用户名: 密码: 验证码:
基于石油焦的浆体燃料制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用石油焦制备水焦浆,能够拓宽代油和气化燃料的原料范围,应对烟煤供应紧张的难题。水焦浆具有成浆浓度高、热值高、灰分低等特点,可以代油、代气、代煤燃烧,亦可作为气化原料,为大规模高效清洁煤气化技术提供原料基础。我国燃料型石油焦的产量逐年递增,水焦浆技术可以实现石油焦的清洁高效利用,但其较差的稳定性制约了水焦浆的发展和应用,改善水焦浆的稳定性是一个亟待解决的关键问题。
     本文以提高水焦浆的品质为目的,研究了水焦浆的特性及其影响因素,提出了改善水焦浆稳定性的几种方法,主要进行了以下工作:
     采用多种石油焦、多种添加剂制备水焦浆,深入研究了水焦浆的成浆性、流变性和稳定性。结果表明,石油焦的成浆性良好,定粘浓度普遍在70%左右;随着粒径分布范围的变宽和平均粒径的变大,石油焦的成浆性变好;水焦浆的定粘浓度与石油焦的内水分和灰分均成反比,且内水分对定粘浓度的反作用效果较大;随着比表面积和总孔容的减小,成浆性提高;石油焦的强疏水性表面特性,有利于成浆浓度的提高,但易使水焦浆呈现“剪切变稠”的胀流性特征,且具有较差的稳定性。
     研究了各种灰分对水焦浆稳定性的影响。结果表明,加入少量CaO能有效提高水焦浆的稳定性,当CaO的添加质量为石油焦干基质量的0.3%时,可以制得定粘浓度为68.0%、定粘流动特征指数为0.78、定粘析水率为3.4%的高品质水焦浆。
     选用褐煤和污泥分别与石油焦共成浆,研究了煤焦比(或污泥含量)对浆体表面特性及浆体品质的影响。结果表明,随着煤焦比(或污泥含量)的增加,一方面浆体表面张力变大,成浆性变差,另一方面Zeta电位绝对值增加,稳定性变好,假塑性增强;褐煤焦浆(或污泥焦浆)的稳定性与假塑性正相关,与成浆性负相关;当煤焦比为1:4时,可以制得定粘浓度大于65%、定粘流动特征指数约0.9、定粘析水率约4%的褐煤焦浆;当污泥含量为6%时,可以制得定粘浓度约64%、定粘流动特征指数小于0.8、定粘析水率约5%的污泥焦浆,是浓度较高、稳定性较好、假塑性特征较强的高品质浆体燃料。
     研制气泡水焦浆以期改善水焦浆的稳定性,分别采用单一因素分析法和多因素多水平的正交试验法研究了浆体制备过程中各因素对稳定性的影响。结果表明,吹气时间、起泡剂用量和浆体浓度对气泡水焦浆稳定性的影响十分显著,而起泡剂种类和布风板孔径大小的影响较弱;获得最佳稳定性的操作条件是:吹气时间为30min,成浆浓度为65%,起泡剂用量为0.030%,布风板孔径为2~5μm,起泡剂种类为AOS。在此最优条件下,气泡水焦浆的倒出率可达96%以上,比同等条件下的纯水焦浆(无气泡)提高了约80个百分点,稳定性大大改善,且浆体的流动特征指数在0.8左右,假塑性特征明显。
     在实验研究基础上,分析了气泡水焦浆形成的微观作用机理。结果发现,气泡的生成主要依赖起泡剂的加入,起泡剂存在一个最佳用量;气泡在浆体中最稳定的状态就是以气固联合体的形式存在,气固联合体的形成存在碰撞、黏附和脱附三个微观过程;气泡直径越小,浆体微湍流强度越大,颗粒与气泡间的碰撞概率越高;颗粒表面疏水性越强,接触角越大,越易黏附在气泡上
Preparation of petroleum-coke-water-slurry (PCWS) can broaden scope of raw materials of fuel of oil substitute and gasification, and settle problem of tension supply of bituminous coal. PCWS, which has high solid concentration, high heat value and low ash content, can burn instead of oil, gas and coal, also can provide raw materials of large-scale efficient clean coal gasification technology. The production of fuel type petroleum coke increases year by year in China. The technology of PCWS can achieve high efficient and clean utilization of petroleum coke, but the bad stability restricts development and application of PCWS. It's important to improve stability of PCWS.
