用户名: 密码: 验证码:
低频段复合吸波材料的制备及电磁性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究吸波材料在国防和民用工业都具有十分重要的意义。目前,吸波材料正朝着“薄、轻、宽、强”的方向发展,但单一组分的吸波材料无法同时满足这些要求,而复合型吸波材料可以克服单一组分的缺点,具有相当的优势,是未来吸波材料的发展方向之一。目前,我国对于低频段(0~6GHz)复合型吸波材料的研究甚少。因此本论文选择了磁损耗型纳米铁氧体、羰基铁和介电损耗型钛酸钡、聚苯胺作为研究对象,利用它们的不同损耗机制、设计开发了在低频段具有优异吸波性能的复合材料Fe_3O_4-SrFe_(12)O_(19)、Ni_(0.5)Zn_(0.5)Fe_2O_4-PANI、BaTiO_3-PANI和Fe(CO)_5/PANI。
     在无氮气保护下,采用共沉淀法制备纳米Fe_3O_4,重点探讨制备过程中Fe~(3+)和Fe~(2+)的摩尔比对样品磁性能的影响,在此基础上,采用界面法制备复合材料Fe_3O_4-SrFe_(12)O_(19),考察不同质量比的Fe_3O_4和SrFe_(12)O_(19)对复合材料的磁性能以及吸波性能的影响。结果表明,当n(Fe~(3+)): n(Fe~(2+))=1:3.5时,制备出具有超顺磁性的粒径在10~15nm之间的球形纳米Fe_3O_4;当m(Fe_3O_4):m(SrFe_(12)O_(19))=1:0.3时,Fe_3O_4均匀的包覆在SrFe_(12)O_(19)表面,而且复合材料Fe_3O_4-SrFe_(12)O_(19)不仅具有超顺磁性,而且吸波性能也达到最佳,其最大吸收峰值为-17.7dB,优于-5dB频宽为1300MHz,覆盖了2130~3430MHz频域。
     首次采用共沉淀法与溶胶-凝胶联合法,制备针状纳米Ni_(0.5)Zn_(0.5)Fe_2O_4,研究制备过程中镍和锌的添加量对纳米Ni_(0.5)Zn_(0.5)Fe_2O_4长径比的影响,通过改变制备过程中镍和锌的添加量达到控制Ni_(0.5)Zn_(0.5)Fe_2O_4长径比的效果;并考察煅烧温度对产物的物相的影响。结果表明,当共沉淀法中nNi:nZn:nFe为0.3:0.3:2时,Ni_(0.5)Zn_(0.5)Fe_2O_4的长径比达到最大为20左右,并且,随着煅烧温度的增加,Ni_(0.5)Zn_(0.5)Fe_2O_4的长径比在减小。再者,采用原位聚合法制备Ni_(0.5)Zn_(0.5)Fe_2O_4-PANI复合材料,研究Ni_(0.5)Zn_(0.5)Fe_2O_4和PANI的键合作用机理以及不同质量比的Ni_(0.5)Zn_(0.5)Fe_2O_4和PANI对复合材料的磁性能和吸波性能的影响。从Ni_(0.5)Zn_(0.5)Fe_2O_4-PANI复合材料的FT-IR光谱分析得出,Ni_(0.5)Zn_(0.5)Fe_2O_4和PANI之间存在一定的键合作用,使复合材料的特征吸收峰发生红移。利用VSM和PNA对产物进行表征和分析得出,随着PANI量的增加,复合材料的矫顽力和饱和磁化强度在减小,而复合材料的吸波性能在0~6000MHz范围内是先增加后减小,当m(Ni_(0.5)Zn_(0.5)Fe_2O_4):m(PANI)=1:10时,产物具有最佳吸波性能,其最大吸收峰值为-21.5dB,优于-5dB频宽为2900MHz,覆盖了3100~6000MHz频域。
     分别采用溶胶-凝胶法和水热法制备纳米BaTiO_3,当水热反应24h制备的纳米BaTiO_3为形貌规则的四方晶型,粒径约60nm;并在此基础上以硅烷偶联剂KH570对纳米BaTiO_3表面进行修饰,采用原位聚合法制备具有核-壳结构的BaTiO_3-PANI复合材料,考察不同质量比的BaTiO_3与PANI和不同吸收厚度对BaTiO_3-PANI复合材料吸波性能的影响,并探讨硅烷偶联剂KH570在制备过程中的反应机理。利用XRD、TEM和FT-IR对复合材料进行表征和分析,得出硅烷偶联剂KH570起到了连接苯胺与钛酸钡的桥梁作用,使PANI成功地包覆纳米BaTiO_3粒子形成具有核-壳结构的BaTiO_3-PANI复合材料,其中BaTiO_3为核,PANI为壳,壳层为40nm,并且包覆后相邻BaTiO_3粒子之间由于高分子的空间位阻而难以相遇,使BaTiO_3分散性更好。利用PNA对复合材料的吸波性能进行分析,得出在0~6000MHz范围内,随着BaTiO_3与PANI质量比和吸收厚度的增加,BaTiO_3-PANI复合材料的反射率RL都是先减小后增大,当BaTiO_3与PANI的质量比为4:1,吸收厚度为3.0mm时,BaTiO_3-PANI复合材料的反射率RL达到最小,其最大吸收峰值为-14.4dB,优于-5dB频宽为1114MHz,覆盖了4798~5912MHz频域。
     采用物理共混法制备复合材料Fe(CO)_5/PANI,研究不同质量比的Fe(CO)_5与PANI以及不同吸收厚度对复合材料吸波性能的影响,同时考察复合后对Fe(CO)_5磁性能的影响。结果表明,复合材料Fe(CO)_5/PANI的矫顽力较纯Fe(CO)_5略微增加,而饱和磁化强度却减小。在0~6000MHz范围内,随着PANI的掺入量和吸收厚度的增加,Fe(CO)_5/PANI复合材料的反射率RL都是先减小后增大。当wPANI=6%,吸收厚度为3.0mm时,复合材料的吸波性能最好,其最大吸收峰值为-39.1dB,优于-10dB频宽为1639MHz,覆盖了4361~6000MHz频域。
It would have great significance to study the microwave absorption material, which isapplied widely to national defense and civil industry. At present, the microwave absorbingmaterial is developing towards "thin, light, wide and strong". But single absorbing materialhas been difficult to meet these requirements at the same time. Moreover, the microwaveabsorption composite, which overcomes the disadvantage of the single absorbing material, isone of development directions of microwave absorbing material in the future. The microwaveabsorption composite in low frequency has been researched very little in our country atpresent. Therefore, the magnetic loss nano ferrite, carbonyl iron, dielectric loss barium titanateand polyaniline are chose for research in this work. And due to the advantages of theirdifferent loss mechanism, the composites Fe_3O_4-SrFe_(12)O_(19), Ni_(0.5)Zn_(0.5)Fe_2O_4-PANI,BaTiO_3-PANI and Fe(CO)_5/PANI, which display excellent microwave absorption ability inlow frequency, are designed and developed.
