用户名: 密码: 验证码:
两亲性超支化超分子嵌段共聚物的制备及自组装行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分子化学(Supramolecular Chemistry)是二十世纪八九十年代逐渐形成的一门新兴学科,主要研究不同化学物种间通过分子间的相互作用力(即非共价键相互作用)而形成的具有特定结构和功能的超分子聚集体系,属多学科交叉形成的新兴研究领域,主要涵盖化学、材料及生命科学等热点研究领域。超分子聚合物(Supramolecular Polymer)是超分子化学在高分子领域中的一个分支。超支化聚合物(Hyperbranched Polymer)隶属于树形聚合物,是一类具有三维准球形立体构造的高度支化聚合物,从分子构型上看,在分子外围和内部存在大量末端官能团易于功能化,同时准球形分子内部还存在很多空穴,易于包覆尺寸和极性匹配的客体分子形成复合物。这些独特的分子结构特点使得它逐渐成为高分子科学研究中的一个热点方向。本文在综述前人有关超分子聚合物和超支化多臂共聚物自组装等工作的基础上,将超分子作用引入到基于超支化嵌段共聚物的构筑上,设计合成了多种具有不同初始单元(Focal Point)的单反应性超支化聚合物,利用初始单元之间的主客体包结络合作用将疏水的超支化聚合物与亲水的超支化聚合物或线形聚合物进行主客体复合组装,得到了具有超支化-超支化和线形-超支化结构的两亲性超支化超分子嵌段共聚物,并且研究了所合成超分子聚合物的自组装及解组装行为。此外,还设计合成了共价键合的两亲性超支化-超支化和线形-超支化嵌段共聚物,研究了其在选择性溶剂中的自组装行为。主要研究内容和结论概括如下:
     1.光响应性Janus型两亲性超支化-超支化超分子嵌段共聚物的制备与自组装行为研究;
     采用阳离子开环和氧阴离子开环聚合的方法,合成了具有偶氮苯Focal Point的疏水超支化聚醚(AZO-g-HBPO)和具有环糊精Focal Point的亲水性的超支化聚醚(β-CD-g-HPG)。通过在共溶剂中缓慢滴加选择性溶剂的方法诱导环糊精-偶氮苯主客体识别,实现了AZO-g-HBPO和β-CD-g-HPG的超分子复合,制备了Janus型两亲性超支化-超支化超分子嵌段共聚物。最后将共溶剂透析除去得到超分子嵌段共聚物的组装体。采用DLS、2D NOESY谱跟踪Janus超分子共聚物的形成过程,证明通过偶氮苯-环糊精的包结络合作用形成超分子聚合物。通过SEM、TEM、AFM以及Cryo-TEM等表征手段证明所得组装体均为囊泡结构,囊泡的壁厚约为9.6±0.6nm,恰好与两个Janus超支化超分子聚合物的尺寸之和一致,由此可以推断囊泡膜结构为双分子层。最后,通过加入竞争主客体分子、加热以及紫外光照射的方法对超分子囊泡的稳定性和解组装行为进行探讨。结果表明所制备的聚合物囊泡对竞争主客体分子和温度稳定,但在紫外光照射下可以发生解组装。此外,还采用耗散粒子动力学(Dissipative Particle Dynamics,PDP)方法对超分子聚合物的自组装行为进行理论模拟,模拟结果与实验结果吻合。
     2.电化学响应的两亲性超支化超分子嵌段共聚物的制备与自组装行为研究;
     采用阳离子开环聚合的方法,合成了具有二茂铁Focal Point的疏水超支化聚醚(Fc-g-HBPO)。通过β-环糊精6-位单取代的化学修饰的方法合成了以β-环糊精为末端官能团的甲氧基聚氧乙烯(β-CD-g-PEO)。结合前面合成的以环糊精为Focal Point的超支化聚醚(β-CD-g-HPG),通过Fc-g-HBPO和β-CD-g-HPG,及Fc-g-HBPO和β-CD-g-PEO之间的环糊精-二茂铁的主客体识别,得到两亲性超支化-超支化和线性-超支化两种超分子嵌段共聚物。采用DLS、2D NOESY谱跟踪了超分子共聚物的形成过程。通过SEM、TEM等直观的形貌表征手段证明所得组装体为囊泡结构。最后,通过加入竞争主客体分子以及化学和电化学氧化还原方法对超分子囊泡的稳定性和解组装行为进行探讨。结果表明所得的聚合物囊泡对竞争主客体分子稳定,在电化学氧化后也能保持稳定,但在电化学氧化后加入电解质超分子组装瞬间发生解组装。
     3.光响应性两亲性线性-超支化超分子嵌段共聚物的制备与光控的自组装形貌转变研究;
     采用阳离子开环聚合结合click反应,以丙炔醇和6-位单取代β-CD-N_3为原料合成了具有β-环糊精Focal Point的疏水超支化聚醚(β-CD-g-HBPO)。以4-偶氮苯甲酸和甲氧基聚乙二醇为原料,制备了偶氮苯为末端官能团的甲氧基聚氧乙烯(AZO-g-PEO)。TEM和SEM表征表明β-CD-g-HBPO和AZO-g-PEO可以分别在水中自组装形成片层和纤维结构。通过β-CD-g-HBPO和AZO-g-PEO在共溶剂中缓慢滴加选择性溶剂的方法实现环糊精-偶氮苯主客体识别,得到两亲性线性-超支化超分子嵌段共聚物,最后将共溶剂透析除去得到超分子嵌段共聚物的组装体。采用DLS跟踪了超分子共聚物的形成过程。通过SEM、TEM等表征手段证明所得组装体为囊泡结构。最后,对超分子聚合物的组装和解组装行为进行了研究,结果表明在紫外光和可见光的作用下,超分子聚合物可以发生可逆的形貌转变。
     4.共价键合的两亲性超支化嵌段共聚物的合成及自组装行为研究;
     采用阳离子开环和氧阴离子开环聚合的方法,分别以丙炔醇和3-叠氮基丙醇为引发剂,采用缓慢滴加的方法合成了具有炔基和叠氮Focal Point的超支化聚醚(YNE-g-HBPO和N_3-g-HPG)。通过YNE-g-HBPO和N_3-g-HPG的点击化学反应得到共价键合的Janus型超支化-超支化嵌段共聚物(HBPO-b-HPG)。采用DLS,TEM、SEM等表征方法,详细研究了HBPO-b-HPG在不同的选择性溶剂中的自组装行为。结果表明,HBPO-b-HPG在水和四氢呋喃中均组装成囊泡结构。此外,采用阳离子开环聚合的方法,以甲氧基聚乙二醇和聚乙二醇为引发剂制备了线性-超支化两亲性分子(HBPO-b-PEO和HBPO-b-PEO-b-HBPO)。以同样的方法研究了HBPO-b-PEO和HBPO-b-PEO-b-HBPO这两种共聚物在水中的自组装行为。
Supramolecular chemistry is the chemistry of the intermolecular bond, covering thestructures and functions of the entities formed by association of two or more chemicalspecies. The intermolecular bond includes hydrogen bonding, metal coordination,hydrophobic forces, van der Waals forces, π-π interactions and electrostatic effects.Supramolecular chemistry has become a exciting and promising research field ininterdisciplinary subject of physics, chemistry, biology, materials science, as well as lifescience. Supramolecular polymer is an important branch of supramolecular chemistry inthe field of polymer chemistry. Hyperbranched polymer is also an important branch ofdendritic polymers which has a large amount of terminal functional groups and manyinner cavities. In this dissertation, based on the review and summarization of previousoutstanding research works of supramolecular polymer and self-assembly ofhyperbranched multiarm copolymers, supramolecular host-guest interaction was used toconstruct hyperbranched block polymer. Hyperbranched polymers with multiple kinds ofmono-reactive focal point were synthesized, the host-guest complexation between focalpoints was utilized to couple the hydrophobic hyperbranched polymer with hydrophilichyperbranched or linear polymer, and then the amphiphilic hyperbranched supramolecularpseudo block copolymers were obtained. Subsequently, the self-assembly and disassemblybehaviors of them were investigated. In addition, the hyperbranched-hyperbranched andlinear-hyperbranched copolymers based on covalent bond were synthesized, theself-assembly behaviors in selected solvent of them were investigated. The main resultsare shown as follows.
     1. Synthesis and its photo-responsive self-assembly behavior of Janus amphiphilichyperbranched-hyperbranched supramolecular pseudo block copolymer.
     Hydrophobic hyperbranched poly3-ethyl-3-oxetanemethanol with azobenzene asfocal point (AZO-g-HBPO) and hydrophilic hyperbranched polyglycidol withcyclodextrin as core (β-CD-g-HPG) were synthesized according to the cationicring-opening polymerization and oxyanionic ring-opening multibranching polymerization,respectively. The recognization of cyclodextrin and azobenzene was achieved by addingselected solvent to common solvent, and then, Janus amphiphilic hyperbranched-hyperbranched supramolecular pseudo block copolymer was obtained. After dialysisagainst water, the self-assembly of supramolecular polymer completed. DLS and2DNOESY were used to track the formation and self-assembly process of Janussupramolecular copolymer, the results demonstrated the complexation of cyclodextrin andazobenzene. TEM, SEM, Cryo-TEM and AFM were used to directly detect themorphology of the self-assembly objects. The results indicated that the supramolecularcopolymer self-assembled into vesicle with narrow size distribution in water, the thicknessof the vesicle wall was about9.6±0.6nm which is equal with double length of Janussupramolecular copolymer. The vesicles may possess a bilayer structure with twohydrophilic HPG shell layers and one hydrophobic HBPO core layer. Adding competitivehost or guest moleculars with a stronger complexation capacity and irradiation with UVlight with365nm were used to investigate the stability and the disassembly behaviour ofsupramolecular vesicle. The results show that the supramolecular viescle was stable withcompetitive host or guest moleculars and heating, disassembled with irradiation of UVlight with365nm. In addition, the details of the self-assembly process as well as thevesicle structure have been disclosed by a dissipative particle dynamics (DPD) simulation.
     2. Synthesis and its electrochemical-responsive self-assembly behavior of Janusamphiphilic hyperbranched supramolecular pseudo block copolymers
     Hydrophobic hyperbranched poly3-ethyl-3-oxetanemethanol with ferrocene as focalpoint (Fc-g-HBPO) was synthesized according to the cationic ring-opening polymerization.Hydrophilic end-capped polyethylene oxide with β-cyclodextrin (β-CD-g-PEO) wassynthesized according to the mono-6-deoxy substitution of β-cyclodextrin. Combined withβ-CD-g-HPG in the first part, Janus amphiphilic hyperbranched-hyperbranched andlinear-hyperbranched supramolecular pseudo block copolymers were obtained by recognization between cyclodextrin and ferrocene. After dialysis against water, theself-assembly of supramolecular polymers completed. DLS and2D NOESY were used totrack the formation and self-assembly process of supramolecular copolymers, the resultsdemonstrated the complexation of cyclodextrin and ferrocene. TEM and SEM were usedto directly detect the morphology of the self-assembly objects. The results indicated thatthe supramolecular copolymers self-assembled into vesicle in water. Adding competitivehost or guest moleculars with a stronger complexation capacity, chemical andelectrochemical oxidation were used to investigate the stability and the disassemblybehaviour of supramolecular vesicles. The results show that the supramolecular vesicleswere stable with competitive host or guest moleculars, chemical and electrochemicaloxidation. The supramolecular vesicles disassembled after adding electrolyte to thesupramolecular system after electrochemical oxidation.
     3. Synthesis of Janus amphiphilic linear-hyperbranched supramolecular pseudo blockcopolymer and its photo controlled self-assembly and morphology transformation fromvesicles to lamellar structure and fibers.
     Hydrophobic hyperbranched poly3-ethyl-3-oxetanemethanol with yne group as focalpoint (YNE-g-HBPO) was synthesized according to the cationic ring-openingpolymerization. Janus type amphiphilic hyperbranched polymer (β-CD-g-HBPO) wasobtained after click reaction between YNE-g-HBPO and mono-6-deoxy-6-azide-β-cyclodextrin. Polyethylene oxide end-capped with azobenzene (AZO-g-PEO) wassynthesized using4-(Phenylazo)benzoic acid and methoxypolyethylene glycol as rawmaterials. Interestingly, the amphiphilic β-CD-g-HBPO and AZO-g-PEO self-assembledto lamellar structure and fiber respectively. The amphiphilic linear-hyperbranchedsupramolecular pseudo block copolymer was obtained by recognization of cyclodextrinand azobenzene. After dialysis against water, the self-assembly of supramolecularpolymers completed. DLS and2D NOESY were used to track the formation andself-assembly process of Janus supramolecular copolymer, the results demonstrated thecomplexation of cyclodextrin and azobenzene. TEM, SEM were used to directly detect themorphology of the self-assembly objects. The results indicated that the supramolecularcopolymer self-assembled into vesicle in water. UV light with365nm was used toinvestigate the stability and the disassembly behaviour of supramolecular vesicles. Theresults show that the supramolecular vesicles disassembled into lamellar structure and fibers. They could reversibly assemble into vesicle under the irriadiation of visible light.
     4. Synthesis and self-assembly of amphiphilic hyperbranched-hyperbranched andlinear-hyperbranched copolymers based on covalent bond;
     Hydrophilic hyperbranched polyglycidol with azide group as focal point (N_3-g-HPG)was synthesized according to the oxyaionic ring-opening polymerization using3-azidopropan-1-ol as initiator. Janus amphiphilic hyperbranched-hyperbranched blockcopolymer (HBPO-b-HPG) was obtained after click reaction between N_3-g-HPG andYNE-g-HBPO mentioned in the former part. DLS, SEM and TEM were used toinvestigate the self-assembly of HBPO-g-HPG in selected solvent. The resultsdemonstrated that Janus amphiphilic block copolymer self-assembled into vesicles ingboth water and THF. In addition, Janus amphiphilic linear-hyperbranched blockcopolymer (HBPO-b-PEO and HBPO-b-PEO-b-HBPO) were synthesized usingmethoxypolyethylene glycol and polyethylene glycol as initiator through cationicring-opening polymerization. The self-assembly behaviours of them were also discussed atthe same time.
引文
1. Lehn, J.-M., Supramolecular Chemistry: Concepts and Perspectives. Wiley-VCH Verlag GmbH&Co.KGaA:2006.
    2. Aida, T.; Meijer, E. W.; Stupp, S. I., Functional Supramolecular Polymers. Science2012,335(6070),813-817.
    3. de Greef, T. F. A.; Meijer, E. W., Materials science: Supramolecular polymers. Nature2008,453(7192),171-173.
    4. Lehn, J.-M., Perspectives in Supramolecular Chemistry—From Molecular Recognition towardsMolecular Information Processing and Self-Organization. Angew. Chem. Int. Ed.1990,29(11),1304-1319.
    5. Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P., Supramolecular polymers. Chem. Rev.2001,101(12),4071-4097.