     In order to improve the quality of PCWS, this paper studies properties of PCWS and its influencing factors, and puts forward methods of improving the stability. The main work is carried out as follows:
     Many types of petroleum cokes and additives are used for PCWS whose slurryability, rheological characteristics and stability are investigated. Results show that petroleum cokes have good slurryability with solid concentration being about70%generally. The slurryability is enhanced with increasing particle size distribution range and average particle size, and with decreasing specific surface area and pore volume. The solid concentration is inversely proportional to inherent moisture content and ash content of the petroleum coke, and the inherent moisture content is more adverse. Surface characteristic of petroleum coke is strong hydrophobicity, which is in favor of enhancing the concentration and makes PCWS be dilatant and unstable fluid easily.
     The effect of various kinds of ash on the stability of PCWS is researched. Results show that the stability can be improved effectively by adding a small amount of CaO. When the adding quality of CaO is0.3%of dry basis petroleum coke, PCWS has high performance, whose concentration is68.0%, flow characteristic index is0.78, and drainage rate is3.4%at fixed viscosity.
     The influence of ratio of coal and coke (or sludge content) on surface characteristic of slurries prepared with petroleum coke and lignite or sludge is studied. Results show that surface tension and Zeta potential absolute value increase, and stability and pseudoplasticity enhance, but slurryability goes worse, with increasing ratio of coal and coke (or sludge content). The stability is positively related to the pseudoplasticity and negatively related to the slurryability. When the ratio of coal and coke is1:4, lignite coke slurry has high performance, whose concentration is above65%, flow characteristic index is about0.9, and drainage rate is about4%at fixed viscosity. When the sludge content is6%, sludge coke slurry also has high performance, whose concentration is about64%, flow characteristic index is less than0.8, and drainage rate is about5%at fixed viscosity.
     Bubble-petroleum-coke-water-slurry (BPCWS) is prepared to improve stability of PCWS. The influence of various factors in the preparation process on the stability is studied by single factor analysis and multiple factors orthogonal method respectively. Results show that the effects of blowing time, foaming agent dosage and solid concentration on the stability are very significant, while the effects of foaming agent type and ventilation panel aperture size are slight. The operating conditions of obtaining the best stability are blowing for30min, concentration being65%, foaming agent dosage being0.030%,2~5μm aperture size and AOS. Under the optimal conditions, pouring rate of BPCWS is more than96%, which increases by about80percentage points compared with pure PCWS (no bubbles). The BPCWS has good stability and obvious pseudoplasticity with flow characteristic index being about0.8.
     On the basis of experimental research, the microscopic mechanism of BPCWS is analysed. Results show that bubble formation depends mainly on the foaming agent which has an optimum dosage. The most stable form of bubbles in slurry is gas-solid-union forming through collision, adhesion and desorption. The collision probability between particles and bubbles is enhanced with decreasing bubble diameter, and with increasing microturbulence intensity. The stronger the hydrophobicity of particle surface, the larger the contact angle, the more easily the particles adhere to the bubbles.
引文
[1]李霞.中国石油对外依存度研究[J].经济研究导刊,2011(31):171-172.
    [2]S Salvador, J M Commandre, B R Stanmore. Reaction rates for the oxidation of highly sulphurised petroleum cokes:the influence of thermogravimetric conditions and some coke properties[J]. Fuel,2003,82:715-720.
    [3]Youqing Wu, Shiyong Wu, Jing Gu, Jinsheng Gao. Differences in physical properties and CO2 gasification reactivity between coal char and petroleum coke[J]. Process Safety and Environmental Protection,2009,87:323-330.
    [4]Masayuki Taniguchi, Hironobu Kobayashi, Kenji Kiyama, Yoshio Shimogori. Comparison of flame propagation properties of petroleum coke and coals of different rank[J]. Fuel,2009,88:1478-1484.
    [5]J M Commandre, S Salvador. Lack of correlation between the properties of a petroleum coke and its behaviour during combustion[J]. Fuel Processing Technology,2005,86:795-808.
    [6]H.T.波霍金柯.石油焦生产[M].中国石化出版社:北京,1992.
    [7]张双全,吴国光.煤化学[M].中国矿业大学出版社:江苏,2004.
    [8]Lee S H, Choic S. Chemical activation of high sulfur petroleum coke by alkali metal compounds[J]. Fuel Process Technol,2000,64(1-3):141-153.
    [9]Tyler R J, Smith I W. Reactivity of petroleum coke to carbon dioxide between 1030 and 1180 K [J]. Fuel,1975,54(2):99-104.
    [10]李庆峰,房倚天,张建民,王洋,时铭显,孙国刚.石油焦水蒸气气化反应特性[J].燃料化学学报,2003,31(3):204-208.