     Nanoparticles Fe_3O_4were prepared by coprecipitation method in the absence of nitrogen.The effect of different molar ratio of Fe~(3+)to Fe~(2+)on magnetic performance of sample hasbeen investigated in detail. On this basis, the composite Fe_3O_4-SrFe_(12)O_(19)was prepared byinterface method. The effect of different mass ratio of Fe_3O_4and SrFe_(12)O_(19)on magnetic andmicrowave absorbing properties had been studied. The results show that, when the molar ratioof Fe~(3+)to Fe~(2+)is1:3.5, the spherical Fe_3O_4exhibits superparamagnetic and grain size isbetween10~15nm; when the mass ratio of Fe_3O_4to SrFe_(12)O_(19)is1:0.3, the SrFe_(12)O_(19)wascoated uniformly with Fe_3O_4. Meanwhile, the composite Fe_3O_4-SrFe_(12)O_(19)not only exhibitssuperparamagnetic, but also has the best wave absorbing property, which of the maximumabsorption can reach-17.7dB, the-5dB bandwidth is1300MHz (2130MHz~3430MHz).
     Coprecipitation and sol-gel combined method was first used to prepare acicularnano-Ni_(0.5)Zn_(0.5)Fe_2O_4. The influence of Ni and Zn addition on aspect ratio of nano-Ni0.5Zn0.5Fe2O4was studied. The aspect ratio of nano-Ni_(0.5)Zn_(0.5)Fe_2O_4were controlled by the dopedmass of Ni and Zn in the coprecipitation process. The effect of calcination temperature on the phase of samples was studied. The results show that, as the molar ratio of Ni:Zn:Fe equals to0.3:0.3:2, the aspect ratio is at its maximum (about20). And the aspect ratio of samplesreduces with the increasing calcination temperature. Then, the compositeNi_(0.5)Zn_(0.5)Fe_2O_4-PANI was prepared by in situ polymerization. The bonding action betweenNi_(0.5)Zn_(0.5)Fe_2O_4and PANI and different mass ratio of Ni_(0.5)Zn_(0.5)Fe_2O_4and PANI on magneticand microwave absorbing properties have been studied. The FT-IR spectrogram indicatesthat the characteristic absorption peaks of composite show bathochromic shift because ofstronger interaction between Ni_(0.5)Zn_(0.5)Fe_2O_4and PANI. The performance of composite wereanalyzed and characterized by VSM and PNA. The results show that, the coercive force andsaturation magnetization of composite decrease with the increase of amount of PANI. Thewave absorbing properties of composite first increase and then decrease with the increase ofamount of PANI in0~6000MHz. When the mass ratio of Ni_(0.5)Zn_(0.5)Fe_2O_4to PANI is1:10, ithas the best wave absorbing property, which of the maximum absorption can reach-21.5dB,the-5dB bandwidth is2900MHz (3100MHz~6000MHz).
     Nanoparticles BaTiO_3were prepared by sol-gel method and hydrothermal methodrespectively. The grain average size of square crystalloid BaTiO_3is about60nm, which waswas synthesized from the hydrothermal reaction for24h. On this basis, the surface of BaTiO_3was modified by silane coupling agent KH570, and the BaTiO_3-PANI composite with core-shell structure was prepared by in-situ polymerization. The composite was characterized andanalysed by the aid of XRD, TEM, FT-IR and PNA. The mechanism of silane coupling agentKH570in preparing process had been discussesed.The effect of the mass ratio of BaTiO_3toPANI and absorption thickness on microwave absorbing properties of samples had beenresearched. The results show that KH570playes a bridge role for aniline and BaTiO_3, andmakes the BaTiO_3coated with PANI, so BaTiO_3-PANI with core-shell structure is resulted, inwhich the core and shell is BaTiO_3and PANI respectively, shell layer is40nm. Besides, theBaTiO_3after being coated has better dispersion due to the steric hindrance. Also the PNAresults show that the reflectivity RLof composite presented the trend of first decrease thenincrease with the increase of the PANI content and absorption thickness during the range of0~6000MHz. When the mass ratio of BaTiO_3to PANI is4:1and absorption thickness is3mm,BaTiO_3-PANI exhibits the best wave absorbing property with the maximum absorption of-14.4dB and the-5dB bandwidth of1114MHz (4798MHz~5912MHz).
     The Fe(CO)_5/PANI composite was prepared by physical blending. The effect of the mass ratio of Fe(CO)_5to PANI and absorption thickness on microwave absorbing properties ofcomposite had been studied. And the magnetic property of Fe(CO)_5/PANI composite hadbeen disscussed. The results show that the coercive force of Fe(CO)_5/PANI composite isslightly larger than that of pure Fe(CO)_5, but the its saturation magnetization decreasecompared with pure Fe(CO)_5. The reflectivity RLof composite decreases with the increasingPANI content and absorption thickness in the range of0~6000MHz, and then increases. Whenthe PANI content is6%and absorption thickness is3mm, the wave absorbing property ofcomposite is the best, and the maximum absorption can reach-39.1dB, and the-10dBbandwidth is1639MHz (4361MHz~6000MHz).