    6. Gao, C.; Yan, D., Hyperbranched polymers: from synthesis to applications. Prog. Polym. Sci.2004,29(3),183-275.
    7. Inoue, K., Functional dendrimers, hyperbranched and star polymers. Prog. Polym. Sci.2000,25(4),453-571.
    8. Jikei, M.; Kakimoto, M.-a., Hyperbranched polymers: a promising new class of materials. Prog. Polym.Sci.2001,26(8),1233-1285.
    9. Tomalia, D. A.; Frechet, J. M., Introduction to "Dendrimers and dendritic polymers". Prog. Polym. Sci.2005,30(3-4),217-219.
    10.高超;颜德岳,超支化聚合物:前景光明的新型高分子.科学观察2007,2(5),41.
    11.程海星,超支化多臂共聚物的结构对其性能及自组装行为的影响规律研究.上海交通大学博士学位论文2010.
    12. Voit, B., New developments in hyperbranched polymers. J. Polym. Sci., Part A: Polym. Chem.2000,38(14),2505-2525.
    13. Voit, B. I.; Lederer, A., Hyperbranched and Highly Branched Polymer Architectures-SyntheticStrategies and Major Characterization Aspects. Chem. Rev.2009,109(11),5924-5973.
    14. Tomalia, D. A.; Frechet, J. M. J., Discovery of dendrimers and dendritic polymers: A brief historicalperspective. J. Polym. Sci., Part A: Polym. Chem.2002,40(16),2719-2728.
    15. Kim, Y. H.; Webster, O. W., Hyperbranched polyphenylenes. Macromolecules1992,25(21),5561-5572.
    16.孙晓毅,基于超支化聚合物及包结络合作用的自组装研究.上海交通大学博士学位论文2010.
    17.周永丰,;颜德岳,不规则聚合物的分子自组装及其在生物膜形态仿生中的应用.2005年全国高分子学术论文报告会2005.
    18. Flory, P. J., Molecular Size Distribution in Three Dimensional Polymers. VI. Branched PolymersContaining A—R—Bf-1Type Units. J. Am. Chem. Soc.1952,74(11),2718-2723.
    19. Kim, Y. H.; Webster, O. W., Water soluble hyperbranched polyphenylene:"a unimolecular micelle?". J.Am. Chem. Soc.1990,112(11),4592-4593.
    20. Lach, C.; Muller, P.; Frey, H.; Mulhaupt, R., Hyperbranched polycarbosilane macromonomers bearingoxazoline functionalities. Macromol. Rapid Commun.1997,18(3),253-260.
    21. Yoon, K.; Son, D. Y., Syntheses of Hyperbranched Poly(carbosilarylenes). Macromolecules1999,32(16),5210-5216.
    22. Malmstroem, E.; Johansson, M.; Hult, A., Hyperbranched Aliphatic Polyesters. Macromolecules1995,28(5),1698-1703.
    23. Uhrich, K. E.; Hawker, C. J.; Frechet, J. M. J.; Turner, S. R., One-pot synthesis of hyperbranchedpolyethers. Macromolecules1992,25(18),4583-4587.
    24. M ck, A.; Burgath, A.; Hanselmann, R.; Frey, H., Synthesis of Hyperbranched Aromatic Homo-andCopolyesters via the Slow Monomer Addition Method. Macromolecules2001,34(22),7692-7698.
    25. Jayakannan, M.; Ramakrishnan, S., A novel hyperbranched polyether by melt transetherification. Chem.Commun.2000,(19),1967-1968.
    26. Kumar, A.; Ramakrishnan, S., A novel one-pot synthesis of hyperbranched polyurethanes. J. Chem.Soc., Chem. Commun.1993,(18),1453-1454.
    27. Kumar, A.; W. Meijer, E., Novel hyperbranched polymer based on urea linkages. Chem. Commun.1998,(16),1629-1630.
    28. Feast, W. J.; Aldersley, S. J.; Findlay, P.; Rannard, S. P., Approaches to water-soluble aliphatichyperbranched polyamides. Abstr. Am. Chem. Soc.2001,221, U417-U417.
    29. Brenner, A. R.; Schmaljohann, D.; Voit, B. I.; Wolf, D., Hyperbranched polyesters and polyamides bythe AB(x) polycondensation process. Macromol. Symp.1997,122,217-222.
    30. Mathias, L. J.; Carothers, T. W., Hyperbranched poly(siloxysilanes). J. Am. Chem. Soc.1991,113(10),4043-4044.
    31. Miravet, J. F.; Frechet, J. M. J., New hyperbranched poly(siloxysilanes) from AB(2), AB(4), and AB(6)monomers: Variation of the branching pattern and end-functionalization. Abstr. Am. Chem. Soc.1997,214,130-PMSE.
    32. Miravet, J. F.; Frechet, J. M. J., New hyperbranched poly(siloxysilanes): Variation of the branchingpattern and end-functionalization. Macromolecules1998,31(11),3461-3468.
    33. Fréchet, J. M. J.; Henmi, M.; Gitsov, I.; Aoshima, S.; Leduc, M. R.; Grubbs, R. B., Self-CondensingVinyl Polymerization: An Approach to Dendritic Materials. Science1995,269(5227),1080-1083.
    34. DeSimone, J. M., Branching Out into New Polymer Markets. Science1995,269(5227),1060-1061.
    35. Kim, Y. H., Hyperbranched polymers10years after. J. Polym. Sci., Part A: Polym. Chem.1998,36(11),1685-1698.
    36. Liu, M.; Vladimirov, N.; Fréchet, J. M. J., A New Approach to Hyperbranched Polymers byRing-Opening Polymerization of an AB Monomer:4-(2-Hydroxyethyl)-ε-caprolactone. Macromolecules1999,32(20),6881-6884.
    37. Magnusson, H.; Malmstr m, E.; Hult, A., Synthesis of hyperbranched aliphatic polyethers via cationicring-opening polymerization of3-ethyl-3-(hydroxymethyl)oxetane. Macromol. Rapid Commun.1999,20(8),453-457.
    38. Sunder, A.; Mülhaupt, R.; Frey, H., Hyperbranched Polyether Polyols Based on Polyglycerol: PolarityDesign by Block Copolymerization with Propylene Oxide. Macromolecules1999,33(2),309-314.
    39. Hawker, C. J.; Lee, R.; Frechet, J. M. J., One-step synthesis of hyperbranched dendritic polyesters. J.Am. Chem. Soc.1991,113(12),4583-4588.
    40. Yan, D.; Müller, A. H. E.; Matyjaszewski, K., Molecular Parameters of Hyperbranched Polymers Madeby Self-Condensing Vinyl Polymerization.2. Degree of Branching. Macromolecules1997,30(23),7024-7033.
    41. Holter, D.; Burgath, A.; Frey, H., Degree of branching in hyperbranched polymers. Acta Polym.1997,48(1-2),30-35.
    42. Malmstr m, E.; Hult, A., Kinetics of Formation of Hyperbranched Polyesters Based on2,2-Bis(methylol)propionic Acid. Macromolecules1996,29(4),1222-1228.
    43. Turner, S. R.; Voit, B. I.; Mourey, T. H., All-aromatic hyperbranched polyesters with phenol and acetateend groups: synthesis and characterization. Macromolecules1993,26(17),4617-4623.
    44. Zhang, L.; Eisenberg, A., Multiple Morphologies and Characteristics of “Crew-Cut” Micelle-likeAggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions. J. Am. Chem.Soc.1996,118(13),3168-3181.
    45. Bucknall, D. G.; Anderson, H. L., Polymers get organized. Science2003,302(5652),1904-1905.
    46. Zhang, L.; Yu, K.; Eisenberg, A., Ion-Induced Morphological Changes in “Crew-Cut” Aggregates ofAmphiphilic Block Copolymers. Science1996,272(5269),1777-1779.
    47. Zhang, L.; Eisenberg, A., Multiple Morphologies of "Crew-Cut" Aggregates ofPolystyrene-b-poly(acrylic acid) Block Copolymers. Science1995,268(5218),1728-31.
    48. Bosman, A. W.; Janssen, H. M.; Meijer, E. W., About dendrimers: Structure, physical properties, andapplications. Chem. Rev.1999,99(7),1665-1688.
    49. Grayson, S. M.; Frechet, J. M. J., Convergent dendrons and dendrimers: from synthesis to applications.Chem. Rev.2001,101(12),3819-3867.
    50. Kim, J.-K.; Lee, E.; Huang, Z.; Lee, M., Nanorings from the Self-Assembly of Amphiphilic MolecularDumbbells. J. Am. Chem. Soc.2006,128(43),14022-14023.
    51. Percec, V.; Cho, W.-D.; Ungar, G., Increasing the Diameter of Cylindrical and SphericalSupramolecular Dendrimers by Decreasing the Solid Angle of Their Monodendrons via PeripheryFunctionalization. J. Am. Chem. Soc.2000,122(42),10273-10281.
    52. Percec, V.; Cho, W.-D.; Ungar, G.; Yeardley, D. J. P., Synthesis and Structural Analysis of TwoConstitutional Isomeric Libraries of AB2-Based Monodendrons and Supramolecular Dendrimers. J. Am.Chem. Soc.2001,123(7),1302-1315.
    53. Percec, V.; Imam, M. R.; Peterca, M.; Leowanawat, P., Self-Organizable Vesicular Columns Assembledfrom Polymers Dendronized with Semifluorinated Janus Dendrimers Act As Reverse Thermal Actuators. J.Am. Chem. Soc.2012,134(9),4408-4420.
    54. Percec, V.; Mitchell, C. M.; Cho, W.-D.; Uchida, S.; Glodde, M.; Ungar, G.; Zeng, X.; Liu, Y.;Balagurusamy, V. S. K.; Heiney, P. A., Designing Libraries of First Generation AB3and AB2Self-Assembling Dendrons via the Primary Structure Generated from Combinations of (AB)y AB3and(AB)y AB2Building Blocks. J. Am. Chem. Soc.2004,126(19),6078-6094.
    55. Percec, V.; Peterca, M.; Dulcey, A. s. E.; Imam, M. R.; Hudson, S. D.; Nummelin, S.; Adelman, P.;Heiney, P. A., Hollow Spherical Supramolecular Dendrimers. J. Am. Chem. Soc.2008,130(39),13079-13094.
    56. Percec, V.; Peterca, M.; Sienkowska, M. J.; Ilies, M. A.; Aqad, E.; Smidrkal, J.; Heiney, P. A., Synthesisand Retrostructural Analysis of Libraries of AB3and Constitutional Isomeric AB2PhenylpropylEther-Based Supramolecular Dendrimers. J. Am. Chem. Soc.2006,128(10),3324-3334.
    57. Percec, V.; Wilson, D. A.; Leowanawat, P.; Wilson, C. J.; Hughes, A. D.; Kaucher, M. S.; Hammer, D.A.; Levine, D. H.; Kim, A. J.; Bates, F. S.; Davis, K. P.; Lodge, T. P.; Klein, M. L.; DeVane, R. H.; Aqad, E.;Rosen, B. M.; Argintaru, A. O.; Sienkowska, M. J.; Rissanen, K.; Nummelin, S.; Ropponen, J.,Self-Assembly of Janus Dendrimers into Uniform Dendrimersomes and Other Complex Architectures.Science2010,328(5981),1009-1014.
    58. Percec, V.; Won, B. C.; Peterca, M.; Heiney, P. A., Expanding the Structural Diversity ofSelf-Assembling Dendrons and Supramolecular Dendrimers via Complex Building Blocks. J. Am. Chem.Soc.2007,129(36),11265-11278.
    59. Peterca, M.; Imam, M. R.; Leowanawat, P.; Rosen, B. M.; Wilson, D. A.; Wilson, C. J.; Zeng, X.;Ungar, G.; Heiney, P. A.; Percec, V., Self-Assembly of Hybrid Dendrons into Doubly SegregatedSupramolecular Polyhedral Columns and Vesicles. J. Am. Chem. Soc.2010,132(32),11288-11305.
    60. Peterca, M.; Percec, V.; Leowanawat, P.; Bertin, A., Predicting the Size and Properties ofDendrimersomes from the Lamellar Structure of Their Amphiphilic Janus Dendrimers. J. Am. Chem. Soc.2011,133(50),20507-20520.
    61. Rosen, B. M.; Peterca, M.; Morimitsu, K.; Dulcey, A. s. E.; Leowanawat, P.; Resmerita, A.-M.; Imam,M. R.; Percec, V., Programming the Supramolecular Helical Polymerization of Dendritic Dipeptides via theStereochemical Information of the Dipeptide. J. Am. Chem. Soc.2011,133(13),5135-5151.
    62. Rosen, B. M.; Wilson, C. J.; Wilson, D. A.; Peterca, M.; Imam, M. R.; Percec, V., Dendron-MediatedSelf-Assembly, Disassembly, and Self-Organization of Complex Systems. Chem. Rev.2009,109(11),6275-6540.
    63. Rosen, B. M.; Wilson, D. A.; Wilson, C. J.; Peterca, M.; Won, B. C.; Huang, C.; Lipski, L. R.; Zeng, X.;Ungar, G.; Heiney, P. A.; Percec, V., Predicting the Structure of Supramolecular Dendrimers via the Analysisof Libraries of AB3and Constitutional Isomeric AB2Biphenylpropyl Ether Self-Assembling Dendrons. J.Am. Chem. Soc.2009,131(47),17500-17521.
    64. Gitsov, I.; Frechet, J. M. J., Solution and solid-state properties of hybrid linear-dendritic blockcopolymers. Macromolecules1993,26(24),6536-6546.
    65. Gitsov, I.; Wooley, K. L.; Hawker, C. J.; Ivanova, P. T.; Frechet, J. M. J., Synthesis and properties ofnovel linear-dendritic block copolymers. Reactivity of dendritic macromolecules toward linear polymers.Macromolecules1993,26(21),5621-5627.
    66. Kawa, M.; Fréchet, J. M. J., Self-Assembled Lanthanide-Cored Dendrimer Complexes: Enhancementof the Luminescence Properties of Lanthanide Ions through Site-Isolation and Antenna Effects. Chem. Mater.1998,10(1),286-296.
    67. van Hest, J. C.; Delnoye, D. A.; Baars, M. W.; van Genderen, M. H.; Meijer, E. W.,Polystyrene-dendrimer amphiphilic block copolymers with a generation-dependent aggregation. Science1995,268(5217),1592-5.
    68. van/Hest, J. C. M.; Baars, M. W. P. L.; Elissen-Roman, C.; van/Genderen, M. H. P.; Meijer, E. W.,Acid-Functionalized Amphiphiles, Derived from Polystyrene-Poly(propylene imine) Dendrimers, with apH-Dependent Aggregation. Macromolecules1995,28(19),6689-6691.
    69. Xie, D.; Jiang, M.; Zhang, G. Z.; Chen, D. Y., Hydrogen-bonded dendronized polymers and theirself-assembly in solution. Chem. Eur. J.2007,13(12),3346-3353.