    [11]李庆峰,房倚天,张建民,王洋,时铭显,孙国刚.石油焦的气化反应特性[J].燃烧科学与技术,2004,10(3):254-259.
    [12]刘鑫,张保申,周志杰,许建良,王辅臣.高温热处理对石油焦结构及气化活性的影响[J].石油学报(石油加工),2011,27(1):138-143.
    [13]李庆峰.石油焦气化反应特性研究[D].太原:中国科学院山西煤炭化学研究所,2003.
    [14]Guo A J, Zhang X J, Wan G Z X. Simulated delayed coking characteristics of petroleum residues and fractions by thermogravimetry[J]. Fuel Processing Technology,2008,89:643-650.
    [15]许桂英,孙国刚.生物质与石油焦共气化特性的研究[J].燃料化学学报,2011,39(6):439-442.
    [16]刘鑫,张保申,陈雪莉,周志杰,王辅臣.石油焦与稻草焦共气化研究[J].燃料化学学报,2012,40(2):164-169.
    [17]王玉章,申海平,刘自宾.延迟焦化石油焦及其应用[J].炼油技术与工程,2008,38(2):25-29.
    [18]周军.石油焦燃烧特性的试验研究[D].北京:清华大学,2006.
    [19]Guanghong Sheng, Jianping Zhai, Qin Li, Feihu Li. Utilization of fly ash coming from a CFBC boiler co-firing coal and petroleum coke in Portland cement[J]. Fuel, 2007,86(16):2625-2631.
    [20]黎永,吕俊复,张建胜,任维,王昕,刘青,岳光溪.石油焦燃烧反应活性及循环流化床燃烧实验[J].燃烧科学与技术,2001,7(1):81-84.
    [21]Jihui Chen, Xiaofeng Lu. Progress of petroleum coke combusting in circulating fluidized bed boilers—A review and future perspectives[J]. Resources, Conservation and Recycling,2007,49(3):203-216.
    [22]J V Iribarne, E J Anthony, A Iribarne. A scanning electron microscope study on agglomeration in petroleum coke-fired FBC boilers[J]. Fuel Processing Technology,2003,82(1):27-50.
    [23]赵卫东,刘建忠,周俊虎,张保生,张传名,岑可法.水焦浆/水煤浆燃烧特性对比研究[J].浙江大学学报(工学版),2008,42(10):1795-1800.
    [24]杨亚平,蔡崧.烟煤与石油焦掺混燃烧特性研究[J].热能动力工程,2001,16(6):612-631.
    [25]熊源泉,沈湘林,郑守忠.油焦浆、水焦浆燃烧特性的试验研究[J].热能动力工程,2001,16(5):494-496.
    [26]赵翔,寿伟义,曹欣玉,徐小琼,韩旭,姚强,黄镇宇,岑可法.新型燃料石油焦渣油浆的燃烧试验研究[J].动力工程,1998,18(3):60-65.
    [27]杨再成.水焦浆-液态石油焦在电站锅炉上的应用[J].余热锅炉,2005(2):10-15.
    [28]张朴,巩向胜.新型液态燃料水焦浆与循环流化床锅炉工业应用若干问题的探讨[J].洁净煤技术,2004,10(2):16-21.
    [29]李艳昌.煤炭成浆特性的非线性理论和波能量改性机理的研究[D].杭州:浙江大学,2007.
    [30]梁兴,詹隆,王国房,段清兵.水煤浆制备工艺的应用与发展[J].煤炭加工与综合利用,2006(5):5-11.
    [31]吉登高,张丽娟,高明峰,丁志杰,陈志刚.我国水煤浆制备与燃烧技术的发展[J].选煤技术,2004(4):3-15.
    [32]贾桂芝.水煤浆技术综述[J].中氮肥,1994,(4):17-20.
    [33]余学海,刘建忠,赵卫东,程军,周俊虎,岑可法.一种优化煤成浆特性的方法[J].热力发电,2009,38(4):14-17.
    [34]邹立壮,朱书全.不同水煤浆添加剂与煤之间的相互作用规律(Ⅱ):复合煤颗粒间的相互作用对CWM表观黏度的影响[J].化工学报,2004,55(5):775-782.
    [35]邹立壮,朱书全,王晓玲,郭相坤,崔广文.不同水煤浆分散剂与煤之间的相互作用规律研究(Ⅺ):分散剂改性煤粒的界面性质及其对CWS性质的影响[J].燃料化学学报,2006,34(2):160-165.