引文
[1]周长,方庆清,闫方亮,等. ZnO-羰基铁复合纳米粒子的吸波特性[J].磁性材料及器件,2010,41(5):27-30.
    [2] Yang Rui-gang. Electromagnetic properties and microwave absorption properties ofBaTiO3–carbonyl iron composite in S and C bands[J]. Journal of Magnetism and MagneticMaterials,2011,(323):1805–1810.
    [3]许勇刚,袁黎明,蔡军,等.羰基铁和FeSiAl共混制备宽频吸波材料[J].功能材料,2011,42(增刊Ⅱ):555-558.
    [4]杜尚丰.导电氧化锌粉体的制备和性能研究[D].保存地点:中国科学院过程工程研究所博士论文,2005,1-70.
    [5]黄云霞.微波吸收剂的制备及性能研究[D].保存地点:西安电子科技大学博士论文,2009,2.
    [6]刘延坤.稀土掺杂钛酸钡和铁氧体纳米材料的制备及吸波性能研究[D].保存地点:哈尔滨工业大学博士论文,2008,12.
    [7]王建,李会峰,黄运华,等.碳纳米管/四针状纳米氧化锌复合涂层的电磁波吸收特性[J].物理学报,2010,59(3):1946-1951.
    [8]曾爱香,熊惟浩.纳米复合铁氧体微波吸收剂的研究进展[J].长沙电力学院学报,2003,18(4):72.
    [9] Zhang H J, Liu Z C, Ma C L, et al. Preparation and microwave properties of Co-and Tidoped barium ferrite by citrate sol-gel process[J]. Mater Chem Phys,2003,80:129-134.
    [10]朱生宾,李永清,程海峰,等.磁性多层膜微波吸收剂的制备[J].航空材料学报,2005,25(1):36.
    [11]唐欣,赵斌元,胡克鳌.聚苯胺/钡铁氧体复合材料制备及电磁性能研究[J].兵器材料科学与工程,2006,29(5):45-47.
    [12]王洪全,廖家轩,潘笑风,等. BaFe12O19/BaTiO3复合材料的制备及微波性能[J].稀有金属材料与工程,2009,38(增刊2):483-486.
    [13]张晏清,张雄.空心微珠铁氧体复合粉体的改性与吸波性能[J].无机材料学报,2009,24(4):732-736.
    [14]江红,郭佳,赵璐,等. LiZn铁氧体的制备和吸波性能研究[J].无机材料学报,2010,25(1):73-75.
    [15]刘祥萱,王煊军.雷达波吸收剂的研究进展[J].电子对抗技术,2002,17(4):44.
    [16]钟子晶,李宪江,石宇.雷达对抗中的隐身技术研究[J].吉林大学学报(信息科学版),2003,21(4):366.
    [17]吴明忠.雷达吸波材料的现状和发展趋势[J].磁性材料及器件,1997,28(2):26.
    [18]李金儡,陈康华,范令强,等.雷达吸波材料的研究进展[J].功能材料,2005,8(36):1151.
    [19]王海.雷达吸波材料的研究现状和发展方向[J].上海航天,1999,(1):55.
    [20]穆中国,朱金华.雷达吸波材料的研究现状及发展前景[J].胶体与聚合物,2002,20(4):40.
    [21]夏新仁.雷达吸波材料的隐身效果分析[J].电子对抗技术,2003,18(5):37.
    [22]施冬梅,邓辉,杜仕国,等.雷达隐身材料技术的发展[J].兵器材料科学与工程,2002,25(1):64
    [23]陈珂,曾海兵,胡辉.雷达隐身材料技术研究[J].现代防御技术,2005,33(1):58.
    [24]袁艳,姚淑霞,安成强.新型隐身材料吸收剂的研究进展[J].表面技术,2004,33(4):4.
    [25]孟新强.国外雷达隐身和红外隐身技术的发展动向与分析[J].飞航导弹,2005,(7):34.
    [26]吴明忠.雷达吸波材料的现状和发展趋势[J].磁性材料及器件,1997,2:26-30.
    [27]石敏先,黄志雄.新型吸波材料的研究进展[J].材料导报,2007,3:36-39.
    [28]孟建华,杨桂琴,严乐美,等.吸波材料研究进展[J].磁性材料及器件,2004,4:11-14.
    [29]赵九蓬,李卉,吴佩莲.新型吸波材料研究动态[J].材料科学与工艺,2002,2:219-224.
    [30]张健,张文彦,奚正平.隐身吸波材料的研究进展[J].稀有金属材料与工程,37(增刊4):504-508
    [31]陈雪刚,叶瑛,程继鹏.电磁波吸收材料的研究进展[J].无机材料学报,2011,26(5):449-457.
    [32]陈娜.稀土替代锶铁氧体及其复合材料的制备和吸波性能研究[D].保存地点:上海交通大学博士学位论文,2009:2.
    [33] Wen B, Zhao J, Duan Y, et al. Electromagnetic wave absorption properties of carbonpowder from catalysed carbon black in X and Ku bands [J]. J. Phys. D Appl. Phys.,2006,39(9):19601962.
    [34]段玉平,刘顺华,管洪涛,等.非连续体吸波平板的设计制备及吸波机理分析[J].复合材料学报,2006,23(3):37-43.
    [35]曹茂盛,高正娟,朱静.复合材料的微波吸收特性研究[J].材料工程,2003,2:24.
    [36]沈曾民,杨子芹,赵东林,等.碳纳米管树脂基复合材料的力学性能和雷达波吸收性能的研究[J].复合材料学报,2003,20(2):25.
    [37]秦嵘,陈雷.国外新型隐身材料研究动态[J].宇航材料工艺,1997,4:17-19.
    [38]常传波. Ni0.5Zn0.5Fe2O4铁氧体基纳米复合材料的制备及其吸波性能研究[D].保存地点:中北大学硕士论文.
    [39]孟凡君,茹炎炎,刘宗林.二氧化硅改性片状铁粒子的微波吸收性能[J].无机化学学报,2003,19(2):211-214.
    [40]葛凯勇,王群.碳化硅吸波性能改进的研究[J].功能材料与器件学报,2002,8(3):263-266.