    70. Yang, M.; Wang, W.; Yuan, F.; Zhang, X.; Li, J.; Liang, F.; He, B.; Minch, B.; Wegner, G., Soft VesiclesFormed by Diblock Codendrimers of Poly(benzyl ether) and Poly(methallyl dichloride). J. Am. Chem. Soc.2005,127(43),15107-15111.
    71. Roman, C.; Fischer, H. R.; Meijer, E. W., Microphase separation of diblock copolymers consisting ofpolystyrene and acid-functionalized poly(propylene imine) dendrimers. Macromolecules1999,32(17),5525-5531.
    72. Schenning, A. P. H. J.; Elissen-Roman, C.; Weener, J. W.; Baars, M. W. P. L.; van der Gaast, S. J.;Meijer, E. W., Amphiphilic dendrimers as building blocks in supramolecular assemblies. J. Am. Chem. Soc.1998,120(32),8199-8208.
    73. Tsuda, K.; Dol, G. C.; Gensch, T.; Hofkens, J.; Latterini, L.; Weener, J. W.; Meijer, E. W.; De Schryver,F. C., Fluorescence from azobenzene functionalized poly(propylene imine) dendrimers in self-assembledsupramolecular structures. J. Am. Chem. Soc.2000,122(14),3445-3452.
    74. Weener, J. W.; Meijer, E. W., Photoresponsive dendritic monolayers. Adv. Mater.2000,12(10),741-+.
    75. Cheng, H. X.; Yuan, X. J.; Sun, X. Y.; Li, K. P.; Zhou, Y. F.; Yan, D. Y., Effect of Degree of Branchingon the Self-Assembly of Amphiphilic Hyperbranched Multiarm Copolymers. Macromolecules2010,43(2),1143-1147.
    76. Guo, B.; Shi, Z. Q.; Yao, Y.; Zhou, Y. F.; Yan, D. Y., Facile Preparation of Novel Peptosomes throughComplex Self-Assembly of Hyperbranched Polyester and Polypeptide. Langmuir2009,25(12),6622-6626.
    77. Guo, M. Q.; Hong, H. Y.; Sun, X. Y.; Zhou, Y. F.; Yan, D. Y., Macroscopic three-dimensionalsupramoelcular networks through hierarchical self-assembly of polymer vesicles. Acta Polymerica Sinica2008,(4),303-308.
    78. Hong, H. Y.; Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y.; Cui, J., Self-assembly of large multimolecular micellesfrom hyperbranched star copolymers. Macromol. Rapid Commun.2007,28(5),591-596.
    79. Mai, Y.; Zhou, Y.; Yan, D., Real-Time Hierarchical Self-Assembly of Large Compound Vesicles froman Amphiphilic Hyperbranched Multiarm Copolymer. Small2007,3(7),1170-1173.
    80. Ornatska, M.; Bergman, K. N.; Rybak, B.; Peleshanko, E.; Tsukruk, V. V., Nanofibers fromfunctionalized dendritic molecules. Angew. Chem. Int. Ed.2004,43(39),5246-5249.
    81. Ornatska, M.; Peleshanko, S.; Genson, K. L.; Rybak, B.; Bergman, K. N.; Tsukruk, V. V., Assemblingof amphiphilic highly branched molecules in supramolecular nanofibers. J. Am. Chem. Soc.2004,126(31),9675-9684.
    82. Ornatska, M.; Peleshanko, S.; Rybak, B.; Holzmueller, J.; Tsukruk, V. V., Supramolecular multiscalefibers through one-dimensional assembly of dendritic molecules. Adv. Mater.2004,16(23-24),2206-+.
    83. Yan, D. Y.; Zhou, Y. F.; Hou, J., Supramolecular self-assembly of macroscopic tubes. Science2004,303(5654),65-67.
    84. Zhou, Y. F.; Yan, D. Y., Supramolecular self-assembly of giant polymer vesicles with controlled sizes.Angew. Chem. Int. Ed.2004,43(37),4896-4899.
    85. Zhou, Y. F.; Yan, D. Y., Real-time membrane fission of giant polymer vesicles. Angew. Chem. Int. Ed.2005,44(21),3223-3226.
    86. Jin, H.; Huang, W.; Zhu, X.; Zhou, Y.; Yan, D., Biocompatible or biodegradable hyperbranchedpolymers: from self-assembly to cytomimetic applications. Chem. Soc. Rev.2012,41(18),5986-5997.
    87. You, Y. Z.; Hong, C. Y.; Pan, C. Y.; Wang, P. H., Synthesis of a dendritic core-shell nanostructure with atemperature-sensitive shell. Adv. Mater.2004,16(21),1953-+.
    88. Zou, J.; Ye, X.; Shi, W., Crosslinkable Vesicles Self-Assembled by Amphiphilic HyperbranchedPolyester. Macromol. Rapid Commun.2005,26(21),1741-1745.
    89. Chen, Y.; Shen, Z.; Frey, H.; Perez-Prieto, J.; Stiriba, S. E., Synergistic assembly of hyperbranchedpolyethylenimine and fatty acids leading to unusual supramolecular nanocapsules. Chem. Commun.2005,(6),755-757.
    90. Tian, H. Y.; Deng, C.; Lin, H.; Sun, J. R.; Deng, M. X.; Chen, X. S.; Jing, X. B., Biodegradable cationicPEG-PEI-PBLG hyperbranched block copolymer: synthesis and micelle characterization. Biomaterials2005,26(20),4209-4217.
    91. Jia, Z.; Zhou, Y.; Yan, D., Amphiphilic star-block copolymers based on a hyperbranched core:Synthesis and supramolecular self-assembly. J. Polym. Sci., Part A: Polym. Chem.2005,43(24),6534-6544.
    92. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y., Synthesis and size-controllable self-assembly of a novel amphiphilichyperbranched multiarm copolyether. Macromolecules2005,38(21),8679-8686.
    93. Lehn, J. M., Toward complex matter: Supramolecular chemistry and self-organization. Proc. Natl Acad.Sci. USA2002,99(8),4763-4768.
    94. Lehn, J. M., Toward self-organization and complex matter. Science2002,295(5564),2400-2403.
    95. Werner, A., Beitrag zur Konstitution anorganischer Verbindungen. Zeitschrift für anorganische Chemie1893,3(1),267-330.
    96. Fischer, E., Einfluss der Configuration auf die Wirkung tier Enzyme. Ber. d. deutsch, chem. Gesellsch.Bd1894,27(8),2895-2993.
    97. Pedersen, C. J., Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc.1967,89(10),2495-2496.
    98. Pedersen, C. J., Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc.1967,89(26),7017-7036.
    99. Mingyu, G. M., Jiang., Macromolecular Self2Assembly Based on Inclusion Complexation ofCyclodextrins. Progress in Chemistry2007,19(4),557-566.
    100. Connors, K. A., The stability of cyclodextrin complexes in solution. Chem. Rev.1997,97(5),1325-1357.
    101. Szejtli, J., Introduction and general overview of cyclodextrin chemistry. Chem. Rev.1998,98(5),1743-1753.
    102. Rekharsky, M. V.; Inoue, Y., Critical differences in complexation thermodynamics of native andmonoamino-b-cyclodextrins. Abstr. Am. Chem. Soc.2001,221, U272-U272.
    103. Rekharsky, M. V.; Inoue, Y., Complexation thermodynamics of cyclodextrins. Chem. Rev.1998,98(5),1875-1917.
    104. Rekharsky, M. V.; Inoue, Y., Solvent and guest isotope effects on complexation thermodynamics ofalpha-, beta-, and6-amino-6-deoxy-beta-cyclodextrins. J. Am. Chem. Soc.2002,124(41),12361-12371.
    105. Harada, A., Cyclodextrin-based molecular machines. Acc. Chem. Res.2001,34(6),456-464.
    106. Harada, A., Preparation and structures of supramolecules between cyclodextrins and polymers. Coord.Chem. Rev.1996,148(0),115-133.
    107. Harada, A.; Li, J.; Kamachi, M., Preparation and Characterization of a Polyrotaxane Consisting ofMonodisperse Poly(ethylene glycol) and.alpha.-Cyclodextrins. J. Am. Chem. Soc.1994,116(8),3192-3196.
    108. Harada, A.; Li, J.; Kamachi, M., The molecular necklace: a rotaxane containing many threaded[alpha]-cyclodextrins. Nature1992,356(6367),325-327.
    109. Harada, A.; Li, J.; Kamachi, M., Synthesis of a tubular polymer from threaded cyclodextrins. Nature1993,364(6437),516-518.
    110. Harada, A.; Li, J.; Kamachi, M., Double-stranded inclusion complexes of cyclodextrin threaded onpoly(ethylene glycol). Nature1994,370(6485),126-128.
    111. Miyauchi, M.; Harada, A., Construction of supramolecular polymers with alternating alpha-,beta-cyclodextrin units using conformational change induced by competitive guests. J. Am. Chem. Soc.2004,126(37),11418-11419.
    112. Tomatsu, I.; Hashidzume, A.; Harada, A., Redox-Responsive Hydrogel System Using the MolecularRecognition of β-Cyclodextrin. Macromol. Rapid Commun.2006,27(4),238-241.
    113. Tomatsu, I.; Hashidzume, A.; Harada, A., Photoresponsive Hydrogel System Using MolecularRecognition of α-Cyclodextrin. Macromolecules2005,38(12),5223-5227.
    114. Liu, Y.; Chen, Y.; Li, B.; Wada, T.; Inoue, Y., Cooperative Multipoint Recognition of Organic Dyes byBis(β-cyclodextrin)s with2,2′-Bipyridine-4,4′-dicarboxy Tethers. Chem. Eur. J.2001,7(12),2528-2535.
    115. Liu, Y.; You, C.-C.; Li, B., Synthesis and Molecular Recognition of Novel Oligo(ethylenediamino)Bridged Bis(β-cyclodextrin)s and Their Copper(II) Complexes: Enhanced Molecular Binding Ability andSelectivity by Multiple Recognition. Chem. Eur. J.2001,7(6),1281-1288.
    116. Liu, Y.; Han, B.-H.; Li, B.; Zhang, Y.-M.; Zhao, P.; Chen, Y.-T.; Wada, T.; Inoue, Y., MolecularRecognition Study on Supramolecular System.14.1Synthesis of Modified Cyclodextrins and TheirInclusion Complexation Thermodynamics with l-Tryptophan and Some Naphthalene Derivatives. J. Org.Chem.1998,63(5),1444-1454.
    117. Liu, Y.; Han, B.-H.; Sun, S.-X.; Wada, T.; Inoue, Y., Molecular Recognition Study on SupramolecularSystems.20. Molecular Recognition and Enantioselectivity of Aliphatic Alcohols by l-Tryptophan-Modifiedβ-Cyclodextrin. J. Org. Chem.1999,64(5),1487-1493.
    118. Shi, L.-Y.; Zhou, Y.; Shen, Z.; Fan, X.-H., Hierarchical Structures in Thin Films of Macrophase-andMicrophase-Separated AB/AC Diblock Copolymer Blends. Macromolecules2012.
    119. Huang, F.; Scherman, O. A., Supramolecular polymers. Chem. Soc. Rev.2012,41(18),5879-5880.
    120. Avestro, A.-J.; Belowich, M. E.; Stoddart, J. F., Cooperative self-assembly: producing syntheticpolymers with precise and concise primary structures. Chem. Soc. Rev.2012.
    121. Vukotic, V. N.; Loeb, S. J., Coordination polymers containing rotaxane linkers. Chem. Soc. Rev.2012.
    122.Guo, D.-S.; Liu, Y., Calixarene-based supramolecular polymerization in solution. Chem. Soc. Rev.2012,41(18),5907-5921.
    123. Li, S.-L.; Xiao, T.; Lin, C.; Wang, L., Advanced supramolecular polymers constructed by orthogonalself-assembly. Chem. Soc. Rev.2012.
    124.Yan, X.; Wang, F.; Zheng, B.; Huang, F., Stimuli-responsive supramolecular polymeric materials. Chem.Soc. Rev.2012,41(18),6042-6065.
    125. Liu, Y.; Wang, Z.; Zhang, X., Characterization of supramolecular polymers. Chem. Soc. Rev.2012,41(18),5922-5932.
    126. Fustin, C. A.; Guillet, P.; Schubert, U. S.; Gohy, J. F., Metallo-supramolecular block copolymers. Adv.Mater.2007,19(13),1665-1673.
    127. Moughton, A. O.; O'Reilly, R. K., Using Metallo-Supramolecular Block Copolymers for the Synthesisof Higher Order Nanostructured Assemblies. Macromol. Rapid Commun.2010,31(1),37-52.
    128. Wang, D.; Su, Y.; Jin, C.; Zhu, B.; Pang, Y.; Zhu, L.; Liu, J.; Tu, C.; Yan, D.; Zhu, X., SupramolecularCopolymer Micelles Based on the Complementary Multiple Hydrogen Bonds of Nucleobases for DrugDelivery. Biomacromolecules2011,12(4),1370-1379.
    129. Binder, W. H.; Kunz, M. J.; Ingolic, E., Supramolecular poly(ether ketone)–polyisobutylenepseudo-block copolymers. J. Polym. Sci., Part A: Polym. Chem.2004,42(1),162-172.
    130. Moughton, A. O.; O’Reilly, R. K., Noncovalently Connected Micelles, Nanoparticles, andMetal-Functionalized Nanocages Using Supramolecular Self-Assembly. J. Am. Chem. Soc.2008,130(27),8714-8725.
    131. Mugemana, C.; Guillet, P.; Hoeppener, S.; Schubert, U. S.; Fustin, C.-A.; Gohy, J.-F.,Metallo-supramolecular diblock copolymers based on heteroleptic cobalt(iii) and nickel(ii) bis-terpyridinecomplexes. Chem. Commun.2010,46(8),1296-1298.
    132. Ott, C.; Kranenburg, J. M.; Guerrero-Sanchez, C.; Hoeppener, S.; Wouters, D.; Schubert, U. S.,Supramolecular Assembly via Noncovalent Metal Coordination Chemistry: Synthesis, Characterization, andElastic Properties. Macromolecules2009,42(6),2177-2183.
    133. Schrage, S.; Sigel, R.; Schlaad, H., Formation of Amphiphilic Polyion Complex Vesicles from Mixturesof Oppositely Charged Block Ionomers. Macromolecules2003,36(5),1417-1420.
    134. Zeng, J.; Shi, K.; Zhang, Y.; Sun, X.; Zhang, B., Construction and micellization of a noncovalentdouble hydrophilic block copolymer. Chem. Commun2008,(32),3753-3755.
    135. Yan, Q.; Yuan, J.; Cai, Z.; Xin, Y.; Kang, Y.; Yin, Y., Voltage-Responsive Vesicles Based on OrthogonalAssembly of Two Homopolymers. J. Am. Chem. Soc.2010,132(27),9268-9270.
    136. Rauwald, U.; Scherman, O. A., Supramolecular Block Copolymers with Cucurbit[8]uril in Water.Angew. Chem. Int. Ed.2008,47(21),3950-3953.