    [36]赵卫东,刘建忠,周俊虎,曹晓哲,张光学,岑可法.低阶煤高温高压水热处理改性及其成浆特性[J].化工学报,2009,60(6):1560-1567.
    [37]F Boylu, H Dincer, G Atesok. Effect of coal particle size distribution, volume fraction and rank on the rheology of coal-water slurries[J]. Fuel Processing Technology,2004,85(4):241-250.
    [38]Gurses A, Acikyildiz M, Dogar C, Karaca S, Bayrak R. An investigation on effects of various parameters on viscosities of coal - water mixture prepared with Erzurum - Askale lignite coal[J]. Fuel Process Tech,2006,87(9):821-827.
    [39]Meikap B C, Purohit N K, Mahadevan V. Effect of microwave pretreatment of coal for improvement of rheological characteristics of coal - water slurries[J]. J Colloid Interface Sci,2005,281(1):225-235.
    [40]Turian R M, Attal J F, Sung D J, Wedgewood L E. Properties and rheology of coal-water mixtures using different coals[J]. Fuel,2002,81:2019-2033.
    [41]Mishra S K, Senapati P K, Panda D. Rheological behavior of coal - water slurry[J]. Energ Source,2002,24:159-167.
    [42]Jun Cheng, Junhu Zhou, Yanchang Li, Jianzhong Liu, Kefa Cen. Effects of pore fractal structures of ultrafine coal water slurries on rheological behaviors and combustion dynamics[J]. Fuel,2008,87(12):2620-2627.
    [43]李艳昌,周志强,程军,周俊虎,刘建忠,岑可法.煤的理化特性对其成浆性能的影响[J].煤炭转化,2009,32(3):35-39.
    [44]尉迟唯,李保庆,李文,陈皓侃.煤质因素对水煤浆性质的影响[J].燃料化学学报,2007,35(2):146-154.
    [45]吴国光,郭照冰.水煤浆制浆试验研究与制备因素分析[J].中国矿业大学学报,2001,30(6):543-546.
    [46]李珊珊,程军,李艳昌,周志军,刘建忠,周俊虎,岑可法.水煤浆黏度的几种影响因素分析[J].煤炭转化,2006,29(1):23-26.
    [47]Xueqing Qiu, Mingsong Zhou, Dongjie Yang, Hongming Lou, Xinping Ouyang, Yuxia Pang. Evaluation of sulphonated acetone-formaldehyde (SAF) used in coal water slurries prepared from different coals[J]. Fuel,2007,86(10-11):1439-1445.
    [48]李干佐,房秀敏.表面活性剂在能源和选矿工业中的应用[M].北京:中国轻工业出版社,2002.
    [49]邹立壮,朱书全,王晓玲,崔广文.不同水煤浆分散剂与煤之间的相互作用规律研究(Ⅵ):分散剂对水煤浆静态稳定性的影响[J].煤炭转化,2005,28(2):42-47.
    [50]赵国华,段钰锋,徐峰,王秋粉.高浓度水煤浆流变特性和稳定性试验研究[J].热能动力工程,2008,23(2):201-205.
    [51]赵国华,王秋粉,陈良勇,段钰锋.温度对高浓度水煤浆流变特性的影响[J].锅炉技术,2007,38(6):74-78.
    [52]赵卫东.低阶煤水热改性制浆的微观机理及燃烧特性研究[D].杭州:浙江大学、2009.
    [53]刘晓霞,屈睿,黄文红,龚林彦.水煤浆添加剂的研究进展[J].应用化工,2008,37(1):101-103.
    [54]冯娜,田原宇,刘芳,安晓熙.石油焦后处理技术及其应用[J].石油与天然气化工,2008,37(2):134-137.
    [55]邹建辉,杨波丽,龚凯峰,展秀丽,王辅臣,于遵宏.石油焦成浆性能的研究[J].化学工程,2008,36(3):22-25.
    [56]杨波丽,龚凯峰,邹建辉,刘海峰,王辅臣,于遵宏.褐煤与石油焦共成浆性研究[J].燃料化学学报,2008,36(4):391-396.
    [57]李明,李伟东,李伟锋,刘海峰,于遵宏.污泥与石油焦的共成浆性[J].石油学报(石油加工),2008,24(6):663-668.
    [58]胡维斌,何国锋,段清兵.低挥发分煤的成浆性研究[J].煤炭加工与综合利用,2009(1):37-39.
    [59]胡维斌,韩敏芳,何国锋,王燕芳,段清兵.水焦浆流变特性的影响因素研究[J].洁净煤技术,2008,14(6):29-31.