    [41]程海峰,陈朝晖,李永清,等.先驱体转化法制备改性SiC吸收剂的研究[J].宇航材料工艺,1999,29(6):22-26.
    [42] Sun J.J., Li J.B., Sun G. L., et al. Dielectric and Infrared Properties of Silicon CarbideNanopowders[J]. Ceram. Int.2002,28:741-745.
    [43]刘献明,付绍云,张以河,等.雷达隐身复合材料的研究进展[J].材料导报,2004,18(5):8-11.
    [44] Mouchon E, Colomban P. Microwave absorbent: preparation, mechanical properties andrfmicrowave conductivity of SiC (and/or mullite) fibre reinforced Nasicon matrixcomposites[J]. J. Mater. Sci.,1996,31(2):323334.
    [45]梁彤祥,赵宏生,张岳. SiC/CNTs纳米复合材料吸波性能的研究[J].无机材料学报,2006,21(3):659663.
    [46]刘柏林,杨燚,杨敏,等. BaTiO3掺杂羰基铁粉复合材料吸波性能研究[J].安全与电磁兼容,2008,2:50-53.
    [47]陈晓东,王桂芹,段玉平,等.炭黑/钛酸钡复合颗粒的结构及吸波性能[J].硅酸盐学报,2006,34(12):1446-1451.
    [48]李雪爱. Fe3O4基磁性材料的制备及其复合薄膜电磁性能研究[D].保存地点:哈尔滨工业大学博士论文,2011:9.
    [49]刘建华,周新楣,李松梅.羰基铁/导电聚苯胺微管复合材料的电磁性能[J].复合材料学报,2005,22(3):70-74.
    [50]曹正艳,杨春明,李海银,等.聚苯胺/CoC2O4纳米复合物的制备与电磁性质[J].应用化学,2009,26(11):1264-1268.
    [51]王琦,官建国,刘世权.离子取代与六角铁氧体RAM的结构及微波吸收性能[J].硅酸盐通报,2005,2:66-71.
    [52]李筱濛,曹全喜,等. M型Ba(CoTi)1.2Fe9.5Mn0.15O19的制备及吸波性能研究[J].压电&声光,2008,30(3):346-349.
    [53]阳开新.铁氧体吸波材料及其用[J].磁性材料及器件,1996,27(3):19-23.
    [54]马素云,朱正吼,徐雪娇,等.铁氧体Ba(Zn(1-x)Cox)2Fe16O27/环氧树脂复合材料吸波性能[J].功能材料,2010,10(41):1750-1752.
    [55]颜爱国,邱冠周,刘小鹤,等. Fe3O4纳米晶的粒径控制合成、表征及其吸波性能[J].高等学校化学学报,2008,29(1):23-27.
    [56] Peng C.H., Wang H.W., Kan S.W., et al. Microwave Absorbing Materials UsingAg-NiZn Ferrite Core-shellNanopowders as Fillers[J]. J.Magn.Magn.Mater.,2004,284:113-119.
    [57] Li Z.W., Chen L.F., Ong C.K.. High-frequency Magnetic Properties of W-typeBarium-Ferrite BaZn2-xCoxFe16O27Composites[J]. J.Appl.Phys.,2003,94(9):5918-5924.
    [58] Wang J., Zhang H., Bai S.X.,et al. Microwave Absorbing Properties of Rare-earthElements Substituted W-type Barium Ferrite[J]. J.Magn.Magn.Mater.,2007,312:310-313.
    [59] Matsumoto M., Miyata Y.. A Gigahertz-range Electromagnetic Wave Absorber withWide Bandwidth Made of Hexagonal Ferrite[J]. J.Appl.Phys.,1996,79(8):5486-5488.
    [60]谢玄.多组分微纳米复合核壳结构磁性功能微球的制备与性能研究[D].保存地点:华东理工大学博士论文,2012:15.
    [61]童国秀,官建国,王维,等.羰基铁/Al2O3核壳复合粒子的制备及性能[J].材料研究学报,2008,22(1):102-106.
    [62]吴广利,段玉平,周文龙,等.羰基铁与炭黑共混制备吸波涂层的研究[J].安全与电磁兼容,2011,(1):41-43.
    [63]李世涛,乔学亮,陈建国.纳米复合吸波材料的研究进展[J].宇航学报,2006,2:317-322.
    [64]陈敬中,刘剑洪.纳米材料科学导论[M].北京:高等教育出版社,2006.
    [65]任慧,焦清介,康飞宇,等.纳米铁氧体复合材料制备及吸波性能研究[J].稀有金属材料与工程,2007,36(增刊2):223-226.
    [66]云月厚,刘永林,张伟.化学共沉淀法制备的纳米Ni0.5Zn0.5CexFe2-xO4铁氧体微波吸收特性研究[J].材料工程,2008,(3):58-62.
    [67]颜爱国,刘浩梅,刘娉婷. Fe3O4和Zn2+掺杂型Zn1-xFe2+xO4纳米晶的溶剂热合成和电磁性能[J].高等学校化学学报,2010,31(3):447-451.
    [68]刘亮. Fe-Co-Ni基复合吸波材料的实验研究[D].保存地点:东南大学硕士论文,2004.
    [69]张晏清,张雄.空心微珠铁氧体复合粉体的改性与吸波性能[J].无机材料学报,2009,24(4):732-736.
    [70]焦清介,任慧,付小芬,等.溶胶-凝胶法制备纳ZnFe2O4复合材料及宽频吸波性能研究[J].稀有金属材料与工程,2009,38(增刊2):963-966.
    [71]姜建堂.几种介电/铁磁复合粉体的制备工艺及电磁性能研究[D].保存地点:哈尔滨工业大学博士论文,2008:8.
    [72]何才君,霍德璇,李晓光,等. BaFe12-x(Ni0.5Cu0.5Zr)x/2O19/聚苯胺复合材料的吸波性能[J].材料科学与工程学报,2010,28(3):399-403.
    [73]赵海涛,张罡,马瑞廷,等.镍铁氧体/聚苯胺复合材料的制备及其性能[J].中国有色金属学报,2011,21(4):843-847.