    137. Ambade, A. V.; Burd, C.; Higley, M. N.; Nair, K. P.; Weck, M., Orthogonally Self-AssembledMultifunctional Block Copolymers. Chem.-Eur. J.2009,15(44),11904-11911.
    138. Yang, S. K.; Ambade, A. V.; Weck, M., Supramolecular ABC Triblock Copolymers via One-Pot,Orthogonal Self-Assembly. J. Am. Chem. Soc.2010,132(5),1637-1645.
    139. Moughton, A. O.; Stubenrauch, K.; O'Reilly, R. K., Hollow nanostructures from self-assembledsupramolecular metallo-triblock copolymers. Soft Matter2009,5(12),2361-2370.
    140. Ott, C.; Hoogenboom, R.; Hoeppener, S.; Wouters, D.; Gohy, J.-F.; Schubert, U. S., Tuning themorphologies of amphiphilic metallo-supramolecular triblock terpolymers: from spherical micelles toswitchable vesicles. Soft Matter2009,5(1),84-91.
    141. Gohy, J.-F.; Ott, C.; Hoeppener, S.; Schubert, U. S., Multicompartment micelles from ametallo-supramolecular tetrablock quatercopolymer. Chem. Commun.2009,(40),6038-6040.
    142. Yang, S. K.; Ambade, A. V.; Weck, M., Supramolecular Alternating Block Copolymers via MetalCoordination. Chem. Eur. J.2009,15(27),6605-6611.
    143. Gohy, J.-F.; Chiper, M.; Guillet, P.; Fustin, C.-A.; Hoeppener, S.; Winter, A.; Hoogenboom, R.;Schubert, U. S., Self-organization of rod-coil tri-and tetra-arm star metallo-supramolecular blockcopolymers in selective solvents. Soft Matter2009,5(15),2954-2961.
    144. Zhang, Z.-X.; Liu, K. L.; Li, J., Self-Assembly and Micellization of a Dual ThermoresponsiveSupramolecular Pseudo-Block Copolymer. Macromolecules2011,44(5),1182-1193.
    145. Zou, J.; Guan, B.; Liao, X.; Jiang, M.; Tao, F., Dual Reversible Self-Assembly of PNIPAM-BasedAmphiphiles Formed by Inclusion Complexation. Macromolecules2009,42(19),7465-7473.
    146. Yang, S. K.; Ambade, A. V.; Weck, M., Main-chain supramolecular block copolymers. Chem. Soc. Rev.2011,40(1),129-137.
    147. Zou, J.; Guan, B.; Liao, X. J.; Jiang, M.; Tao, F. G., Dual Reversible Self-Assembly of PNIPAM-BasedAmphiphiles Formed by Inclusion Complexation. Macromolecules2009,42(19),7465-7473.
    148. Zhang, Z. X.; Liu, K. L.; Li, J., Self-Assembly and Micellization of a Dual ThermoresponsiveSupramolecular Pseudo-Block Copolymer. Macromolecules2011,44(5),1182-1193.
    1. Villiers, A., Sur la transformation de la fécule en dextrine par le ferment butyrique. Compt. Rend. Fr.Acad. Sci.1891,435-8.
    2. Michels, J. J.; Baars, M. W. P. L.; Meijer, E. W.; Huskens, J.; Reinhoudt, D. N., Well-definedassemblies of adamantyl-terminated poly(propylene imine) dendrimers and beta-cyclodextrin in water.Journal of the Chemical Society-Perkin Transactions22000,(9),1914-1918.
    3. Auletta, T.; de Jong, M. R.; Mulder, A.; van Veggel, F.; Huskens, J.; Reinhoudt, D. N.; Zou, S.;Zapotoczny, S.; Schonherr, H.; Vancso, G. J.; Kuipers, L., beta-cyclodextrin host-guest complexes probedunder thermodynamic equilibrium: Thermodynamics and AFM force spectroscopy. J. Am. Chem. Soc.2004,126(5),1577-1584.
    4. Ludden, M. J. W.; Li, X.; Greve, J.; van Amerongen, A.; Escalante, M.; Subramaniam, V.; Reinhoudt,D. N.; Huskens, J., Assembly of bionanostructures onto beta-cyclodextrin molecular printboards forantibody recognition and lymphocyte cell counting. J. Am. Chem. Soc.2008,130(22),6964-6973.
    5. Gonzalez-Campo, A.; Hsu, S. H.; Puig, L.; Huskens, J.; Reinhoudt, D. N.; Velders, A. H., OrthogonalCovalent and Noncovalent Functionalization of Cyclodextrin-Alkyne Patterned Surfaces. J. Am. Chem. Soc.2010,132(33),11434-11436.
    6. Bugler, J.; Sommerdijk, N.; Visser, A.; van Hoek, A.; Nolte, R. J. M.; Engbersen, J. F. J.; Reinhoudt,D. N., Interconnective host-guest complexation of beta-cyclodextrin-calix4arene couples. J. Am. Chem.Soc.1999,121(1),28-33.
    7. Corbellini, F.; Mulder, A.; Sartori, A.; Ludden, M. J. W.; Casnati, A.; Ungaro, R.; Huskens, J.;Crego-Calama, M.; Reinhoudt, D. N., Assembly of a supramolecular capsule on a molecular printboard. J.Am. Chem. Soc.2004,126(51),17050-17058.
    8. Crespo-Biel, O.; Lim, C. W.; Ravoo, B. J.; Reinhoudt, D. N.; Huskens, J., Expression of asupramolecular complex at a multivalent interface. J. Am. Chem. Soc.2006,128(51),17024-17032.
    9. Ritter, H.; Sadowski, O.; Tepper, E., Influence of cyclodextrin molecules on the synthesis and thethermoresponsive solution behavior of N-isopropylacrylamide copolymers with adamantyl groups in theside-chains. Angew. Chem. Int. Ed.2003,42(27),3171-3173.
    10. Schmitz, S.; Ritter, H., Unusual solubility properties of polymethacrylamides as a result ofsupramolecular interactions with cyclodextrin. Angew. Chem. Int. Ed.2005,44(35),5658-5661.
    11. Kretschmann, O.; Choi, S. W.; Miyauchi, M.; Tomatsu, I.; Harada, A.; Ritter, H., Switchablehydrogels obtained by supramolecular cross-linking of adamantyl-containing LCST copolymers withcyclodextrin dimers. Angew. Chem. Int. Ed.2006,45(26),4361-4365.
    12. Koopmans, C.; Ritter, H., Color change of N-isopropylacrylamide copolymer bearing Reichardts dyeas optical sensor for lower critical solution temperature and for host-guest interaction withbeta-cyclodextrin. J. Am. Chem. Soc.2007,129(12),3502-+.
    13. Kretschmann, O.; Steffens, C.; Ritter, H., Cyclodextrin complexes of polymers bearing adamantylgroups: Host-guest interactions and the effect of spacers on water solubility. Angew. Chem. Int. Ed.2007,46(15),2708-2711.
    14. Amajjahe, S.; Choi, S.; Munteanu, M.; Ritter, H., Pseudopolyanions based onpoly(NIPAAM-co-beta-cyclodextrin methacrylate) and ionic liquids. Angew. Chem. Int. Ed.2008,47(18),3435-3437.
    15. Bohm, I.; Isenbugel, K.; Ritter, H.; Branscheid, R.; Kolb, U., Fluorescent Nanowires Self-Assembledthrough Host-Guest Interactions in Modified Calcein. Angew. Chem. Int. Ed.2011,50(32),7407-7409.
    16. Bohm, I.; Isenbugel, K.; Ritter, H.; Branscheid, R.; Kolb, U., Cyclodextrin and AdamantaneHost-Guest Interactions of Modified Hyperbranched Poly(ethylene imine) as Mimetics for BiologicalMembranes. Angew. Chem. Int. Ed.2011,50(34),7896-7899.
    17. B hm, I.; Isenbügel, K.; Ritter, H.; Branscheid, R.; Kolb, U., Cyclodextrin and AdamantaneHost–Guest Interactions of Modified Hyperbranched Poly(ethylene imine) as Mimetics for BiologicalMembranes. Angew. Chem. Int. Ed.2011,50(34),7896-7899.
    18. Nau, W. M.; Zhang, X. Y., An exceedingly long-lived fluorescent state as a distinct structural anddynamic probe for supramolecular association: An exploratory study of host-guest complexation bycyclodextrins. J. Am. Chem. Soc.1999,121(35),8022-8032.
    19. Zhang, X. Y.; Nau, W. M., Chromophore alignment in a chiral host provides a sensitive test for theorientation-Intensity rule of induced circular dichroism. Angew. Chem. Int. Ed.2000,39(3),544-+.
    20. Marquez, C.; Nau, W. M., Two mechanisms of slow host-guest complexation between cucurbit6uriland cyclohexylmethylamine: pH-responsive supramolecular kinetics. Angew. Chem. Int. Ed.2001,40(17),3155-+.
    21. Mayer, B.; Zhang, X. Y.; Nau, W. M.; Marconi, G., Co-conformational variability of cyclodextrincomplexes studied by induced circular dichroism of azoalkanes. J. Am. Chem. Soc.2001,123(22),5240-5248.
    22. Zhang, X. Y.; Gramlich, G.; Wang, X. J.; Nau, W. M., A joint structural, kinetic, and thermodynamicinvestigation of substituent effects on host-guest complexation of bicyclic azoalkanes by beta-cyclodextrin.J. Am. Chem. Soc.2002,124(2),254-263.
    23. Dsouza, R. N.; Pischel, U.; Nau, W. M., Fluorescent Dyes and Their Supramolecular Host/GuestComplexes with Macrocycles in Aqueous Solution. Chem. Rev.2011,111(12),7941-7980.
    24. Nalluri, S. K. M.; Ravoo, B. J., Light-Responsive Molecular Recognition and Adhesion of Vesicles.Angew. Chem. Int. Ed.2010,49(31),5371-5374.
    25. Nalluri, S. K. M.; Voskuhl, J.; Bultema, J. B.; Boekema, E. J.; Ravoo, B. J., Light-Responsive Captureand Release of DNA in a Ternary Supramolecular Complex. Angew. Chem. Int. Ed.2011,50(41),9747-9751.
    26. Versluis, F.; Tomatsu, I.; Kehr, S.; Fregonese, C.; Tepper, A. W. J. W.; Stuart, M. C. A.; Ravoo, B. J.;Koning, R. I.; Kros, A., Shape and Release Control of a Peptide Decorated Vesicle through pH SensitiveOrthogonal Supramolecular Interactions. J. Am. Chem. Soc.2009,131(37),13186-13187.
    27. Harada, A.; Takahashi, S., Preparation and properties of cyclodextrin-ferrocene inclusion complexes.J. Chem. Soc., Chem. Commun.1984,(10),645-646.
    28. Harada, A.; Li, J.; Kamachi, M., The molecular necklace: a rotaxane containing many threaded[alpha]-cyclodextrins. Nature1992,356(6367),325-327.
    29. Harada, A.; Li, J.; Kamachi, M., Synthesis of a tubular polymer from threaded cyclodextrins. Nature1993,364(6437),516-518.
    30. Harada, A.; Li, J.; Kamachi, M., Preparation and properties of inclusion complexes of polyethyleneglycol with.alpha.-cyclodextrin. Macromolecules1993,26(21),5698-5703.
    31. Harada, A.; Li, J.; Kamachi, M., Double-stranded inclusion complexes of cyclodextrin threaded onpoly(ethylene glycol). Nature1994,370(6485),126-128.
    32. Harada, A.; Li, J.; Kamachi, M., Preparation and Characterization of a Polyrotaxane Consisting ofMonodisperse Poly(ethylene glycol) and.alpha.-Cyclodextrins. J. Am. Chem. Soc.1994,116(8),3192-3196.
    33. Harada, A., Preparation and structures of supramolecules between cyclodextrins and polymers. Coord.Chem. Rev.1996,148(0),115-133.
    34. Kawaguchi, Y.; Nishiyama, T.; Okada, M.; Kamachi, M.; Harada, A., Complex Formation ofPoly(ε-caprolactone) with Cyclodextrins. Macromolecules2000,33(12),4472-4477.
    35. Harada, A., Cyclodextrin-based molecular machines. Acc. Chem. Res.2001,34(6),456-464.
    36. Miyauchi, M.; Harada, A., Construction of supramolecular polymers with alternating alpha-,beta-cyclodextrin units using conformational change induced by competitive guests. J. Am. Chem. Soc.2004,126(37),11418-11419.
    37. Tomatsu, I.; Hashidzume, A.; Harada, A., Photoresponsive Hydrogel System Using MolecularRecognition of α-Cyclodextrin. Macromolecules2005,38(12),5223-5227.
    38. Tomatsu, I.; Hashidzume, A.; Harada, A., Redox-Responsive Hydrogel System Using the MolecularRecognition of β-Cyclodextrin. Macromol. Rapid Commun.2006,27(4),238-241.
    39. Deng, W.; Yamaguchi, H.; Takashima, Y.; Harada, A., A chemical-responsive supramolecularhydrogel from modified cycloclextrins. Angew. Chem. Int. Ed.2007,46(27),5144-5147.
    40. Tamesue, S.; Takashima, Y.; Yamaguchi, H.; Shinkai, S.; Harada, A., Photoswitchable SupramolecularHydrogels Formed by Cyclodextrins and Azobenzene Polymers. Angew. Chem. Int. Ed.2010,49(41),7461-7464.
    41. Harada, A.; Ichimura, S.; Yuba, E.; Kono, K., Hollow nanocapsules prepared through stabilization ofpolymer vesicles formed from head-tail type polycations by introducing cross-linkages. Soft Matter2011,7(10),4629-4635.
    42. Wang, J.; Wang, D. Y.; Sobal, N. S.; Giersig, M.; Jiang, M.; Mohwald, H., Stepwise directing ofnanocrystals to self-assemble at water/oil interfaces. Angew. Chem. Int. Ed.2006,45(47),7963-7966.
    43. Xie, D.; Jiang, M.; Zhang, G. Z.; Chen, D. Y., Hydrogen-bonded dendronized polymers and theirself-assembly in solution. Chem. Eur. J.2007,13(12),3346-3353.
    44. Guo, M. Y.; Jiang, M.; Pispas, S.; Yu, W.; Zhou, C. X., Supramolecular Hydrogels Made ofEnd-Functionalized Low-Molecular-Weight PEG and alpha-Cyclodextrin and Their Hybridization withSiO2Nanoparticles through Host-Guest Interaction. Macromolecules2008,41(24),9744-9749.
    45. Zou, J.; Guan, B.; Liao, X. J.; Jiang, M.; Tao, F. G., Dual Reversible Self-Assembly ofPNIPAM-Based Amphiphiles Formed by Inclusion Complexation. Macromolecules2009,42(19),7465-7473.