    [60]赵卫东,刘建忠,张保生,周俊虎,岑可法.水焦浆燃烧动力学参数求解方法[J].中国电机工程学报,2008,28(17):55-60.
    [61]汪锡孝.试验研究方法[M].湖南科学技术出版社:长沙,1989.
    [62]朱书全,詹隆.中国煤的成浆性研究[J].煤炭学报,1998,23(2):198-201.
    [63]张荣曾.中国水煤浆制浆技术的进展[J].洁净煤技术,1999,5(S1):13-18.
    [64]孙成功,吴家珊.水煤浆应用基础研究现状及发展趋势[J],煤炭转化,1993,16(1):91-98.
    [65]Roh N S, Shin D H, Kim D C, Kim J D. Rheological behavior of coal-water mixtures.1. Effects of coal type, loading and particle-size[J]. Fuel,1995,74(8): 1220-1225.
    [66]Roh N S, Shin D H, Kim D C, Kim J D. Rheological behavior of coal-water mixtures.2. Effects of surfactants and temperature[J]. Fuel,1995,74(9): 1313-1318.
    [67]张荣曾.水煤浆制浆技术[M].北京:科学出版社,1996.
    [68]尉迟唯,李保庆,李文,陈皓侃.中国不同变质程度煤制备水煤浆的性质研究[J].燃料化学学报,2005,33(2):155-160.
    [69]Atesok G, Boylu F, Sirkeci A A, Dincer H. The effect of coal properties on the viscosity of coal-water slurry[J]. Fuel,2002,81(14):1855-1858.
    [70]孙成功,李保庆,尉迟唯.煤的孔结构对水煤浆性质的影响[J].燃料化学学报,1996,24(5):434-439.
    [71]全国煤炭标准化技术委员会.GB/T 18855-2008水煤浆技术条件[M].北京:中国标准出版社,2008.
    [72]全国煤炭标准化技术委员会.GB/T 18856.2-2008水煤浆试验方法第2部分:浓度测定[M].北京:中国标准出版社,2008.
    [73]虞育杰,刘建忠,张传名,赵卫东,周俊虎,岑可法.低挥发分煤的成浆特性和水煤浆流变特性[J].浙江大学学报(工学版),2011,45(2):335-340.
    [74]吴国光,王晓春,刘炯天.水煤浆添加剂NSF制浆试验及其效能的研究[J].中国矿业大学学报,2005,34(6):703-706.
    [75]邹立壮,朱书全,支献华,崔广文.不同水煤浆添加剂与煤之间的相互作用规律研究(Ⅳ):分散剂用量对水煤浆流变特性的影响[J].中国矿业大学学报,2004,33(4):370-374.
    [76]杨国军.水焦浆的制备及应用[J].煤炭加工与综合利用,2008(3):33-35.
    [77]邹立壮,朱书全.不同分散剂对煤成浆性的促进作用[J].煤炭学报,2003,28(6):636-640.
    [78]李凤起,朱书全.添加剂对煤-水界面性质的影响与效能研究[J].选煤技术,2001(1):22-24.
    [79]希利科著,刘加龙译.温度对水煤浆流变性质及对用腐植酸盐使其增塑的影响[J].腐植酸,2004(5):42-47.
    [80]但盼,邱学青,周明松.温度及剪切时间对水煤浆表观黏度及流变性影响[J].煤炭科学技术,2008,36(6):103-106.
    [81]Zhou M S, Yang D J, Qiu X Q. Influence of dispersant on bound water content in coal-water slurry and its quantitative determination. Energy Conversion and Management,2008,49(11):3063-3068.
    [82]朱书全.煤的性质对其成浆性影响的研究综述[J].煤炭加工与综合利用,1996(2):5-8.
    [83]阮伟,刘建忠,虞育杰,曹晓哲,周俊虎,岑可法.煤质特性与配煤对成浆性的影响[J].动力工程学报,2012,32(2):165-169.
    [84]尉迟唯,李保庆,李文,陈皓侃,王志忠.煤的岩相显微组分对水煤浆性质的影响[J].燃料化学学报,2003,31(5):415-419.
    [85]Macias-Garcia A, Cuerda-Correa E M, Diaz-Diez M A. Application of the Rosin-Rammler and Gates-Gaudin-Schuhmann models to the particle size distribution analysis of agglomerated cork. Materials Characterization,2004, 52(2):159-164.
