,Ln(3+)(Ln=Er, Tm, Ho,Er/Tm, Tm/Ho) microstructures [J]. J. Mater. Chem.2012,22,10889-10899.
    [15] S. J. Zeng, J. J. Xiao, Q. B. Yang and J. H. Hao, Bi-functionalNaLuF4:Gd3+/Yb3+/Tm3+nanocrystals: structure controlled synthesis, near-infraredupconversion emission and tunable magnetic properties [J]. J. Mater. Chem.2012,22,9870-9874.
    [16] A. P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots [J].Science,1996,271,933-937.
    [17] B. O. Dabbousi, J. Rodriguez-Vieio, F. V. Mikulec, J. R. Heine, K. F. Jensen andM. G. Bawendi,(CdSe)ZnS Core Shell Quantum Dots: Synthesis andCharacterization of a Size Series of Highly Luminescent Nanocrystallites [J]. J. Phys.Chem. B1997,101,9463-9475.
    [18] R. S. Meltzer, S. P. Feofilov and B.Tissue, Dependence of fluorescence lifetimesof Y2O3:Eu3+nanoparticles on the surrounding medium [J]. Phys. Rev. B1999,60,14012-14015.
    [19](a) H. W. Song, B. J. Chen, H. S. Peng and J. S. Zhang, Light-induced change ofcharge transfer band in nanocrystalline Y2O3:Eu3+[J]. Appl. Phys. Lett.2002,81,1776-1778.(b) J. W. Wang, H. W. Song, B. J. Sun, X. Ren, B. J. Chen and W. Xu,Light-induced luminescent enhancement and structural change in cubicnanocrystallineY2O3:Tb [J]. Chem. Phys. Lett.2003,379,507-511.(c) H. S. Peng, H.W. Song, B. J. Chen, J. W. Wang, S. Z. Lu and X. Kong, Temperature dependence ofluminescent spectra and dynamics in nanocrystalline Y2O3:Eu3+[J]. J. Chem. Phys.2003,118,3277-3282.
    [20] H. W. Song, B. J. Sun, T. Wang, S. Z. Lu, L. M. Yang, B. J. Chen, X. J. Wangand X. G. Kong, Three-photon upconversion luminescence phenomenon for thegreen levels in Er3+/Yb3+codoped cubic nanocrystalline yttria [J]. Solid StateCommun.2004,132,409-413.
    [21] Y. Q. Lei, H. W. Song, L. M. Yang, L. X. Yu and Z. X. Liu, Upconversionluminescence, intensity saturation effect, and thermal effect in Gd2O3:Er3,Yb3+nanowires [J]. J. Chem. Phys.2005,123,174710-174715.
    [22] X. Bai, H.W. Song, G. H. Pan, Y. Q. Lei. T. Wang, X. G. Ren, S. Z. Lu and L. B.Fan, Size-Dependent Upconversion Luminescence in Er3+/Yb3+-CodopedNanocrystalline Yttria: Saturation and Thermal Effects [J]. J. Phys. Chem. C2007,111,13611-13617.
    [23] F. Vetrone, J-C.Boyer and J. A. Capobianco, Significance of Yb3+concentrationon the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+nanocrystals [J]. J.Appl. Phys.2004,96,661-667.
    [24] S. Schietinger, L. S. Menezes, B. Lauritzen and O. Benson, Observation of SizeDependence in Multicolor Upconversion in Single Yb3+, Er3+Codoped NaYF4Nanocrystals [J]. Nano Lett.2009,9,2477-2481.
    [25] R. S. Meltzer and K. S. Hong, Electron-phonon interactions in insulatingnanoparticles: Eu2O3[J]. Phys. Rev. B2000,61,3396-3403.
    [26] H. K. Yadav, V. Gupta, K. Sreenivas, S. P. Singh, B. R. Sundarakannan and S.Katiyar, Low frequency Raman scattering from acoustic phonons confined in ZnOnanoparticles [J]. Phys. Rev. Lett.2006,97,085502-085506.
    [27] G. K. Liu, H. Z. Zhuang and X. Y. Chen, Restricted Phonon Relaxation andAnomalous Thermalization of Rare Earth Ions in Nanocrystals [J]. Nano Lett.2002,2,535-539.
    [28] G. K. Liu, X. Y. Chen, H. Z. Zhuang, S. Li and R. S. Niedbala, Confinement ofelectron-phonon interaction on luminescence dynamics in nanophosphors ofEr3+:Y2O2S [J]. J. Solid. State Chem.2003,171,123-132.
    [29] T. S. Yang, Y. Sun, Q. Liu, W. Feng, P. Y. Yang and F. Y. Li, Cubic sub-20nmNaLuF4-based upconversion nanophosphors for high-contrast bioimaging indifferent animal species [J]. Biomaterials,2012,33,3733-3742.
    [30] H. X. Mai, Y. W. Zhang, L. D. Sun and C. H. Yan Highly efficient multicolorup-conversion emissions and their mechanisms of monodisperse NaYF4: Yb, Er coreand core/shell structured nanocrystals [J]. J. Phys. Chem. C2007,111,13721-13729.