    46. Liao, X. J.; Chen, G. S.; Liu, X. X.; Chen, W. X.; Chen, F.; Jiang, M., PhotoresponsivePseudopolyrotaxane Hydrogels Based on Competition of Host-Guest Interactions. Angew. Chem. Int. Ed.2010,49(26),4409-4413.
    47. Liu, J. H.; Chen, G. S.; Guo, M. Y.; Jiang, M., Dual Stimuli-Responsive Supramolecular HydrogelBased on Hybrid Inclusion Complex (HIC). Macromolecules2010,43(19),8086-8093.
    48. Liu, X. X.; Jiang, M., Preparation and Some Research Highlights of Polymer Vesicles and HollowSpheres. Acta Polymerica Sinica2011,(9),1007-1019.
    49. Yu, K.; Eisenberg, A., Bilayer morphologies of self-assembled crew-cut aggregates of amphiphilicPS-b-PEO diblock copolymers in solution. Macromolecules1998,31(11),3509-3518.
    50. Discher, D. E.; Eisenberg, A., Polymer vesicles. Science2002,297(5583),967-973.
    51. Zhou, Y. F.; Yan, D. Y., Real-time membrane fission of giant polymer vesicles. Angew. Chem. Int. Ed.2005,44(21),3223-3226.
    52. Lehn, J.-M., Supramolecular Chemistry: Concepts and Perspectives. Wiley-VCH Verlag GmbH&Co.KGaA:2006.
    53. Zhou, Y. F.; Yan, D. Y., Supramolecular self-assembly of giant polymer vesicles with controlled sizes.Angew. Chem. Int. Ed.2004,43(37),4896-4899.
    54. Lehn, J. M., Toward complex matter: Supramolecular chemistry and self-organization. Proc. NatlAcad. Sci. USA2002,99(8),4763-4768.
    55. Lehn, J. M., Toward self-organization and complex matter. Science2002,295(5564),2400-2403.
    56. Zhang, L.; Eisenberg, A., Multiple Morphologies of "Crew-Cut" Aggregates ofPolystyrene-b-poly(acrylic acid) Block Copolymers. Science1995,268(5218),1728-31.
    57. Zhang, L.; Eisenberg, A., Multiple Morphologies and Characteristics of “Crew-Cut” Micelle-likeAggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions. J. Am. Chem.Soc.1996,118(13),3168-3181.
    58. Zhang, L.; Yu, K.; Eisenberg, A., Ion-Induced Morphological Changes in “Crew-Cut” Aggregates ofAmphiphilic Block Copolymers. Science1996,272(5269),1777-1779.
    59. Zhang, L. F.; Bartels, C.; Yu, Y. S.; Shen, H. W.; Eisenberg, A., Mesosized crystal-like structure ofhexagonally packed hollow hoops by solution self-assembly of diblock copolymers. Phys. Rev. Lett.1997,79(25),5034-5037.
    60. Shen, H. W.; Eisenberg, A., Control of architecture in block-copolymer vesicles. Angew. Chem. Int.Ed.2000,39(18),3310-+.
    61. Luo, L. B.; Eisenberg, A., Thermodynamic stabilization mechanism of block copolymer vesicles. J.Am. Chem. Soc.2001,123(5),1012-1013.
    62. Bronich, T. K.; Ming, O. Y.; Kabanov, V. A.; Eisenberg, A.; Szoka, F. C.; Kabanov, A. V., Synthesis ofvesicles on polymer template. J. Am. Chem. Soc.2002,124(40),11872-11873.
    63. Luo, L. B.; Eisenberg, A., One-step preparation of block copolymer vesicles with preferentiallysegregated acidic and basic corona chains. Angew. Chem. Int. Ed.2002,41(6),1001-+.
    64. Wittemann, A.; Azzam, T.; Eisenberg, A., Biocompatible polymer vesicles from biamphiphilictriblock copolymers and their interaction with bovine serum albumin. Langmuir2007,23(4),2224-2230.
    65. Discher, B. M.; Hammer, D. A.; Bates, F. S.; Discher, D. E., Polymer vesicles in various media.Current Opinion in Colloid&Interface Science2000,5(1-2),125-131.
    66. Discher, D. E., Polymer vesicles of PEO-PLA and related for controlled release. Abstr. Am. Chem. Soc.2003,225, U679-U679.
    67. Photos, P. J.; Bacakova, L.; Discher, B.; Bates, F. S.; Discher, D. E., Polymer vesicles in vivo:correlations with PEG molecular weight. J. Controlled Release2003,90(3),323-334.
    68. Qin, S. H.; Geng, Y.; Discher, D. E.; Yang, S., Temperature-controlled assembly and release frompolymer vesicles of poly(ethylene oxide)-block-poly(N-isopropylacrylamide). Adv. Mater.2006,18(21),2905-+.
    69. Christian, D. A.; Garbuzenko, O. B.; Minko, T.; Discher, D. E., Polymer Vesicles with a Red Cell-likeSurface Charge: Microvascular Imaging and in vivo Tracking with Near-Infrared Fluorescence. Macromol.Rapid Commun.2010,31(2),135-141.
    70. Rajagopal, K.; Mahmud, A.; Christian, D. A.; Pajerowski, J. D.; Brown, A. E. X.; Loverde, S. M.;Discher, D. E., Curvature-Coupled Hydration of Semicrystalline Polymer Amphiphiles Yields flexibleWorm Micelles but Favors Rigid Vesicles: Polycaprolactone-Based Block Copolymers. Macromolecules2010,43(23),9736-9746.
    71. Loverde, S. M.; Pantano, D. A.; Christian, D. A.; Mahmud, A.; Klein, M. L.; Discher, D. E.,Curvature, rigidity, and pattern formation in functional polymer micelles and vesicles-From dynamicvisualization to molecular simulation. Current Opinion in Solid State&Materials Science2011,15(6),277-284.
    72. Jia, Z.; Zhou, Y.; Yan, D., Amphiphilic star-block copolymers based on a hyperbranched core:Synthesis and supramolecular self-assembly. J. Polym. Sci., Part A: Polym. Chem.2005,43(24),6534-6544.
    73. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y., Synthesis and size-controllable self-assembly of a novelamphiphilic hyperbranched multiarm copolyether. Macromolecules2005,38(21),8679-8686.
    74. Zhou, Y. F.; Yan, D. Y., Real-time membrane fusion of giant polymer vesicles. J. Am. Chem. Soc.2005,127(30),10468-10469.
    75. Zhou, Y. F.; Yan, D. Y.; Dong, W. Y.; Tian, Y., Temperature-responsive phase transition of polymervesicles: Real-time morphology observation and molecular mechanism. J. Phys. Chem. B2007,111(6),1262-1270.
    76. Guo, M. Q.; Hong, H. Y.; Sun, X. Y.; Zhou, Y. F.; Yan, D. Y., Macroscopic three-dimensionalsupramoelcular networks through hierarchical self-assembly of polymer vesicles. Acta Polymerica Sinica2008,(4),303-308.
    77. Shi, Z. Q.; Zhou, Y. F.; Yan, D. Y., Facile fabrication of pH-responsive and size-controllable polymervesicles from a commercially available hyperbranched polyester. Macromol. Rapid Commun.2008,29(5),412-418.
    78. Ravoo, B. J.; Darcy, R., Cyclodextrin Bilayer Vesicles. Angew. Chem. Int. Ed.2000,39(23),4324-4326.
    79. Wilms, D.; Stiriba, S.-E.; Frey, H., Hyperbranched Polyglycerols: From the Controlled Synthesis ofBiocompatible Polyether Polyols to Multipurpose Applications. Acc. Chem. Res.2009,43(1),129-141.
    80. Sunder, A.; Kramer, M.; Hanselmann, R.; Mulhaupt, R.; Frey, H., Molecular nanocapsules based onamphiphilic hyperbranched polyglycerols. Angew. Chem. Int. Ed.1999,38(23),3552-3555.
    81. Knischka, R.; Lutz, P. J.; Sunder, A.; Mulhaupt, R.; Frey, H., Functional poly(ethylene oxide)multiarm star polymers: Core-first synthesis using hyperbranched polyglycerol initiators. Macromolecules2000,33(2),315-320.
    82. Sunder, A.; Hanselmann, R.; Frey, H.; Mülhaupt, R., Controlled Synthesis of HyperbranchedPolyglycerols by Ring-Opening Multibranching Polymerization. Macromolecules1999,32(13),4240-4246.
    83. Wilms, D.; Wurm, F.; Nieberle, J.; Bohm, P.; Kemmer-Jonas, U.; Frey, H., HyperbranchedPolyglycerols with Elevated Molecular Weights: A Facile Two-Step Synthesis Protocol Based onPolyglycerol Macroinitiators. Macromolecules2009,42(9),3230-3236.
    84. Wurm, F.; Nieberle, J.; Frey, H., Synthesis and characterization of Poly(glyceryl glycerol) blockcopolymers. Macromolecules2008,41(6),1909-1911.
    85. Wurm, F.; Nieberle, J.; Frey, H., Double-hydrophilic linear-hyperbranched block copolymers based onpoly(ethylene oxide) and poly(glycerol). Macromolecules2008,41(4),1184-1188.
    86. Yan, D. Y.; Zhou, Y. F.; Hou, J., Supramolecular self-assembly of macroscopic tubes. Science2004,303(5654),65-67.
    87. Holter, D.; Burgath, A.; Frey, H., Degree of branching in hyperbranched polymers. Acta Polym.1997,48(1-2),30-35.
    88. Holter, D.; Frey, H., Degree of branching in hyperbranched polymers.2. Enhancement of the DB:Scope and limitations. Acta Polym.1997,48(8),298-309.
    89.麦亦勇,超支化聚醚的合成、表征及自组装研究.上海交通大学博士学位论文2007.
    90.程海星,超支化多臂共聚物的结构对其性能及自组装行为的影响规律研究.上海交通大学博士学位论文2010.
    91. Malmstr m, E.; Hult, A., Kinetics of Formation of Hyperbranched Polyesters Based on2,2-Bis(methylol)propionic Acid. Macromolecules1996,29(4),1222-1228.
    92. Uhrich, K. E.; Hawker, C. J.; Frechet, J. M. J.; Turner, S. R., One-pot synthesis of hyperbranchedpolyethers. Macromolecules1992,25(18),4583-4587.
    93. Hawker, C. J.; Chu, F., Hyperbranched Poly(ether ketones): Manipulation of Structure and PhysicalProperties. Macromolecules1996,29(12),4370-4380.
    94. Hawker, C. J.; Lee, R.; Frechet, J. M. J., One-step synthesis of hyperbranched dendritic polyesters. J.Am. Chem. Soc.1991,113(12),4583-4588.
    95. Yan, D.; Müller, A. H. E.; Matyjaszewski, K., Molecular Parameters of Hyperbranched PolymersMade by Self-Condensing Vinyl Polymerization.2. Degree of Branching. Macromolecules1997,30(23),7024-7033.
    96.杨晖;郑刚;李孟超;郁飞龙;边岱泉,一种扩大动态光散射颗粒法可测溶液浓度的改进方法.光学与光电技术2008,6(06),25-28.
    97.杨晖;郑刚;李孟超;郁飞龙;边岱泉,动态光散射颗粒测量区的大小对测量结果的影响.激光技术2009,33(4),384.
    98.洪海燕,响应性超支化多臂共聚物的可控合成及自组装研究.上海交通大学博士学位论文
    2009.
    99. Connors, K. A., The stability of cyclodextrin complexes in solution. Chem. Rev.1997,97(5),1325-1357.
    1. Saji, T.; Hoshino, K.; Aoyagui, S. Reversible formation and disruption of micelles by control of theredox state of the head group. J. Am. Chem. Soc.1985,107(24),6865-6868.
    2. Medina, J. C.; Gay, I.; Chen, Z.; Echegoyen, L.; Gokel, G. W. Redox-switched molecular aggregates:the first example of vesicle formation from hydrophobic ferrocene derivatives. J. Am. Chem. Soc.1991,113(1),365-366.
    3. Harada, A.; Takahashi, S. Preparation and properties of cyclodextrin-ferrocene inclusion complexes. J.Chem. Soc., Chem. Commun.1984,(10),645-646.
    4. Matsue, T.; Evans, D. H.; Osa, T.; Kobayashi, N. Electron-transfer reactions associated withhost-guest complexation. Oxidation of ferrocenecarboxylic acid in the presence of.beta.-cyclodextrin. J.Am. Chem. Soc.1985,107(12),3411-3417.
    5. Yan, D.; Müller, A. H. E.; Matyjaszewski, K. Molecular Parameters of Hyperbranched PolymersMade by Self-Condensing Vinyl Polymerization.2. Degree of Branching. Macromolecules1997,30(23),7024-7033.
    6. Zhou, Y. F.; Yan, D. Y. Real-time membrane fission of giant polymer vesicles. Angew. Chem. Int. Ed.2005,44(21),3223-3226.
    7. Zhou, Y. F.; Yan, D. Y. Supramolecular self-assembly of giant polymer vesicles with controlled sizes.Angew. Chem. Int. Ed.2004,43(37),4896-4899.
    8. Yan, D. Y.; Zhou, Y. F.; Hou, J. Supramolecular self-assembly of macroscopic tubes. Science2004,303(5654),65-67.
    9. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y. Synthesis and size-controllable self-assembly of a novelamphiphilic hyperbranched multiarm copolyether. Macromolecules2005,38(21),8679-8686.
    10. Zhou, Y. F.; Yan, D. Y.; Dong, W. Y.; Tian, Y. Temperature-responsive phase transition of polymervesicles: Real-time morphology observation and molecular mechanism. J. Phys. Chem. B2007,111(6),1262-1270.
    11.程海星超支化多臂共聚物的结构对其性能及自组装行为的影响规律研究.上海交通大学博士学位论文2010.
    12.麦亦勇超支化聚醚的合成、表征及自组装研究.上海交通大学博士学位论文2007.
    13.洪海燕响应性超支化多臂共聚物的可控合成及自组装研究.上海交通大学博士学位论文2009.
    14. Hawker, C. J.; Chu, F. Hyperbranched Poly(ether ketones): Manipulation of Structure and PhysicalProperties. Macromolecules1996,29(12),4370-4380.
    15. Malmstr m, E.; Hult, A. Kinetics of Formation of Hyperbranched Polyesters Based on2,2-Bis(methylol)propionic Acid. Macromolecules1996,29(4),1222-1228.
    16. Uhrich, K. E.; Hawker, C. J.; Frechet, J. M. J.; Turner, S. R. One-pot synthesis of hyperbranchedpolyethers. Macromolecules1992,25(18),4583-4587.
    17. Hawker, C. J.; Lee, R.; Frechet, J. M. J. One-step synthesis of hyperbranched dendritic polyesters. J.Am. Chem. Soc.1991,113(12),4583-4588.
    18. Yu, K.; Eisenberg, A. Bilayer morphologies of self-assembled crew-cut aggregates of amphiphilicPS-b-PEO diblock copolymers in solution. Macromolecules1998,31(11),3509-3518.