    [86]Allaire S E, Parent L E. Size guide number and Rosin-Rammler approaches to describe particle size distribution of granular organic-based fertilisers. Biosystems Engineering,2003,86(4):503-509.
    [87]Gonzalez-Tello P, Camacho F, Vicaria J M, Gonzalez P A. A modified Nukiyama-Tanasawa distribution function and a Rosin-Rammler model for the particle-size-distribution analysis. Powder Technology,2008,186(3):278-281.
    [88]王淋,曾凡.煤中灰分对水煤浆性能的影响[J].煤炭加工与综合利用,1998(3):18-21.
    [89]朱书全,刘红缨,刘利,郭宇杰.3种难溶性矿物对煤成浆性的影响[J].中国矿业大学学报,2003,32(2):115-118.
    [90]M.C.富尔斯特瑙.浮选(下卷)[M].北京:冶金工业出版社,1982.
    [91]尉迟唯,李保庆,李文,陈皓侃.煤孔结构特性对水煤浆性质的影响分析[J].燃料化学学报,2006,34(1):5-9.
    [92]Kaji R, Muranaka Y, Otsuka K, Hishinuma Y. Water-absorption by coals-Effects of pore structure and surface oxygen[J]. Fuel,1986,65(2):288-291.
    [93]孙利,沈本贤.X射线衍射法研究石油焦碳化过程的微晶变化[J].石油学报(石油加工),2004,20(2):53-56.
    [94]高志芳,朱书全,吴晓华.褐煤提质改性对水煤浆特性的影响[J].煤炭科学技术,2010,38(9):112-116.
    [95]王传成,刘建忠,虞育杰,罗炉林,程军,周俊虎,岑可法.内蒙古褐煤的成浆特性[J].中国电机工程学报,2010,30(S1):85-90.
    [96]王平川,宫庆刚.兖州煤成浆特性分析[J].煤炭加工与综合利用,2001(5):14-15.
    [97]付晓恒,王祖讷,柴保明,李红枫,刘万峰,万玲娟.精细水煤浆制备与应用技术的研究[J].煤炭学报,2004,29(2):226-229.
    [98]孙成功,李保庆,尉迟唯,曹变英.分散剂表面吸附特性和相关电化学性质对煤浆分散体系流变特性的影响[J].燃料化学学报,1996,24(4):323-328.
    [99]陈良勇,段钰锋,刘猛,赵长遂.水煤浆真实流变特性的研究[J].动力工程,2008,28(5):753-758.
    [100]陈良勇,段钰锋,王秋粉,任远.高浓度水煤浆的流变特性与壁面滑移效应试验研究[J].燃烧科学与技术,2008,14(4):317-322.
    [101]代淑兰,陈良勇,代少辉.水煤浆的流变特性研究进展[J].锅炉技术,2010,41(3):76-80.
    [102]朱书全,邹立壮,黄波,崔广文,王奇.水煤浆添加剂与煤之间的相互作用规律研究(Ⅰ):复合煤粒间的相互作用对水煤浆流变性的影响[J].燃料化学学报,2003,31(6):522-523.
    [103]唐伦成,杜希林.焦水煤浆流变性及其核磁共振研究[J].应用科技,2002,29(7):71-74.
    [104]钟德,王光谦,王士强.非均匀颗粒形成浆体屈服应力的计算模型[J].泥沙研究,1998(3):29-33.
    [105]梁昌华,张大鹏,孙涛.屈服假塑性流体管流流动及传热规律研究[J].管道技术与设备,2004(1):4-5.
    [106]李兆敏,张平,董贤勇,王德山.屈服假塑性流体轴向同心环空中速度及温度分布研究[J].水动力学研究与进展,2004,A19(1):31-37.
    [107]李朋伟,杨东杰,楼宏铭,邱学青.利用分散稳定性分析仪研究水煤浆的稳定性[J].燃料化学学报,2008,36(5):524-529.
    [108]刘红缨,朱书全,王奇.矿物对水煤浆稳定性的影响研究[J].中国矿业大学学报,2004,33(3):283-286.
    [109]寿崇琦,赵春宾,贾海波,杨树新,张志良,郑利强,李关宾,陈立仁.水煤浆分散剂及水煤浆稳定性的研究[J].日用化学工业,2003,33(2):120-123.
    [110]全国煤炭标准化技术委员会.GB/T 18856.5-2008水煤浆试验方法第5部分:稳定性测定[M].北京:中国标准出版社,2008.
    [111]傅丛,李英华,孙刚.水煤浆稳定性测定方法的研究和标准制定[J].洁净煤技术,2002,8(4):5-20.