    [74]赵灵智,胡社军,李伟善,等.吸波材料的吸波原理及其研究进展[J].现代防御技术,2007,35(1):27-31.
    [75] Ghasemi A., Liu X. X., Morisako A. Magnetic and Microwave Absorption Properties ofBaFe12-x(Mn0.5Cu0.5Zr)x/2O19Synthesized by Sol-gel Processing[J]. Journal of Magnetism andMagnetic Materials.2007,316(2):105-108.
    [76]秦柏,秦汝虎,金崇君.“广义匹配规律”的论证及在隐身材料中的应用[J].哈尔滨工业大学学报,1997,29(4):115-117.
    [77] Truong V T, Riddell S Z, Muscat R F. Polyrrole based microwave absorbers[J]. J. Mater.Sci.,1998,33:4971-4976.
    [78] Kim D Y, Chung Y C, Kang T W. Dependence of microwave absorbing property onferrite volume in MnZn ferrite-rubber composites[J]. IEEE Transaction on Magnetics,1996,32(2):555-558.
    [79]王会宗.磁性材料及其应用[M].北京:国防工业出版社,1989,252-256.
    [80]赵振声,吴明忠,何华辉.雷达吸波材料对斜入射电磁波的反射[J].华中理工大学学报,1998,26(4):36-38.
    [81]王晶.微纳米结构尖晶石型铁氧体的合成及其性能研究[D].保存地点:山西大学硕士论文,2011:2.
    [82]马瑞廷.尖晶石型纳米晶铁氧体的制备及电磁微波吸收性能研究[D].保存地点:东北大学博士论文,2008:14.
    [83]赵海涛.纳米镍铁氧体及其复合材料的制备及电磁微波吸收性能研究[D].保存地点:东北大学博士论文,2009:14.
    [84]江红,郭佳,赵璐,等. LiZn铁氧体的制备和吸波性能研究[J].无机材料学报,2010,25(1):73-76.
    [85]刘树信,王海滨,罗娟,等.溶胶-凝胶法制备镍锌铁氧体及其电磁损耗性能[J].过程工程学报,2009,9(6):1227-1231.
    [86]常永锋.四氧化三铁及其复合粉体的制备与电磁性能研究[D].保存地点:大连理工大学硕士论文,2012:11-12.
    [87]全桂英,吴明在.形貌可控的Fe3O4纳米粒子的水热合成及磁性能研究[J].低温物理学报,2011,33(4):277-281.
    [88]邵晓萍,代波,马拥军.共沉淀制备不同粒径Fe3O4纳米颗粒及磁性能的研究[J].功能材料,2011,42(1):178-181.
    [89]陈汝芬,张云,赵建荣.可控粒径纳米Fe3O4的制备及其磁性研究[J].无机化学学报,26(7):1207-1212.
    [90]李荫远,李国栋.铁氧体物理学(修订本)[M].第一版.北京:科学出版社,1978,19-42.
    [91]刘先松,都有为. M型永磁铁氧体的现状与进展[J].磁性材料及器件,2001,32(1):27-33.
    [92]李文善,罗广圣,周正有,等. Sr1-xYxFe12-xZnxO19永磁铁氧体的结构和磁性能[J].南昌大学学报(理科版),2009,33(4):364-367.
    [93]吴晓军,景红霞,张存瑞,等.锶铁氧体微管的制备及镧掺杂对其性能的影响[J].稀有金属材料与工程,2010,39(4):727-730.
    [94]李巧玲,杨晓峰,张存瑞,等.针状纳米晶复合SrM铁氧体的制备及磁性研究[J].稀有金属材料与工程,2009,38(增刊1):373-377.
    [95]卢佃清,刘学东,徐超.退火温度对纳米晶Ni0.5Zn0.5Fe2O4吸波性能的影响[J].材料热处理技术,2009,38(4):52-54.
    [96]戴鼎汉,赵宇辉,侯华,等.草酸盐共沉淀法制备NiCuZn铁氧体纳米籽体研究[J].新技术新工艺,2008(11):100-102.
    [97]邹涛,郭灿雄,段雪,等.强磁性Fe3O4纳米粒子的制备及其性能表征[J].精细化工,2002,19(12):707-710.
    [98]吴伟,贺全国,胡蓉,等.磁性Fe3O4纳米粉体的制备及表征[J].稀有金属材料与工程,2007,36(增刊3):238-243.
    [99]李锐,章国顺,钱良存. LaZn掺杂锶铁氧体纳米颗粒的制备与磁性研究[J].昆明理工大学学报(理工版),2010,35(4):40-43.
    [100] K. Byrappa, M. Yoshimura. Handbook of Hydrothermal Technology: A Technology forCrystal Growth and Materials Processing[J]. William Andrew press,2002.
    [101]阳征会,龚竹青,李宏煦,等. Ni-Zn铁氧体粉体的水热法制备与磁性研究[J].矿冶工程,2006,26(4):39-42.
    [102]赵红丽,琚行松,底兰波. Tween-60+Span-80/异戊醇/环己烷微乳液法制备纳米Fe3O4[J].中国陶瓷,2007,43(8):53-55.
    [103]钟海胜,李强,张一玲,等.沸腾回流法制备纳米NiZn铁氧体的研究[J].无机化学学报,2006,22(2):375-378.
    [104] Goya G F. Handling the particle size and distribution of Fe3O4nanoparticles throughball milling[J]. Solid State Communications,2004,130:783-787.
    [105]庄稼,陈学平,迟燕华,等.纳米Ni0.5Zn0.5Fe2O4铁氧体的制备及电磁损耗特性研究[J].2006,功能材料,37(1):43-46.
    [106]庄稼,迟燕华,石军宁,等.铈对纳米铁氧体粉末电磁学性质影响的研究[J].中国稀土学报,2002,20(4):324-326.
    [107]郑兰香,彭国新.超细四氧化三铁微粒的制备[J].精细化工,1995,12(6):11-14.
    [108]詹群.铁氧体材料在抗EMI和隐身(吸波)材料中应用[J].中国传媒大学学报自然科学版,2011,18(2):60-63.