    19. Shen, H. W.; Eisenberg, A. Control of architecture in block-copolymer vesicles. Angew. Chem. Int. Ed.2000,39(18),3310-+.
    20. Zhang, L. F.; Bartels, C.; Yu, Y. S.; Shen, H. W.; Eisenberg, A. Mesosized crystal-like structure ofhexagonally packed hollow hoops by solution self-assembly of diblock copolymers. Phys. Rev. Lett.1997,79(25),5034-5037.
    21. Zhang, L.; Eisenberg, A. Multiple Morphologies and Characteristics of “Crew-Cut” Micelle-likeAggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions. J. Am. Chem.Soc.1996,118(13),3168-3181.
    22. Luo, L. B.; Eisenberg, A. One-step preparation of block copolymer vesicles with preferentiallysegregated acidic and basic corona chains. Angew. Chem. Int. Ed.2002,41(6),1001-+.
    23. Luo, L. B.; Eisenberg, A. Thermodynamic stabilization mechanism of block copolymer vesicles. J.Am. Chem. Soc.2001,123(5),1012-1013.
    24. Strelets, V. V.; Mamedjarova, I. A.; Nefedova, M. N.; Pysnograeva, N. I.; Sokolov, V. I.; Pospís il, L.;Hanzlík, J. Electrochemistry of inclusion complexes of organometallics: Complexation of ferrocene andazaferrocene by cyclodextrins. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry1991,310(1–2),179-186.
    25. Du, P.; Liu, J.; Chen, G.; Jiang, M. Dual Responsive Supramolecular Hydrogel with ElectrochemicalActivity. Langmuir2011,27(15),9602-9608.
    26. Xu, L. Q.; Wan, D.; Gong, H. F.; Neoh, K.-G.; Kang, E.-T.; Fu, G. D. One-Pot Preparation ofFerrocene-Functionalized Polymer Brushes on Gold Substrates by Combined Surface-Initiated AtomTransfer Radical Polymerization and “Click Chemistry”. Langmuir2010,26(19),15376-15382.
    27. Dubacheva, G. V.; Van Der Heyden, A. l.; Dumy, P.; Kaftan, O.; Auzély-Velty, R.; Coche-Guerente, L.;Labbé, P. Electrochemically Controlled Adsorption of Fc-Functionalized Polymers on β-CD-ModifiedSelf-Assembled Monolayers. Langmuir2010,26(17),13976-13986.
    28. Hardy, C. G.; Ren, L.; Tamboue, T. C.; Tang, C. Side-chain ferrocene-containing (meth)acrylatepolymers: Synthesis and properties. J. Polym. Sci., Part A: Polym. Chem.2011,49(6),1409-1420.
    29.杨晖;郑刚;李孟超;郁飞龙;边岱泉动态光散射颗粒测量区的大小对测量结果的影响.激光技术2009,33(4),384.
    30.杨晖;郑刚;李孟超;郁飞龙;边岱泉一种扩大动态光散射颗粒法可测溶液浓度的改进方法.光学与光电技术2008,6(06),25-28.
    1. de Greef, T. F. A.; Meijer, E. W. Materials science: Supramolecular polymers. Nature2008,453(7192),171-173.
    2. Roman, C.; Fischer, H. R.; Meijer, E. W. Microphase separation of diblock copolymers consisting ofpolystyrene and acid-functionalized poly(propylene imine) dendrimers. Macromolecules1999,32(17),5525-5531.
    3. Binder, W. H.; Kunz, M. J.; Ingolic, E. Supramolecular poly(ether ketone)–polyisobutylenepseudo-block copolymers. J. Polym. Sci., Part A: Polym. Chem.2004,42(1),162-172.
    4. Wang, D.; Su, Y.; Jin, C.; Zhu, B.; Pang, Y.; Zhu, L.; Liu, J.; Tu, C.; Yan, D.; Zhu, X. SupramolecularCopolymer Micelles Based on the Complementary Multiple Hydrogen Bonds of Nucleobases for DrugDelivery. Biomacromolecules2011,12(4),1370-1379.
    5. Ambade, A. V.; Burd, C.; Higley, M. N.; Nair, K. P.; Weck, M. Orthogonally Self-AssembledMultifunctional Block Copolymers. Chem. Eur. J.2009,15(44),11904-11911.
    6. Moughton, A. O.; O’Reilly, R. K. Noncovalently Connected Micelles, Nanoparticles, andMetal-Functionalized Nanocages Using Supramolecular Self-Assembly. J. Am. Chem. Soc.2008,130(27),8714-8725.
    7. Mugemana, C.; Guillet, P.; Hoeppener, S.; Schubert, U. S.; Fustin, C.-A.; Gohy, J.-F.Metallo-supramolecular diblock copolymers based on heteroleptic cobalt(iii) and nickel(ii) bis-terpyridinecomplexes. Chem. Commun.2010,46(8),1296-1298.
    8. Ott, C.; Kranenburg, J. M.; Guerrero-Sanchez, C.; Hoeppener, S.; Wouters, D.; Schubert, U. S.Supramolecular Assembly via Noncovalent Metal Coordination Chemistry: Synthesis, Characterization,and Elastic Properties. Macromolecules2009,42(6),2177-2183.
    9. Fustin, C. A.; Guillet, P.; Schubert, U. S.; Gohy, J. F. Metallo-Supramolecular Block Copolymers. Adv.Mater.2007,19(13),1665-1673.
    10. Moughton, A. O.; O'Reilly, R. K. Using Metallo-Supramolecular Block Copolymers for the Synthesisof Higher Order Nanostructured Assemblies. Macromol. Rapid Commun.2010,31(1),37-52.
    11. Schrage, S.; Sigel, R.; Schlaad, H. Formation of Amphiphilic Polyion Complex Vesicles fromMixtures of Oppositely Charged Block Ionomers. Macromolecules2003,36(5),1417-1420.
    12. Zeng, J.; Shi, K.; Zhang, Y.; Sun, X.; Zhang, B. Construction and micellization of a noncovalentdouble hydrophilic block copolymer. Chem. Commun.2008,(32),3753-3755.
    13. Yan, Q.; Yuan, J.; Cai, Z.; Xin, Y.; Kang, Y.; Yin, Y. Voltage-Responsive Vesicles Based onOrthogonal Assembly of Two Homopolymers. J. Am. Chem. Soc.2010,132(27),9268-9270.
    14. Yan, Q.; Xin, Y.; Zhou, R.; Yin, Y.; Yuan, J. Light-controlled smart nanotubes based on the orthogonalassembly of two homopolymers. Chem. Commun.2011,47(34),9594-9596.
    15. Rauwald, U.; Scherman, O. A. Supramolecular Block Copolymers with Cucurbit[8]uril in Water.Angew. Chem. Int. Ed.2008,47(21),3950-3953.
    16. Chen, D.; Jiang, M. Strategies for Constructing Polymeric Micelles and Hollow Spheres in Solutionvia Specific Intermolecular Interactions. Acc. Chem. Res.2005,38(6),494-502.
    17. Chen, G.; Jiang, M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistryand macromolecular self-assembly. Chem. Soc. Rev.2011,40(5),2254-2266.
    18. Zhang, X.; Wang, C. Supramolecular amphiphiles. Chem. Soc. Rev.2011,40(1),94-101.
    19. Song, B.; Wei, H.; Wang, Z.; Zhang, X.; Smet, M.; Dehaen, W. Supramolecular Nanofibers bySelf-Organization of Bola-amphiphiles through a Combination of Hydrogen Bonding and π–π StackingInteractions. Adv. Mater.2007,19(3),416-420.
    20. Wang, Y.; Xu, H.; Zhang, X. Tuning the Amphiphilicity of Building Blocks: ControlledSelf-Assembly and Disassembly for Functional Supramolecular Materials. Adv. Mater.2009,21(28),2849-2864.
    21. Yang, S. K.; Ambade, A. V.; Weck, M. Supramolecular ABC Triblock Copolymers via One-Pot,Orthogonal Self-Assembly. J. Am. Chem. Soc.2010,132(5),1637-1645.
    22. Moughton, A. O.; Stubenrauch, K.; O'Reilly, R. K. Hollow nanostructures from self-assembledsupramolecular metallo-triblock copolymers. Soft Matter2009,5(12),2361-2370.
    23. Ott, C.; Hoogenboom, R.; Hoeppener, S.; Wouters, D.; Gohy, J.-F.; Schubert, U. S. Tuning themorphologies of amphiphilic metallo-supramolecular triblock terpolymers: from spherical micelles toswitchable vesicles. Soft Matter2009,5(1),84-91.
    24. Gohy, J.-F.; Ott, C.; Hoeppener, S.; Schubert, U. S. Multicompartment micelles from ametallo-supramolecular tetrablock quatercopolymer. Chem. Commun.2009,(40),6038-6040.
    25. Yang, S. K.; Ambade, A. V.; Weck, M. Supramolecular Alternating Block Copolymers via MetalCoordination. Chem. Eur. J.2009,15(27),6605-6611.
    26. Gohy, J.-F.; Chiper, M.; Guillet, P.; Fustin, C.-A.; Hoeppener, S.; Winter, A.; Hoogenboom, R.;Schubert, U. S. Self-organization of rod-coil tri-and tetra-arm star metallo-supramolecular blockcopolymers in selective solvents. Soft Matter2009,5(15),2954-2961.
    27. Zhang, Z. X.; Liu, K. L.; Li, J. Self-Assembly and Micellization of a Dual ThermoresponsiveSupramolecular Pseudo-Block Copolymer. Macromolecules2011,44(5),1182-1193.
    28. Zou, J.; Guan, B.; Liao, X. J.; Jiang, M.; Tao, F. G. Dual Reversible Self-Assembly of PNIPAM-BasedAmphiphiles Formed by Inclusion Complexation. Macromolecules2009,42(19),7465-7473.
    29. Tao, W.; Liu, Y.; Jiang, B.; Yu, S.; Huang, W.; Zhou, Y.; Yan, D. A Linear-HyperbranchedSupramolecular Amphiphile and Its Self-Assembly into Vesicles with Great Ductility. J. Am. Chem. Soc.2011,134(2),762-764.
    30. Tomatsu, I.; Hashidzume, A.; Harada, A. Photoresponsive Hydrogel System Using MolecularRecognition of α-Cyclodextrin. Macromolecules2005,38(12),5223-5227.
    31. Kretschmann, O.; Choi, S. W.; Miyauchi, M.; Tomatsu, I.; Harada, A.; Ritter, H. Switchable hydrogelsobtained by supramolecular cross-linking of adamantyl-containing LCST copolymers with cyclodextrindimers. Angew. Chem. Int. Ed.2006,45(26),4361-4365.
    32. Tamesue, S.; Takashima, Y.; Yamaguchi, H.; Shinkai, S.; Harada, A. Photoswitchable SupramolecularHydrogels Formed by Cyclodextrins and Azobenzene Polymers. Angew. Chem. Int. Ed.2010,49(41),7461-7464.
    33. Guo, M. Y.; Jiang, M.; Pispas, S.; Yu, W.; Zhou, C. X. Supramolecular Hydrogels Made ofEnd-Functionalized Low-Molecular-Weight PEG and alpha-Cyclodextrin and Their Hybridization withSiO2Nanoparticles through Host-Guest Interaction. Macromolecules2008,41(24),9744-9749.
    34. Liao, X. J.; Chen, G. S.; Liu, X. X.; Chen, W. X.; Chen, F.; Jiang, M. PhotoresponsivePseudopolyrotaxane Hydrogels Based on Competition of Host-Guest Interactions. Angew. Chem. Int. Ed.2010,49(26),4409-4413.
    35. Liu, J. H.; Chen, G. S.; Guo, M. Y.; Jiang, M. Dual Stimuli-Responsive Supramolecular HydrogelBased on Hybrid Inclusion Complex (HIC). Macromolecules2010,43(19),8086-8093.
    36. Zhou, Y. F.; Yan, D. Y. Real-time membrane fission of giant polymer vesicles. Angew. Chem. Int. Ed.2005,44(21),3223-3226.
    37. Zhou, Y. F.; Yan, D. Y. Supramolecular self-assembly of giant polymer vesicles with controlled sizes.Angew. Chem. Int. Ed.2004,43(37),4896-4899.
    38. Yan, D. Y.; Zhou, Y. F.; Hou, J. Supramolecular self-assembly of macroscopic tubes. Science2004,303(5654),65-67.
    39. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y. Synthesis and size-controllable self-assembly of a novelamphiphilic hyperbranched multiarm copolyether. Macromolecules2005,38(21),8679-8686.
    40. Zhou, Y. F.; Yan, D. Y.; Dong, W. Y.; Tian, Y. Temperature-responsive phase transition of polymervesicles: Real-time morphology observation and molecular mechanism. J. Phys. Chem. B2007,111(6),1262-1270.
    41.程海星超支化多臂共聚物的结构对其性能及自组装行为的影响规律研究.上海交通大学博士学位论文2010.
    42.麦亦勇超支化聚醚的合成、表征及自组装研究.上海交通大学博士学位论文2007.
    43.洪海燕响应性超支化多臂共聚物的可控合成及自组装研究.上海交通大学博士学位论文2009.
    44. Magnusson, H.; Malmstr m, E.; Hult, A. Synthesis of hyperbranched aliphatic polyethers via cationicring-opening polymerization of3-ethyl-3-(hydroxymethyl)oxetane. Macromol. Rapid Commun.1999,20(8),453-457.
    45. Bednarek, M.; Biedron, T.; Helinski, J.; Kaluzynski, K.; Kubisa, P.; Penczek, S. Branched polyetherwith multiple primary hydroxyl groups: polymerization of3-ethyl-3-hydroxymethyloxetane. Macromol.Rapid Commun.1999,20(7),369-372.
    46. Holter, D.; Burgath, A.; Frey, H. Degree of branching in hyperbranched polymers. Acta Polym.1997,48(1-2),30-35.
    47. Holter, D.; Frey, H. Degree of branching in hyperbranched polymers.2. Enhancement of the DB:Scope and limitations. Acta Polym.1997,48(8),298-309.
    48.杨晖;郑刚;李孟超;郁飞龙;边岱泉一种扩大动态光散射颗粒法可测溶液浓度的改进方法.光学与光电技术2008,6(06),25-28.
    49.杨晖;郑刚;李孟超;郁飞龙;边岱泉动态光散射颗粒测量区的大小对测量结果的影响.激光技术2009,33(4),384.
    50. Connors, K. A. The stability of cyclodextrin complexes in solution. Chem. Rev.1997,97(5),1325-1357.
    51. Rekharsky, M. V.; Inoue, Y. Complexation thermodynamics of cyclodextrins. Chem. Rev.1998,98(5),1875-1917.
    52. Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev.1998,98(5),1743-1753.
    53. del Barrio, J.; Oriol, L.; Sanchez, C.; Serrano, J. L.; Di Cicco, A.; Keller, P.; Li, M. H. Self-Assemblyof Linear-Dendritic Diblock Copolymers: From Nanofibers to Polymersomes. J. Am. Chem. Soc.2010,132(11),3762-3769.