    [112]支献华.水煤浆稳定性的影响因素及评定方法[J].煤炭加工与综合利用,2000(1):38-39.
    [113]Mengual O, Menuirer G, Cayre I, P Uech, K Snabre P. Characterisation of in stability of concentrated dispersions by a new optical analyser:the TURBISCAN MA 1000[J]. Colloids Surf A,1999,152(1-2):111-123.
    [114]Bordes C, Snabre P, Frances C, Biscans B. Optical investigation of shear and time dependent microstructural changes to stabilized and depletion flocculated concentrated latex sphere suspensions[J]. Powder Technol,2003,130(1-3): 331-337.
    [115]张锐,王瑞和,邱正松,张广峰,杨红兵.利用光散射原理评价泡沫钻井液的稳定性[.J].石油学报,2005,26(1):105-108.
    [116]赵世永,张晋陶.粒度配比对神府煤水煤浆稳定性的影响[J].煤炭工程,2006(12):88-90.
    [117]王利珍,杨祥生,陈荣荣,魏文珑,杨怀旺,姚润生.水煤浆稳定性影响因素的研究进展[J].煤化工,2007(6):55-59.
    [118]Turian R M, Ma T W, Hsuf L G. Characterization, settling, and rheology of concentrated fine particulate mineral slurries[J]. Powder Technology,1997(93): 219-233.
    [119]Thomas Thielemann, Sandro Schmidt, J Peter Gerling. Lignite and hard coal: Energy suppliers for world needs until the year 2100-An outlook[J]. International Journal of Coal Geology,2007,72(1):1-14.
    [120]尹立群.我国褐煤资源及其利用前景[J].煤炭科学技术,2004,32(8):12-14.
    [121]Werther J, Ogada T. Sewage sludge combustion[J]. Progress in Energy and Combustion Science,1999,25(1):55-116.
    [122]高夫燕,刘建忠,王传成,虞育杰,程军,张彦威,周俊虎,岑可法.石油焦的成浆性及水焦浆的流变性和稳定性[J].化工学报,2010,61(11):2912-2918.
    [123]段旭琴,王祖讷.煤显微组分表面含氧官能团的XPS分析[J].辽宁工程技 术大学学报(自然科学版),2010,29(3):498-501.
    [124]陶建红.褐煤中含氧官能团的测定与研究[J].河南化工,2010,27(4):8-10.
    [125]赵鹏,史士东.用XPS研究胜利褐煤中有机氧的赋存形态[J].煤炭科学技术,2004,32(7):51-52.
    [126]邵俊杰.褐煤提质技术现状及我国褐煤提质技术发展趋势初探[J].神华科技,2009,7(2):17-21.
    [127]戴和武,谢可玉.褐煤利用技术[M].北京:煤炭工业出版社,1999.
    [128]董洪锋,云增杰,曹勇飞.我国褐煤的综合利用途径及前景展望[J].煤炭技术,2008,27(9):122-124.
    [129]Boon-Beng Lee, Pogaku Ravindra, Eng-Seng Chan. New drop weight analysis for surface tension determination of liquids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,332(2-3):112-120.
    [130]李伟东,李明,李伟锋,刘海峰,亢万忠,于遵宏.污泥对水煤浆静态稳定性的影响研究[J].环境工程,2008,26(S1):267-271.
    [131]Elakneswaran Y, Nawa T, Kurumisawa K. Zeta potential study of paste blends with slag[J]. Cement and Concrete Composites,2009,31(1):72-76.
    [132]刘启旺,张知见,吕静,李欣然.硫酸盐还原菌的驯化及脱硫性能研究[J].中国电机工程学报,2009,29(17):51-55.
    [133]刘敬勇,孙水裕,龙来寿,陈涛,陈敏婷.金属化合物对工业污水污泥燃烧的催化作用及机制[J].中国电机工程学报,2009,29(23):51-60.
    [134]李伟东,李明,李伟锋,刘海峰,于遵宏.改性污泥与无烟煤成浆性的研究[J].燃料化学学报,2009,37(1):26-30.
    [135]Luigi Allievi, Antonio Colombi, Enrico Calcaterra, et al. Inactivation of fecal bacteria in sewage sludge by alkaline treatment[J]. Bioresource Technology,1994, 49(1):25-30.
    [136]Zhao Dan, Kazuhiko Miyanaga, Yasunori Tanji. Surface activity of heat-alkaline treated excess sludge[J]. Biochemical Engineering Journal,2011,56(3):241-246.