    [109] O. Masala, D. Hoffman, N. Sundaram, et al. Preparation of magnetic spinel ferritecore/shell nanoparticles: Soft ferrites on hard ferrites and vice versa[J]. Solid State Sci,2006,8(9):1015-1022.
    [110]姚学标,胡国光,尹萍.平面六角晶系铁氧体混合材料涂层的优良吸波特性[J].功能材料.2001,32(1):40-42.
    [111]闫方亮,方庆清,王胜男,等. Fe3O4/锶铁氧体复合吸波材料的制备与性能[J].磁性材料及器件,2009,40(2):25-29.
    [112]刘归.纳米Fe3O4及其复合体系的微波吸收特性研究[J].湖南工业大学学报,2008,22(6):20-23.
    [113]熊为华,方庆清,王保明,等. PANI/SrFe12O19复合材料的结构和吸波性能[J].磁性材料及器件,2007,38(3):30-32.
    [114]熊冬柏,杨春明.聚(苯胺-吡咯)共聚物/Fe3O4网状纳米纤维复合物的制备及其吸波性能[J].应用化学,2009,26(9):1054-1059.
    [115] Li B. W., Shen Y., Yue Z. X., et al. Enhanced microwave absorption innickel/hexagonal-ferrite/polymer composites[J]. Appl.Phys.Lett.2006,89(13):1-3.
    [116]武晓威,冯玉杰,韦韩,等. Ni-P化学镀制备钡铁氧体基红外-微波一体化隐身材料[J].无机材料学报,2009,24(1):97-101.
    [117]于美,刘鹏瑞,刘建华,等. NiFe2O4/T-ZnOw复合材料的制备及电磁波吸收性能[J].无机化学学报,27(9):1743-1747.
    [118]步文博,徐洁,丘泰,等.吸波材料的基础研究及微波损耗机理的探讨[J].材料导报,2001,15(5):15~17.
    [119] Fu Xiao-ling. Research into function of absorbing wave of metallic magnetic ultrafinepowders[J]. Journal of Xi'an Mining Institute,1999,19(1):92~96.
    [120]邱惠中.纳米材料及其在航天领域中的应用[J].宇航材料工艺,1996,(2):7~10.
    [1]杨宇翔,张莉苹,梁晓娟.纳米Fe3O4及钴离子掺杂Fe3O4:有机碱共沉淀制备和磁性质[J].无机化学学报,2010,26(4):668-676.
    [2]任欢鱼,刘勇健,牛亚丰.醇-水共热法制备Fe3O4磁流体[J].化工进展,2001,22(1):49-52.
    [3]李志利,盖利刚,张伟.水热法制备八面体Fe3O4亚微米晶及其影响因素[J].材料导报,2010,24(z1):33-37.
    [4]海岩冰,袁红雁,肖丹.微波法制备纳米Fe3O4[J].化学研究与应用,2006,18(6):744-746.
    [5] C.Sürig, K.A. Hempel, D.Bonnenberg. Formation and microwave absorption of bariumand strontium ferrite prepared by sol‐g el Technique[J]. Appl.Phys.Lett.1993,63:2836-2838.
    [6] A.Verma, R.G.Mendiratta, T.C.Goel, et al. Microwave Studies on Strontium Ferrite BasedAbsorbers[J]. J.Electroceram.2002,8(3):203-208.
    [7] P.Sharma, A.Verma, R.K.Sidhu et al. Process parameter selection for strontium ferritesintered magnets using Taguchi L9orthogonal design[J]. J.Mater.Proc.Techn.2005,168:147-151.
    [8]李巧玲,张存瑞,景红霞.优越磁性能的SrFe12O19微管的模板法制备[J].无机材料学报,2009,24(4):717-720.
    [9]文德,刘妙丽,李强林.超顺磁性Fe3O4纳米粒子的制备和表征[J].四川师范大学学报(自然科学版),2011,34(3):385-387.
    [10]邵晓萍,代波,马拥军.共沉淀制备不同粒径Fe3O4纳米颗粒及磁性能的研究[J].功能材料,2011,42(1):178-181.
    [11]方庆清,钟伟,都有为.复合型锶铁氧体纳米晶粒的改性研究[J].物理报,1999,48(6):1170-1173.
    [12]王翠平,陈辉,黄凯,等.掺杂对锶铁氧体基复合材料吸波特性的影响[J].材料科学与工程学报,2006,24(3):451-453.
    [13]闫方亮,方庆清,王胜男,等.Fe3O4/锶铁氧体复合吸波材料的制备与性能[J].磁性材料及器件,2009,40(2):25-29.
    [1]徐烽.聚合物-尖晶石铁氧体纳米复合物的制备、表征及电磁性质[D].保存地点:浙江师范大学硕士论文,2007:13.
    [2] Li X, Li Q, Xia Z G, et al. Effects on direct synthesis of large scale mono-disperseNi0.5Zn0.5Fe2O4nanosized particles[J]. J. Alloys Compd.,2008,458(1-2):558-563.
    [3] Kulkarni D C, Pati S P, Puri V. Properties of NixZn(1x)Fe2O4thick films at microwavefrequencies[J]. Microelectron. J.,2008,39(2):248-252.
    [4]李巧玲,张存瑞,景红霞,等.优越磁性能的SrFe12O19微管的模板法制备[J].无机材料学报,2009,24(4):717-720.
    [5] Dong L M, Han Z D, Zhang Y M, et al. Preparation and sinterability of Mn-Zn ferritepowders by Sol-Gel method[J]. J. Rare Earths,2006,(S1):54-56.
    [6] Doh S G, Kim E B, Lee B H, et al. Characteristics and synthesis of Cu–Ni ferritenanopowders by coprecipitation method with ultrasound irradiation[J]. J. Magn. Magn.Mater.,2004,272-276(Part3):2238-2240.
    [7] Li S M, Wang Q n, Wu A B, et al. Magnetic properties of FexCo1x/CoyFe1yFe2O4composite under hydrothermal condition[J]. Current Applied Physics,2009,9(6):1386-1392.
    [8] Costa A C F M, Leite A M D, Ferreira H S. Brown pigment of the nanopowder spinelferrite prepared by combustion reaction[J]. J. Eur. Ceram. Soc.,2008,28(10):2033-2037.