    1. Hawker, C. J.; Lee, R.; Frechet, J. M. J. One-step synthesis of hyperbranched dendritic polyesters. J.Am. Chem. Soc.1991,113(12),4583-4588.
    2. Uhrich, K. E.; Hawker, C. J.; Frechet, J. M. J.; Turner, S. R. One-pot synthesis of hyperbranchedpolyethers. Macromolecules1992,25(18),4583-4587.
    3. Gitsov, I.; Frechet, J. M. J. Solution and solid-state properties of hybrid linear-dendritic blockcopolymers. Macromolecules1993,26(24),6536-6546.
    4. Fréchet, J. M. J.; Henmi, M.; Gitsov, I.; Aoshima, S.; Leduc, M. R.; Grubbs, R. B. Self-CondensingVinyl Polymerization: An Approach to Dendritic Materials. Science1995,269(5227),1080-1083.
    5. Hawker, C. J.; Frechet, J. M. J.; Grubbs, R. B.; Dao, J. Preparation of Hyperbranched and StarPolymers by a "Living", Self-Condensing Free Radical Polymerization. J. Am. Chem. Soc.1995,117(43),10763-10764.
    6. Chang, H. T.; Frechet, J. M. J. Proton-transfer polymerization: A new approach to hyperbranchedpolymers. J. Am. Chem. Soc.1999,121(10),2313-2314.
    7. Freeman, A. W.; Koene, S. C.; Malenfant, P. R. L.; Thompson, M. E.; Frechet, J. M. J.Dendrimer-containing light-emitting diodes: Toward site-isolation of chromophores. J. Am. Chem. Soc.2000,122(49),12385-12386.
    8. Grayson, S. M.; Frechet, J. M. J. Convergent dendrons and dendrimers: from synthesis to applications.Chem. Rev.2001,101(12),3819-3867.
    9. Gillies, E. R.; Frechet, J. M. J. Designing macromolecules for therapeutic applications: Polyesterdendrimer-poly(ethylene oxide)"bow-tie" hybrids with tunable molecular weight and architecture. J. Am.Chem. Soc.2002,124(47),14137-14146.
    10. Furuta, P.; Frechet, J. M. J. Controlling solubility and modulating peripheral function in dendrimerencapsulated dyes. J. Am. Chem. Soc.2003,125(43),13173-13181.
    11. Goodwin, A. P.; Lam, S. S.; Frechet, J. M. J. Rapid, efficient synthesis of heterobifunctionalbiodegradable dendrimers. J. Am. Chem. Soc.2007,129(22),6994-+.
    12. Percec, V.; Chu, P. W.; Ungar, G.; Zhou, J. P. RATIONAL DESIGN OF THE FIRSTNONSPHERICAL DENDRIMER WHICH DISPLAYS CALAMITIC NEMATIC AND SMECTICTHERMOTROPIC LIQUID-CRYSTALLINE PHASES. J. Am. Chem. Soc.1995,117(46),11441-11454.
    13. Balagurusamy, V. S. K.; Ungar, G.; Percec, V.; Johansson, G. Rational design of the first sphericalsupramolecular dendrimers self-organized in a novel thermotropic cubic liquid-crystalline phase and thedetermination of their shape by X-ray analysis. J. Am. Chem. Soc.1997,119(7),1539-1555.
    14. Chiang, Y. C.; Jamieson, A. M.; Kawasumi, M.; Percec, V. Electrorheological behavior of main-chainliquid crystal polymers dissolved in nematic solvents. Macromolecules1997,30(7),1992-1996.
    15. Percec, V.; Cho, W. D.; Mosier, P. E.; Ungar, G.; Yeardley, D. J. P. Structural analysis of cylindricaland spherical supramolecular dendrimers quantifies the concept of monodendron shape control bygeneration number. J. Am. Chem. Soc.1998,120(43),11061-11070.
    16. Percec, V.; Cho, W. D.; Ungar, G.; Yeardley, D. J. P. Synthesis and structural analysis of twoconstitutional isomeric libraries of AB(2)-based monodendrons and supramolecular dendrimers. J. Am.Chem. Soc.2001,123(7),1302-1315.
    17. Jung, H. T.; Kim, S. O.; Ko, Y. K.; Yoon, D. K.; Hudson, S. D.; Percec, V.; Holerca, M. N.; Cho, W.D.; Mosier, P. E. Surface order in thin films of self-assembled columnar liquid crystals. Macromolecules2002,35(9),3717-3721.
    18. Percec, V.; Barboiu, B.; Grigoras, C.; Bera, T. K. Universal iterative strategy for the divergentsynthesis of dendritic macromolecules from conventional monomers by a combination of living radicalpolymerization and irreversible TERminator Multifunctional INItiator (TERMINI). J. Am. Chem. Soc.2003,125(21),6503-6516.
    19. Percec, V.; Glodde, M.; Johansson, G.; Balagurusamy, V. S. K.; Heiney, P. A. Transformation of aspherical supramolecular dendrimer into a pyramidal columnar supramolecular dendrimer mediated by thefluorophobic effect. Angew. Chem. Int. Ed.2003,42(36),4338-4342.
    20. Percec, V.; Dulcey, A. E.; Peterca, M.; Ilies, M.; Sienkowska, M. J.; Heiney, P. A. Programming theinternal structure and stability of helical pores self-assembled from dendritic dipeptides via the protectivegroups of the peptide. J. Am. Chem. Soc.2005,127(50),17902-17909.
    21. Percec, V.; Peterca, M.; Dulcey, A. E.; Imam, M. R.; Hudson, S. D.; Nummelin, S.; Adelman, P.;Heiney, P. A. Hollow spherical supramolecular dendrimers. J. Am. Chem. Soc.2008,130(39),13079-13094.
    22. Peterca, M.; Percec, V.; Leowanawat, P.; Bertin, A. Predicting the Size and Properties ofDendrimersomes from the Lamellar Structure of Their Amphiphilic Janus Dendrimers. J. Am. Chem. Soc.2011,133(50),20507-20520.
    23. Percec, V.; Imam, M. R.; Peterca, M.; Leowanawat, P. Self-Organizable Vesicular ColumnsAssembled from Polymers Dendronized with Semifluorinated Janus Dendrimers Act As Reverse ThermalActuators. J. Am. Chem. Soc.2012,134(9),4408-4420.
    24. van Hest, J. C.; Delnoye, D. A.; Baars, M. W.; van Genderen, M. H.; Meijer, E. W.Polystyrene-dendrimer amphiphilic block copolymers with a generation-dependent aggregation. Science1995,268(5217),1592-5.
    25. van/Hest, J. C. M.; Baars, M. W. P. L.; Elissen-Roman, C.; van/Genderen, M. H. P.; Meijer, E. W.Acid-Functionalized Amphiphiles, Derived from Polystyrene-Poly(propylene imine) Dendrimers, with apH-Dependent Aggregation. Macromolecules1995,28(19),6689-6691.
    26. Bosman, A. W.; Janssen, H. M.; Meijer, E. W. About dendrimers: Structure, physical properties, andapplications. Chem. Rev.1999,99(7),1665-1688.
    27. Roman, C.; Fischer, H. R.; Meijer, E. W. Microphase separation of diblock copolymers consisting ofpolystyrene and acid-functionalized poly(propylene imine) dendrimers. Macromolecules1999,32(17),5525-5531.
    28. Michels, J. J.; Baars, M. W. P. L.; Meijer, E. W.; Huskens, J.; Reinhoudt, D. N. Well-definedassemblies of adamantyl-terminated poly(propylene imine) dendrimers and beta-cyclodextrin in water.Journal of the Chemical Society-Perkin Transactions22000,(9),1914-1918.
    29. Tsuda, K.; Dol, G. C.; Gensch, T.; Hofkens, J.; Latterini, L.; Weener, J. W.; Meijer, E. W.; De Schryver,F. C. Fluorescence from azobenzene functionalized poly(propylene imine) dendrimers in self-assembledsupramolecular structures. J. Am. Chem. Soc.2000,122(14),3445-3452.
    30. Weener, J. W.; Meijer, E. W. Photoresponsive dendritic monolayers. Adv. Mater.2000,12(10),741-+.
    31. de Groot, D.; de Waal, B. F. M.; Reek, J. N. H.; Schenning, A.; Kramer, P. C. J.; Meijer, E. W.; vanLeeuwen, P. Noncovalently functionalized dendrimers as recyclable catalysts. J. Am. Chem. Soc.2001,123(35),8453-8458.
    32. Precup-Blaga, F. S.; Garcia-Martinez, J. C.; Schenning, A.; Meijer, E. W. Highly emissivesupramolecular oligo(p-phenylene vinylene) dendrimers. J. Am. Chem. Soc.2003,125(42),12953-12960.
    33. Versteegen, R. M.; van Beek, D. J. M.; Sijbesma, R. P.; Vlassopoulos, D.; Fytas, G.; Meijer, E. W.Dendrimer-based transient supramolecular networks. J. Am. Chem. Soc.2005,127(40),13862-13868.
    34. Hermans, T. M.; Broeren, M. A. C.; Gomopoulos, N.; Smeijers, A. F.; Mezari, B.; Van Leeuwen, E. N.M.; Vos, M. R. J.; Magusin, P.; Hilbers, P. A. J.; Van Genderen, M. H. P.; Sommerdijk, N.; Fytas, G.; Meijer,E. W. Stepwise noncovalent synthesis leading to dendrimer-based assemblies in water. J. Am. Chem. Soc.2007,129(50),15631-15638.
    35. Wilms, D.; Stiriba, S.-E.; Frey, H. Hyperbranched Polyglycerols: From the Controlled Synthesis ofBiocompatible Polyether Polyols to Multipurpose Applications. Acc. Chem. Res.2009,43(1),129-141.
    36. Sunder, A.; Kramer, M.; Hanselmann, R.; Mulhaupt, R.; Frey, H. Molecular nanocapsules based onamphiphilic hyperbranched polyglycerols. Angew. Chem. Int. Ed.1999,38(23),3552-3555.
    37. Knischka, R.; Lutz, P. J.; Sunder, A.; Mulhaupt, R.; Frey, H. Functional poly(ethylene oxide)multiarm star polymers: Core-first synthesis using hyperbranched polyglycerol initiators. Macromolecules2000,33(2),315-320.
    38. Sunder, A.; Hanselmann, R.; Frey, H.; Mülhaupt, R. Controlled Synthesis of HyperbranchedPolyglycerols by Ring-Opening Multibranching Polymerization. Macromolecules1999,32(13),4240-4246.
    39. Wilms, D.; Wurm, F.; Nieberle, J.; Bohm, P.; Kemmer-Jonas, U.; Frey, H. HyperbranchedPolyglycerols with Elevated Molecular Weights: A Facile Two-Step Synthesis Protocol Based onPolyglycerol Macroinitiators. Macromolecules2009,42(9),3230-3236.
    40. Wurm, F.; Nieberle, J.; Frey, H. Synthesis and characterization of Poly(glyceryl glycerol) blockcopolymers. Macromolecules2008,41(6),1909-1911.
    41. Wurm, F.; Nieberle, J.; Frey, H. Double-hydrophilic linear-hyperbranched block copolymers based onpoly(ethylene oxide) and poly(glycerol). Macromolecules2008,41(4),1184-1188.
    42. Matyjaszewski, K.; Gaynor, S. G.; Müller, A. H. E. Preparation of Hyperbranched Polyacrylates byAtom Transfer Radical Polymerization.2. Kinetics and Mechanism of Chain Growth for theSelf-Condensing Vinyl Polymerization of2-((2-Bromopropionyl)oxy)ethyl Acrylate. Macromolecules1997,30(23),7034-7041.
    43. Simon, P. F. W.; Radke, W.; Müller, A. H. E. Hyperbranched methacrylates by self-condensing grouptransfer polymerization. Macromol. Rapid Commun.1997,18(9),865-873.
    44. Yan, D.; Müller, A. H. E.; Matyjaszewski, K. Molecular Parameters of Hyperbranched PolymersMade by Self-Condensing Vinyl Polymerization.2. Degree of Branching. Macromolecules1997,30(23),7024-7033.
    45. Litvinenko, G. I.; Simon, P. F. W.; Muller, A. H. E. Molecular parameters of hyperbranchedcopolymers obtained by self-condensing vinyl copolymerization.1. Equal rate constants. Macromolecules1999,32(8),2410-2419.
    46. Yan, D. Y.; Zhou, Z. P.; Muller, A. H. E. Molecular weight distribution of hyperbranched polymersgenerated by self-condensing vinyl polymerization in presence of a multifunctional initiator.Macromolecules1999,32(2),245-250.
    47. Litvinenko, G. I.; Simon, P. F. W.; Muller, A. H. E. Molecular parameters of hyperbranchedcopolymers obtained by self-condensing vinyl copolymerization,2. Non-equal rate constants.Macromolecules2001,34(8),2418-2426.
    48. Mori, H.; Seng, D. C.; Lechner, H.; Zhang, M. F.; Muller, A. H. E. Synthesis and characterization ofbranched polyelectrolytes.1. Preparation of hyperbranched poly(acrylic acid) via self-condensing atomtransfer radical copolymerization. Macromolecules2002,35(25),9270-9281.
    49. Muthukrishnan, S.; Erhard, D. P.; Mori, H.; Muller, A. H. E. Synthesis and characterization ofsurface-grafted hyperbranched glycomethacrylates. Macromolecules2006,39(8),2743-2750.
    50. Kong, J.; Schmalz, T.; Motz, G.; Muller, A. H. E. Novel Hyperbranched Ferrocene-ContainingPoly(boro)carbosilanes Synthesized via a Convenient "A(2)+B-3" Approach. Macromolecules2011,44(6),1280-1291.
    51. Cheng, H. X.; Yuan, X. J.; Sun, X. Y.; Li, K. P.; Zhou, Y. F.; Yan, D. Y. Effect of Degree of Branchingon the Self-Assembly of Amphiphilic Hyperbranched Multiarm Copolymers. Macromolecules2010,43(2),1143-1147.
    52. Guo, B.; Shi, Z. Q.; Yao, Y.; Zhou, Y. F.; Yan, D. Y. Facile Preparation of Novel Peptosomes throughComplex Self-Assembly of Hyperbranched Polyester and Polypeptide. Langmuir2009,25(12),6622-6626.
    53. Guo, M. Q.; Hong, H. Y.; Sun, X. Y.; Zhou, Y. F.; Yan, D. Y. Macroscopic three-dimensionalsupramoelcular networks through hierarchical self-assembly of polymer vesicles. Acta Polymerica Sinica2008,(4),303-308.
    54. Jia, Z.; Zhou, Y.; Yan, D. Amphiphilic star-block copolymers based on a hyperbranched core:Synthesis and supramolecular self-assembly. J. Polym. Sci., Part A: Polym. Chem.2005,43(24),6534-6544.