    [137]Mary Karagianni, Antonis Avranas. The effect of deaeration on the surface tension of water and some other liquids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,335(1-3):168-173.
    [138]H Wei, R B Thompson, C B Park, P Chen. Surface tension of high density polyethylene (HDPE) in supercritical nitrogen:effect of polymer crystallization[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010, 354(1-3):347-352.
    [139]Amore S, Brillo J, Egry I, et al. Surface tension of liquid Cu-Ti binary alloys measured by electromagnetic levitation and thermodynamic modelling[J]. Applied Surface Science,2011,257(17):7739-7745.
    [140]Reasmey Tan, Kazuhiko Miyanaga, Kazuya Toyama, Davin Uy, Yasunori Tanji. Changes in composition and microbial communities in excess sludge after heat-alkaline treatment and acclimation[J]. Biochemical Engineering Journal, 2010,52(2-3):151-159.
    [141]龚明光.泡沫浮选[M].北京:冶金工业出版社,2011.
    [142]J.赖亚.泡沫浮选表面化学[M].北京:冶金工业出版社,1987.
    [143]黄波.煤泥浮选技术[M].北京:冶金工业出版社,2012.
    [144]R Asmatulu. Improving the dewetability characteristics of hydrophobic fine particles by air bubble entrapments[J]. Powder Technology,2008(186):184-188.
    [145]Jun Oshitani, Yuhei Isei, Mikio Yoshida, Kuniaki Gotoh, George V Franks. Influence of air bubble size on float-sink of spheres in a gas-solid fluidized bed[J]. Advanced Powder Technology,2012(23):120-123.
    [146]K P Galvin, S J Pratten, N G Shankar, G M Evans, S R Biggs, D Tunaley. Production of high internal phase emulsions using rising air bubbles[J]. Chemical Engineering Science,2001(56):6285-6293.
    [147]Darek Sikorskia, Herve Tabuteau, John R de Bruyn. Motion and shape of bubbles rising through a yield-stress fluid[J]. Journal of Non-Newtonian Fluid Mechanics,2009(159):10-16.
    [148]特伦斯科·斯格雷夫.胶体科学[M].北京:化学工业出版社,2009.
    [149]王淀佐.浮选剂作用原理及应用[M].北京:冶金工业出版社,1982.
    [150]B.A.格列姆博茨基.浮选过程物理化学基础[M].北京:冶金工业出版社,1985.
    [151]A Jowet.浮选中矿粒-气泡集合体的形成和破裂[J].细颗粒处理,1980(37):720-754.
    [152]Saeed Farrokhpay. The significance of froth stability in mineral flotation-A review[J]. Advances in Colloid and Interface Science,2011,166:1-7.
    [153]F Contreras, J Yianatos, L Vinnett. On the froth transport modelling in industrial flotation cells[J]. Minerals Engineering,2013,41:17-24.
    [154]蔡璋.浮游选煤与选矿[M].北京:煤炭工业出版社,1991.
    [155]Shigeo Fujikawa, Rongsheng Zhang, Shinji Hayama, Guoyi Peng. The control of micro-air-bubble generation by a rotational porous plate[J]. International Journal of Multiphase Flow,2003(29):1221-1236.
    [156]程宏志,蔡昌凤,张孝钧,张景.浮选微观动力学和数学模型[J].煤炭学报,1998,23(5):545-549.
    [157]郭梦雄.浮选[M].徐州:中国矿业大学出版社,1989.
    [158]Schubert H.选矿作业中湍流的作用[J].国外金属矿选矿,1991(2):29-32.
    [159]赵振国.应用胶体与界面化学[M].北京:化学工业出版社,2008.
    [160]G.T.巴思斯,I.R.金特尔.界面科学导论[M].北京:科学出版社,2012.
    [161]朱东,徐初阳.煤炭粒度及表面特性对浮选效果的影响[J].选煤技术,2008(2):21-23.
    [162]Seher Ata. Phenomena in the froth phase of flotation-A review[J]. International Journal of Mineral Processing,2012,102-103:1-12.
    [163]D Tao, G H Luttrell, R H Yoon. A parametric study of froth stability and its effect on column flotation of fine particles[J]. International Journal of Mineral Processing,2000,59:25-43.
    [164]B J Shean, J J Cilliers. A review of froth flotation control[J]. International Journal of Mineral Processing,2011,100:57-71.
    [165]Z T Mathe, M C Harris, C T O'Connor. A review of methods to model the froth phase in non-steady state flotation systems[J]. Minerals Engineering,2000,13(2): 127-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700