    [31] F. Wang, J. Wang and X. G. Liu, Direct Evidence of a Surface Quenching Effecton Size-Dependent Luminescence of Upconversion Nanoparticles [J]. Angew. Chem.2010,122,7618-7622.
    [32] C. B. Layne, W. H. Lowdermilk and M. J. Weber, Multiphonon relaxation ofrare-earth ions in oxide glasses [J]. Phys. Rev. B1977,16,10-16.
    [33](a) D. Li, B. Dong, X. Bai, Y. Wang and H. W. Song, Influence of the TGAModification on Upconversion Luminescence of Hexagonal-Phase NaYF4:Yb3+, Er3+Nanoparticles [J]. J. Phys. Chem. C2010,114,8219-8226.(b) S. Xu, W. Xu, D.Biao, X. Bai and H.W. Song, Downconversion from visible to near infrared throughmulti-wavelength excitation in Er3+/Yb3+co-doped NaYF4nanocrystals [J]. J.Appl. Phys.2011,110,113113-113120.(c) W. Wang, M. M. Wu, G. K. Liu, Analysisof Upconversion Fluorescence Dynamics in NaYF4Codoped with Er3+and Yb3+[J].Spectrosc. Lett.2007,40,259-269.
    [34](a) L. X. Yu, H. W. Song, Z. X. Liu, L. M. Yang, S. Z. Lu and Z. H. Zheng,Electronic Transition and Energy Transfer Processes in LaPO4Ce3+/Tb3+Nanowires[J]. J. Phys. Chem. B2005,109,11450-11455;(b) X. Y. Chen, H. Z. Zhuang, G. K.Liu, S. Li and R. S. Niedbala, Confinement on energy transfer between luminescentcenters in nanocrystals [J]. J. Appl. Phys.2003,94,5559-5565.
    [1] K. E. Sapsford, L. Berti, I. L. Medintz, Materials for Fluorescence ResonanceEnergy Transfer Analysis: Beyond Traditional Donor–Acceptor Combinations [J].Angew. Chem., Int. Ed.2006,45,4562–4588.
    [2] J. Q. Gu, L. D. Sun, Z. G. Yan, C. H.Yan, Luminescence Resonance EnergyTransfer Sensors Based on the Assemblies of Oppositely Charged Lanthanide/GoldNanoparticles in Aqueous Solution [J]. Chem. Asian J.2008,3,1857–1864.
    [3] S. Wang, B. S. Gaylord, G. C. Bazan, Fluorescein provides a resonance gate forFRET from conjugated polymers to DNA intercalated dyes [J]. J. Am. Chem. Soc.2004,126,5446–5451.
    [4] M. Zimmer, Green fluorescent protein (GFP): applications, structure, and relatedphotophysical behavior [J]. Chem. Rev.2002,102,759–782.
    [5] J. Shen, L. D. Sun, C. H.Yan, Luminescent rare earth nanomaterials for bioprobeapplications [J]. Dalton Trans.2008,42,5687–5697.
    [6] A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, H.Mattoussi, Fluorescence resonance energy transfer between quantum dot donors anddye-labeled protein acceptors [J]. J. Am. Chem. Soc.2004,126,301–310.
    [7] A. R. Clapp, I. L. Medintz, H. Mattoussi, F rster Resonance Energy TransferInvestigations Using Quantum-Dot Fluorophores [J]. Chem. Phys. Chem.2006,7,47–57.
    [8] T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, A. M. Seifalian,[J].Biomaterials2007,28,4717–4732.
    [9] G. S. Yi, G. M. Chow, Synthesis of Hexagonal-Phase NaYF4:Yb,Er andNaYF4:Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence [J]. Adv.Funct. Mater.2006,16,2324–2329.
    [10] O. Ehlert, R. Thomann, M. Darbandi, T. Nann, A Four-Color ColloidalMultiplexing Nanoparticle System [J]. ACS Nano2008,2,120–124.
    [11] F. Auzel, Upconversion and anti-Stokes processes with f and d ions in solids [J].Chem. Rev.2004,104,139–173.
    [12] X. Wang, Y. D.Li, Monodisperse nanocrystals: general synthesis, assembly, andtheir applications [J]. Chem. Commun.2007,28,2901–2910.
    [13] J. C. Zhou, Z. L. Yang, W. Dong, L. D. Sun, C. H. Yan, Bioimaging and toxicityassessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals[J]. Biomaterials,2011,32,9059-9067.
    [14] M. Wang, W. Hou, C. C. Mi, C. B. Mao, S. K. Xu, Immunoassay of GoatAntihuman Immunoglobulin G Antibody Based on Luminescence Resonance EnergyTransfer between Near-Infrared Responsive NaYF4:Yb, Er UpconversionFluorescent Nanoparticles and Gold Nanoparticles [J]. Anal. Chem.,2009,81,8738-8789.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700