    55. Liu, J. Y.; Huang, W.; Zhou, Y. F.; Yan, D. Y. Synthesis of Hyperbranched Polyphosphates bySelf-Condensing Ring-Opening Polymerization of HEEP without Catalyst. Macromolecules2009,42(13),4394-4399.
    56. Mai, Y.; Zhou, Y.; Yan, D. Real-Time Hierarchical Self-Assembly of Large Compound Vesicles froman Amphiphilic Hyperbranched Multiarm Copolymer. Small2007,3(7),1170-1173.
    57. Mai, Y. Y.; Zhou, Y. F.; Yan, D. Y. Synthesis and size-controllable self-assembly of a novelamphiphilic hyperbranched multiarm copolyether. Macromolecules2005,38(21),8679-8686.
    58. Shi, Z. Q.; Zhou, Y. F.; Yan, D. Y. Facile fabrication of pH-responsive and size-controllable polymervesicles from a commercially available hyperbranched polyester. Macromol. Rapid Commun.2008,29(5),412-418.
    59. Yan, D. Y.; Zhou, Y. F.; Hou, J. Supramolecular self-assembly of macroscopic tubes. Science2004,303(5654),65-67.
    60. Zhou, Y. F.; Yan, D. Y. Supramolecular self-assembly of giant polymer vesicles with controlled sizes.Angew. Chem. Int. Ed.2004,43(37),4896-4899.
    61. Zhou, Y. F.; Yan, D. Y. Real-time membrane fission of giant polymer vesicles. Angew. Chem. Int. Ed.2005,44(21),3223-3226.
    62. Zhou, Y. F.; Yan, D. Y. Real-time membrane fusion of giant polymer vesicles. J. Am. Chem. Soc.2005,127(30),10468-10469.
    63. Zhou, Y. F.; Yan, D. Y.; Dong, W. Y.; Tian, Y. Temperature-responsive phase transition of polymervesicles: Real-time morphology observation and molecular mechanism. J. Phys. Chem. B2007,111(6),1262-1270.
    64. Vosch, T.; Hofkens, J.; Cotlet, M.; Kohn, F.; Fujiwara, H.; Gronheid, R.; Van Der Biest, K.; Weil, T.;Herrmann, A.; Mullen, K.; Mukamel, S.; Van der Auweraer, M.; De Schryver, F. C. Influence of structuraland rotational isomerism on the triplet blinking of individual dendrimer molecules. Angew. Chem. Int. Ed.2001,40(24),4643-+.
    65. Lor, M.; Thielemans, J.; Viaene, L.; Cotlet, M.; Hofkens, J.; Weil, T.; Hampel, C.; Mullen, K.;Verhoeven, J. W.; Van der Auweraer, M.; De Schryver, F. C. Photoinduced electron transfer in a rigid firstgeneration triphenylamine core dendrimer substituted with a peryleneimide acceptor. J. Am. Chem. Soc.2002,124(33),9918-9925.
    66. Minard-Basquin, C.; Weil, T.; Hohner, A.; Radler, J. O.; Mullen, K. A polyphenylenedendrimer-detergent complex as a highly fluorescent probe for bioassays. J. Am. Chem. Soc.2003,125(19),5832-5838.
    67. Metivier, R.; Kulzer, F.; Weil, T.; Mullen, K.; Basche, T. Energy transfer rates and pathways of singledonor chromophores in a multichromophoric dendrimer built around a central acceptor core. J. Am. Chem.Soc.2004,126(44),14364-14365.
    68. Cotlet, M.; Vosch, T.; Habuchi, S.; Weil, T.; Mullen, K.; Hofkens, J.; De Schryver, F. Probingintramolecular Forster resonance energy transfer in anaphthaleneimide-peryleneimide-terrylenediimide-based dendrimer by ensemble and single-moleculefluorescence spectroscopy. J. Am. Chem. Soc.2005,127(27),9760-9768.
    69. Mondeshki, M.; Mihov, G.; Graf, R.; Spiess, H. W.; Mullen, K.; Papadopoulos, P.; Gitsas, A.; Floudas,G. Self-assembly and molecular dynamics of peptide-functionalized polyphenylene dendrimers.Macromolecules2006,39(26),9605-9613.
    70. Clark, C. G.; Wenzel, R. J.; Andreitchenko, E. V.; Steffen, W.; Zenobi, R.; Mullen, K. ControlledMegaDalton assembly with locally stiff but globally flexible polyphenylene dendrimers. J. Am. Chem. Soc.2007,129(11),3292-3301.
    71. Oesterling, I.; Mullen, K. Multichromophoric polyphenylene dendrimers: Toward brilliant lightemitters with an increased number of fluorophores. J. Am. Chem. Soc.2007,129(15),4595-4605.
    72. Qin, T. S.; Ding, J. Q.; Wang, L. X.; Baumgarten, M.; Zhou, G.; Mullen, K. A Divergent Synthesis ofVery Large Polyphenylene Dendrimers with Iridium(III) Cores: Molecular Size Effect on the Performanceof Phosphorescent Organic Light-Emitting Diodes. J. Am. Chem. Soc.2009,131(40),14329-14336.
    73. Nguyen, T. T. T.; Turp, D.; Wang, D. P.; Nolscher, B.; Laquai, F.; Mullen, K. A Fluorescent,Shape-Persistent Dendritic Host with Photoswitchable Guest Encapsulation and Intramolecular EnergyTransfer. J. Am. Chem. Soc.2011,133(29),11194-11204.
    74. Tokuhisa, H.; Zhao, M. Q.; Baker, L. A.; Phan, V. T.; Dermody, D. L.; Garcia, M. E.; Peez, R. F.;Crooks, R. M.; Mayer, T. M. Preparation and characterization of dendrimer monolayers anddendrimer-alkanethiol mixed monolayers adsorbed to gold. J. Am. Chem. Soc.1998,120(18),4492-4501.
    75. Zhao, M. Q.; Crooks, R. M. Homogeneous hydrogenation catalysis with monodisperse,dendrimer-encapsulated Pd and Pt nanoparticles. Angew. Chem. Int. Ed.1999,38(3),364-366.
    76. Chechik, V.; Crooks, R. M. Dendrimer-encapsulated Pd nanoparticles as fluorous phase-solublecatalysts. J. Am. Chem. Soc.2000,122(6),1243-1244.
    77. Niu, Y. H.; Yeung, L. K.; Crooks, R. M. Size-selective hydrogenation of olefins bydendrimer-encapsulated palladium nanoparticles. J. Am. Chem. Soc.2001,123(28),6840-6846.
    78. Garcia-Martinez, J. C.; Crooks, R. M. Extraction of Au nanoparticles having narrow size distributionsfrom within dendrimer templates. J. Am. Chem. Soc.2004,126(49),16170-16178.
    79. Wilson, O. M.; Scott, R. W. J.; Garcia-Martinez, J. C.; Crooks, R. M. Synthesis, characterization, andstructure-selective extraction of1-3-nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles. J.Am. Chem. Soc.2005,127(3),1015-1024.
    80. Gomez, M. V.; Giuerra, J.; Velders, A. H.; Crooks, R. M. NMR Characterization of Fourth-GenerationPAMAM Dendrimers in the Presence and Absence of Palladium Dendrimer-Encapsulated Nanoparticles. J.Am. Chem. Soc.2009,131(1),341-350.
    81. Carino, E. V.; Kim, H. Y.; Henkelman, G.; Crooks, R. M. Site-Selective Cu Deposition on PtDendrimer-Encapsulated Nanoparticles: Correlation of Theory and Experiment. J. Am. Chem. Soc.2012,134(9),4153-4162.
    82. Rodionov, V.; Gao, H. F.; Scroggins, S.; Unruh, D. A.; Avestro, A. J.; Frechet, J. M. J. Easy Access toa Family of Polymer Catalysts from Modular Star Polymers. J. Am. Chem. Soc.2010,132(8),2570-+.
    83. Gitsov, I.; Wooley, K. L.; Fréchet, J. M. J. Novel Polyether Copolymers Consisting of Linear andDendritic Blocks. Angew. Chem. Int. Ed.1992,31(9),1200-1202.
    84. Yang, M.; Wang, W.; Yuan, F.; Zhang, X.; Li, J.; Liang, F.; He, B.; Minch, B.; Wegner, G. SoftVesicles Formed by Diblock Codendrimers of Poly(benzyl ether) and Poly(methallyl dichloride). J. Am.Chem. Soc.2005,127(43),15107-15111.
    85. Percec, V.; Wilson, D. A.; Leowanawat, P.; Wilson, C. J.; Hughes, A. D.; Kaucher, M. S.; Hammer, D.A.; Levine, D. H.; Kim, A. J.; Bates, F. S.; Davis, K. P.; Lodge, T. P.; Klein, M. L.; DeVane, R. H.; Aqad, E.;Rosen, B. M.; Argintaru, A. O.; Sienkowska, M. J.; Rissanen, K.; Nummelin, S.; Ropponen, J.Self-Assembly of Janus Dendrimers into Uniform Dendrimersomes and Other Complex Architectures.Science2010,328(5981),1009-1014.
    86. Istratov, V.; Kautz, H.; Kim, Y.-K.; Schubert, R.; Frey, H. Linear-Dendritic Nonionic Poly(propyleneoxide)—Polyglycerol Surfactants. ChemInform2003,34(34), no-no.
    87. Barriau, E.; Marcos, A. G.; Kautz, H.; Frey, H. Linear-hyperbranched amphiphilic AB diblockcopolymers based on polystyrene and hyperbranched polyglycerol. Macromol. Rapid Commun.2005,26(11),862-867.
    88. Wurm, F.; Schule, H.; Frey, H. Amphiphilic Linear-Hyperbranched Block Copolymers with LinearPoly(ethylene oxide) and Hyperbranched Poly(carbosilane) Block. Macromolecules2008,41(24),9602-9611.
    89. Hofmann, A. M.; Wurin, F.; Frey, H. Rapid Access to Polyfunctional Lipids with ComplexArchitecture via Oxyanionic Ring-Opening Polymerization. Macromolecules2011,44(12),4648-4657.
    90. Wilms, D.; Wurm, F.; Nieberle, J. r.; Bo hm, P.; Kemmer-Jonas, U.; Frey, H. HyperbranchedPolyglycerols with Elevated Molecular Weights: A Facile Two-Step Synthesis Protocol Based onPolyglycerol Macroinitiators. Macromolecules2009,42(9),3230-3236.
    91. Sunder, A.; Mülhaupt, R.; Frey, H. Hyperbranched Polyether Polyols Based on Polyglycerol:Polarity Design by Block Copolymerization with Propylene Oxide. Macromolecules1999,33(2),309-314.
    92. M ck, A.; Burgath, A.; Hanselmann, R.; Frey, H. Synthesis of Hyperbranched Aromatic Homo-andCopolyesters via the Slow Monomer Addition Method. Macromolecules2001,34(22),7692-7698.
    93. Holter, D.; Frey, H. Degree of branching in hyperbranched polymers.2. Enhancement of the DB:Scope and limitations. Acta Polym.1997,48(8),298-309.
    94. Holter, D.; Burgath, A.; Frey, H. Degree of branching in hyperbranched polymers. Acta Polym.1997,48(1-2),30-35.
    95.程海星超支化多臂共聚物的结构对其性能及自组装行为的影响规律研究.上海交通大学博士学位论文2010.
    96.麦亦勇超支化聚醚的合成、表征及自组装研究.上海交通大学博士学位论文2007.
    97.洪海燕响应性超支化多臂共聚物的可控合成及自组装研究.上海交通大学博士学位论文2009.
    98. Tokar, R.; Kubisa, P.; Penczek, S.; Dworak, A. Cationic polymerization of glycidol: coexistence of theactivated monomer and active chain end mechanism. Macromolecules1994,27(2),320-322.
    99. Magnusson, H.; Malmstr m, E.; Hult, A. Synthesis of hyperbranched aliphatic polyethers via cationicring-opening polymerization of3-ethyl-3-(hydroxymethyl)oxetane. Macromol. Rapid Commun.1999,20(8),453-457.
    100. Bednarek, M.; Biedron, T.; Helinski, J.; Kaluzynski, K.; Kubisa, P.; Penczek, S. Branched polyetherwith multiple primary hydroxyl groups: polymerization of3-ethyl-3-hydroxymethyloxetane. Macromol.Rapid Commun.1999,20(7),369-372.
    101. Malmstr m, E.; Hult, A. Kinetics of Formation of Hyperbranched Polyesters Based on2,2-Bis(methylol)propionic Acid. Macromolecules1996,29(4),1222-1228.
    102. Hawker, C. J.; Chu, F. Hyperbranched Poly(ether ketones): Manipulation of Structure and PhysicalProperties. Macromolecules1996,29(12),4370-4380.
    103. Saeki, S.; Kuwahara, N.; Nakata, M.; Kaneko, M. Upper and lower critical solution temperatures inpoly (ethylene glycol) solutions. Polymer1976,17(8),685-689.
    104. Matsuyama, A.; Tanaka, F. Theory of solvation-induced reentrant phase separation in polymersolutions. Phys. Rev. Lett.1990,65(3),341-344.
    105. Benkhira, A.; Bagassi, M.; Lachhab, T.; Rudatsikira, A.; Reibel, L.; Francois, J. Interactions ofethylene oxide/methylene oxide copolymers with sodium dodecyl sulphate. Polymer2000,41(20),7415-7425.
    106. Topp, M. D. C.; Dijkstra, P. J.; Talsma, H.; Feijen, J. Thermosensitive micelle-forming blockcopolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide). Macromolecules1997,30(26),8518-8520.
    107. Bromberg, L. E.; Ron, E. S. Temperature-responsive gels and thermogelling polymer matrices forprotein and peptide delivery. Advanced Drug Delivery Reviews1998,31(3),197-221.
    108. Virtanen, J.; Baron, C.; Tenhu, H. Grafting of poly(N-isopropylacrylamide) with poly(ethylene oxide)under various reaction conditions. Macromolecules2000,33(2),336-341.
    109. Lin, H. H.; Cheng, Y. L. In-situ thermoreversible gelation of block and star copolymers ofpoly(ethylene glycol) and poly(N-isopropylacrylamide) of varying architectures. Macromolecules2001,34(11),3710-3715.
    110. Maeda, Y.; Taniguchi, N.; Ikeda, I. Changes in the hydration state of a block copolymer ofpoly(N-isopropylacrylamide) and poly(ethylene oxide) on thermosensitive micellization in water.Macromol. Rapid Commun.2001,22(17),1390-1393.
    111. Guo, C.; Liu, H. Z.; Wang, J.; Chen, J. Y. Conformational structure of triblock copolymers byFT-Raman and FTIR spectroscopy. J. Colloid Interface Sci.1999,209(2),368-373.
    112. Guo, C.; Wang, J.; Liu, H. Z.; Chen, J. Y. Hydration and conformation of temperature-dependentmicellization of PEO-PPO-PEO block copolymers in aqueous solutions by FT-Raman. Langmuir1999,15(8),2703-2708.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700