    [9] Dasgupta S, Kim K B, Ellrich J, et al. Mechano-chemical synthesis and characterization ofmicrostructure and magnetic properties of nanocrystalline Mn1xZnxFe2O4[J]. J. AlloysCompd.,2006,424(1-2):13-20.
    [10] Zhang J L, Shi J X,Gong M L. Synthesis of magnetic nickel spinel ferrite nanospheresby a reverse emulsion-assisted hydrothermal process[J]. J. Solid State Chem.,2009,182(8):2135-2140.
    [11] Liu F F, Li X Y, Zhao Q D, et al. Structural and photovoltaic properties of highlyordered ZnFe2O4nanotube arrays fabricated by a facile sol–gel template method[J]. Acta.Mater.,2009,57(9):2684-2690.
    [12]卢佃清,刘学东,徐超,等.退火温度对纳米晶Ni0.5Zn0.5Fe2O4吸波性能的影响[J].材料热处理技术,2009,38(24):52-54.
    [13]谢宇,洪小伟,魏娅,等.钕掺杂镍锌铁氧体-聚苯胺复合材料的制备[J].航空科学技术,2011,(1):46-48.
    [14]韩笑,王源升.表面修饰对纳米Fe3O4/导电聚苯胺复合材料结构和电磁性能的影响[J].材料科学与工程学报,2007,25(5):653-656.
    [15]田薇薇.导电聚苯胺基吸波复合材料的制备及性能研究[D].保存地点:沈阳理工大学硕士学位论文,2010:13.
    [16] Kwon S K, Suzuki S, Saito M, et al. Influence of foreign ions on the atomic scalestructure of ferric oxyhydroxides[J]. Corros. Sci.,2005,47(10):2543-2549.
    [17] Betiana C C, Olivier R, Mariana A, et al. On the nature of goethite, Mn-goethite andCo-goethite as supports for gold nanoparticles[J]. Mater. Chem.&Phys.,2008,109(2-3):448-454.
    [18] Alvarez M, Sileo E E, Rueda E H. Structure and reactivity of synthetic Co-substitutedgoethites[J]. American Mineralogist,2008,93(4):584-590.
    [19] Zhang H E, Zhang B F, Wang G F, et al. The structure and magnetic properties ofZn1xNixFe2O4ferrite nanoparticles prepared by sol–gel auto-combustion[J].J. Magn. Magn.Mater.,2007,312(1):126-130.
    [20]李巧玲,张存瑞,赵静贤,等.钡铁氧体微管的制备及镧掺杂对其性能的影响[J].无机化学学报,2009,25(2):312-316.
    [21]艾伦弘,蒋静.聚苯胺/ZnFe2O4纳米复合物的制备与表征[J].应用化学,2010,27(1):92-95.
    [22] Gu Hongbo, Huang Yudong, Zhang Xi, et al. Magnetoresistive polyaniline-magnetitenanocomposites with negative dielectrical properties[J]. Polymer,2012,53(3):801-809.
    [23]南军义,林薇薇,田永辉.共聚物酸掺杂接枝聚苯胺的研究[J].功能高分子学报,2000,(3):297-300.
    [24]蒋静.聚苯胺/聚吡咯-尖晶石铁氧体纳米复合物的制备、表征和电磁性质研究[D].保存地点:浙江师范大学硕士学位论文,2004:27.
    [25]李发闯,黄惠,郭忠诚.导电聚苯胺-四氧化三钴复合材料的合成及性能表征[J].功能高分子学报,2011,24(4):353-358.
    [26]仇海珍.聚取代苯胺及其与锌锰镍铁氧体复合物的制备及电磁性质研究[D].保存地点:浙江师范大学硕士学位论文,2009:64.
    [27]王红霞,张法玲,曹媛,等.多核超顺磁性Ni0.5Zn0.5Fe2O4/SiO2催化载体的制备与表征[J].高等学校化学学报,2008,29(7):1428-1431.
    [28]刘徽.聚邻/间甲苯胺-苯胺-钡铁氧体复合物的制备及电磁性能研究[D].保存地点:浙江师范大学硕士学位论文,2009:70.
    [29]赵海涛.纳米镍铁氧体及其复合材科的制备及电磁微波吸收性能研究[D].保存地点:东北大学博士学位论文,2008:54.
    [30]马瑞廷.尖晶石型纳米晶铁氧体的制备及电磁微波吸收性能研究[D].保存地点:东北大学博士学位论文,2007:51-52.
    [1]张豪.掺杂钛酸钡/导电高分子复合吸波材料的制备及性能[D].保存地点:中北大学硕士学位论文,2012:10.
    [2] Lines M E.Class A M. Principles and Applications of Ferroelectrics and RelatedMaterials[M]. Oxford: Clarendon Press,1997.
    [3] Buscaglia M T, Buscaglia V, Viviani M, et al. Influence of foreign ions on the crystalstructure of BaTiO3[J]. Journal of the European Ceramic Society,2000,20(12):1997.
    [4] Chen X D,Wang G Q,Duan Y P, Liu S H. Microwave absorption properties of bariumtitanate/epoxide resin composites [J]. Journal of Physics D: Applied Physics,2007,40(6):1827.
    [5]王静.软化学掺杂纳米BaTiO3基介电材料的制备、表征与性能[D].保存地点:河北大学硕士学位论文,2005:17.
    [6]王扬勇,张柏宇,王景平.本征型导电高分子电磁干扰屏蔽材料研究进展[J].兵器材料科学与工程,2004,27(3):54-60.
    [7]李发闯,黄惠,郭忠诚.导电聚苯胺-四氧化三钴复合材料的合成及性能表征[J].功能高分子学报,2011,24(4):353-358.
    [8]刘建华,游盾,于美,等.均匀共沉淀法制备钛酸钡-钡铁氧体核-壳结构粒子[J].物理化学学报,2011,27(5):1254-1260.
    [9]杨磊,张长森,罗驹华.无机-有机复合吸波材料研究进展[J].化工新型材料,2011,39(4):29-31.
    [10]姚燕燕,陈剑宁,赵鹏.溶胶凝胶法低温合成钛酸钡纳米晶粉体[J].硅酸盐学报,2004,32(6):751-754.
    [11] A. Habib,R. Haubner, N. Stelzer. Effect of temperature, time and particle size of Tiprecursor on hydrothermal synthesis of barium titanate[J]. Materials Science and EngineeringB,2008,152:60–65.
    [12]王松泉,刘晓林,陈建峰,等.直接沉淀法制备纳米钛酸钡粉体的表征与介电性能[J].北京化工大学学报,2004,31(4):32-36.
    [13]廖梓珺,晏华,陈国需,等.硅烷偶联剂对聚苯胺/钛酸钡复合粒子的结构影响[J].功能材料,2007,38(11):1820-1823.
    [14]廖梓珺,晏华,陈勇,等.壳核型聚苯胺/钛酸钡复合电流变材料的制备及表征[J].功能材料,2006,37(5):716-719.
    [15]张栋杰,姚熹. BaTiO3铁电微晶立方-四方相变热力学分析[J].硅酸盐学报,2003,31(5):442-444.
    [16]郭惠芬,张兴堂,刘兵,等.纳米晶钛酸钡的Sol-gel法制备及其尺寸效应[J].物理化学学报,2004,20(2):165-167.
    [17] Yuh Junhan, Nino Juan C., Sigmund Wolfgang M.. Synthesis of barium titanate (BaTiO3)nanofibers via electrospinning[J]. Materials Letters2005,59(28):3645–3647.
    [18]李发闯,黄惠,郭忠诚.导电聚苯胺-四氧化三钴复合材料的合成及性能表征[J].功能高分子学报,2011,24(4):353-358.
    [19]仇海珍.聚取代苯胺及其与锌锰镍铁氧体复合物的制备及电磁性质研究[D].保存地点:浙江师范大学硕士学位论文,2009:59-64.
    [20]毋伟,陈建峰,卢寿慈.超细粉体表面修饰[M].北京:化学工业出版社,2004.6-126.
    [21]艾伦弘,蒋静.聚苯胺/ZnFe2O4纳米复合物的制备与表征[J].应用化学,2010,27(1):92-95.
    [22] Gu Hongbo, Huang Yudong, Zhang Xi, et al. Magnetoresistive polyaniline-magnetitenanocomposites with negative dielectrical properties[J]. Polymer,2012,53(3):801-809.
    [23] Lee B., Zhang J.P.. Preparation, structure evolution and dielectric properties of BaTiO3thin films and powders by an aqueous sol–gel process[J]. Thin Solid Films,2001,388(1-2)107–113.
    [24]孙目珍.电介质物理基础[M].华南理工出版社,2000:78-83.
    [25]唐欣,赵斌元,胡克鳌.聚苯胺/钡铁氧体复合材料制备及电磁性能研究[J].兵器材料科学与工程,2006,29(5):45-47.
    [26]何倩,黄英,王娜,等.(BaTiO3+BaFe12O19)/PANI复合材料的电磁性能[J].2012,26(5):489-494.
    [27]罗道源. BaFe12O19、BaTiO3及其复合体系的制备与微波性能研究[D].保存地点:中南大学硕士研究生,2012:40.
    [1]王扬勇,张柏宇,王景平.本征型导电高分子电磁干扰屏蔽材料研究进展[J].兵器材料科学与工程,2004,27(3):54-60.
    [2]李发闯,黄惠,郭忠诚.导电聚苯胺-四氧化三钴复合材料的合成及性能表征[J].功能高分子学报,2011,24(4):353-358.
    [3]唐欣,赵斌元,胡克鳌.聚苯胺/钡铁氧体复合材料制备及电磁性能研究[J].兵器材料科学与工程,2006,29(5):45-47.
    [4]赵海涛,张罡,马瑞廷,等.镍铁氧体/聚苯胺复合材料的制备及其性能[J].中国有色金属学报,2011,21(4):843-846.
    [5]赵海涛,马瑞廷,于洪浩,等.羰基铁/聚苯乙烯复合材料的制备及微波吸收性能[J].功能材料,2011,42(增刊):299-301.
    [6]吴广利,段玉平,周文龙,等.羰基铁与炭黑共混制备吸波涂层的研究[J].安全与电磁兼容,2011,(1):41-43.
    [7]童国秀,官建国,张五一,等.纳米铁纤维与羰基铁粉共混制备轻质宽带吸波涂层材料[J].金属学报,2008,44(8):1001-1005.
    [8] Abbas S M, Kixit A K, Chatterjee R, et al.Complex permittivity and microwave absorptionproperties of BaTiO3–polyaniline composite[J].Mater Sci Eng B,2005,123(2):167-171.
    [9]翟青霞,黄英.镧掺杂锶铁氧体/聚苯胺纳米复合材料的制备及电磁性能[J].航空材料学报,2011,31(6):55-61.
    [10]刘建华,周新楣,李松梅.羰基铁/导电聚苯胺微管复合材料的电磁性能[J].复合材料学报,2005,22(3):70-74.
    [11]艾伦弘,蒋静.聚苯胺/ZnFe2O4纳米复合物的制备与表征[J].应用化学,2010,27(1):92-95.
    [12] Gu Hongbo, Huang Yudong, Zhang Xi, et al. Magnetoresistive polyaniline-magnetitenanocomposites with negative dielectrical properties[J]. Polymer,2012,53(3):801-809.
    [13]李发闯,黄惠,郭忠诚.导电聚苯胺-四氧化三钴复合材料的合成及性能表征[J].功能高分子学报,2011,24(4):353-358.
    [14]何倩,黄英,王娜,等.(BaTiO3+BaFe12O19)/PANI复合材料的电磁性能[J].2012,26(5):489-494.
    [15]罗道源. BaFe12O19、BaTiO3及其复合体系的制备与微波性能研究[D].保存地点:中南大学硕士研究生,2012:40.
    [16]周长,方庆清,闫方亮,等. ZnO-羰基铁复合纳米粒子的吸波特性[J].磁性材料及器件,2010,(10):27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700