用户名: 密码: 验证码:
核磁共振2D/3D地下水成像方法及其阵列式地面探测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地面核磁共振技术(MRS)在我国北方干旱和半干旱地区寻找地下水以及高效评价层状地下水资源等领域获得了广泛应用,然而,针对西南丘陵和喀斯特地区的裂隙水和岩溶水等复杂地下水探测,该方法仍存在成像精度低、探测分辨率低和工作效率低等问题。因此,发展新型的高精度核磁共振2D/3D地下水成像方法及高效高分辨率的地面MRS探测系统一直是该领域的迫切需求。本文针对国内外现有的同一线圈移动测量模式和分离线圈轮换测量模式的缺陷,首次提出了阵列线圈测量模式,仅用一次测量的结果就可代替分离线圈多次测量的结果,具有高效率,高分辨率和高覆盖率等优势。同时,针对裂隙水和岩溶水等非层状不均匀的复杂地下水,提出了高精度的2D和3D MRS含水量成像方法以及单弛豫和多弛豫时间T_2~*的2D成像方法。基于此,研制了具有多通道采集单元的阵列式地面MRS系统,最后给出了野外实验结果和应用实例。论文主要的研究工作及取得的成果如下:
     1、针对1D MRS忽略的线圈方向角度,引入旋转角度矩阵,解决了任意线圈方向角度和地磁场角度变化下的MRS正演计算问题,并仿真分析了线圈方向角度对2D测量信号的影响。
     2.针对现有2D MRS测量分辨率低和效率低的问题,提出快速高分辨率和高覆盖率的阵列线圈测量模式,借助奇异值分解(SVD)进行分辨率半径研究,发现阵列线圈一次测量就可实现2D高分辨率探测,长方形发射线圈和半覆盖型接收线圈组合是最优的测量模式。
     3.针对目前3D测量效率低和覆盖面积有限的缺点,提出了阵列线圈对角线移动测量模式,探测分辨率显著优于同一线圈,用较少的测量次数可实现较大覆盖面积的高分辨率3D探测。
     4.针对目前2D地下水成像方法中均匀网格数量大,成像精度低,以及算法不稳定等问题,提出了以分辨率半径为尺度函数的2D空间非均匀剖分方法,结合差异准则和L曲线的正则化参数双重选择方法,目标函数线性化及非约束空间转换的Jacobain变换方法,实现了基于MRS信号初始振幅的高精度2D含水量成像。
     5.通过对2D复杂地下水模型的仿真和初始振幅反演,对比了阵列线圈、分离线圈和同一线圈3种测量模式的成像结果,在较低信噪比情况下,长方形阵列线圈半覆盖型测量模式同样具有较高的分辨率,与2D MRS分辨率理论分析结论一致。
     6.针对基于MRS信号包络的QT反演中无法存储多弛豫灵敏度核函数的问题,提出了两种解决方法:一种是简化为单弛豫信号的2D QT反演,实现了含水量和弛豫时间T*2的双参数成像,成像结果更稳定;另一种是基于含水单元的2D Cell反演,实现含水量和多弛豫时间分布的同时成像。
     7.针对目前基于均匀网格的3D含水量成像方法精度低和含水量误差大的问题,采用目标体和围岩区域不同密度的非均匀网格剖分,实现了基于MRS信号初始振幅的3D含水量成像方法,通过对仿真的复杂地下水模型和德国Einersberger湖的实测数据,验证了3D成像方法的高精度定位和定量效果。
     8.根据现有单通道地面MRS系统的组成结构和问题,研发了适用于阵列线圈测量模式的接收单元和控制软件,通过改进快速消耗电路使死区时间由原来的38ms减小到15ms,改进信号调理电路和采集电路提高数据分辨率,采用一主多从的结构和手拉手的连接方式实现了高精度的同步控制和高速数据传输等关键技术,使阵列式地面MRS系统的技术指标与国际最先进的MRS仪器基本持平。
     通过对以上内容的研究,完成了对核磁共振2D/3D地下水成像方法及其阵列式地面探测系统的研究,主要的创新工作在于:
     首次提出的阵列线圈测量模式,一次测量可实现2D剖面高分辨率探测,对角线移动测量可以实现3D大覆盖面积的高分辨率探测,解决了传统MRS的测量效率低和分辨率低的问题。
     提出了基于分辨率半径的地面MRS探测性能分析方法,对比得到长方形阵列线圈半覆盖型测量模式具有最优的探测分辨率,并根据分辨率半径实现了2D/3D空间的非均匀剖分,为实现地下水高精度成像提供了基础。
     提出了差异准则和L曲线双重选择正则化参数,Jacobain变换实现目标函数线性化和非约束空间转换等算法,解决了目前反演算法不稳定、非线性和变量约束等问题,实现了2D/3D地下水高精度的含水量成像,不仅可以判断非层状不均匀含水构造的位置和规模,而且可以精确计算含水总量。
     针对MRS信号包络的单弛豫和多弛豫特性,提出了含水量和单弛豫时间双参数成像的2D QT反演,反演结果更稳定;以及基于含水单元概念的Cell反演,实现多孔隙结构的含水构造含水量和多弛豫时间同时成像。
     本文研究的地下水成像方法和地面MRS系统已在蒙古国Halatura铁矿地下水源探测、中国辽宁桓仁崔家村堤坝渗漏探测和安徽黄山阳台村滑坡稳定性探测等工程实践中得到应用,取得了理想的探测效果和地下水成像结果,验证了方法和系统的有效性和实用性。本文提出的地下水成像方法和阵列式地面MRS系统,将为我国西南地区及复杂地质环境下的2D/3D地下水探测,提供有力的技术支撑。
Magnetic Resonance Sounding (MRS or Surface NMR) is widely applied in the fielddetecting for groundwater exploration and high efficient evaluation of groundwater resourcesin arid and semi-arid regions of northern China. However, for the groundwater in thecomplicated geological condition, like fissure water in the bedrock and karst water in thesouthwest of China, MRS technology has many problems on low imaging precision, lowdetecting resolution and also low operating efficiency. Therefore, development of newhigh-precision2D/3D imaging method and high-resolution surface detection system has beenthe urgent demand in the field of MRS technology. Due to the defects of existed offsetmeasurement with coincident and separated loop, a new measurement with array loop isproposed in this thesis, which can replace the result of multiple measurements with separatedloops by only one measurement, and has the advantage of high-efficiency, high-resolutionand high-coverage. For the complicated groundwater in non-layered and non-uniform space,high-precision2D and3D imaging methods of water content as well as relaxation timeT*2are presented. On the basis of MRS imaging, array surface MRS system with multi-channelacquisition units is developed, and the results of field experiments and application cases aredescribed. The main research work and achieved results of this thesis are as follows:
     1. As1D MRS ignores the direction angle of loop layout, I introduce the rotation anglematrix to solve the MRS forward calculation problem with arbitrary angles of loop directionand the geomagnetic field. Moreover, I analyze the influence of the loop profile directionangel in2D measurements by simulation models.
     2. For the low resolution and efficiency of the existed2D measurements, I propose anarray loop configuration to carry out the fast and high-coverage measurement in2D profile.By analyzing the resolution radius, I conclude that array loop configuration can achieve2Dhigh-resolution detection by only one measurement, and the combination of rectangulartransmitter loop and half-over-lapping receiver loops is the optimal configuration.
     3. For the low efficiency and limited coverage in3D measurement, I take advantageof the diagonal measurement with array loops, which significantly improves the resolution inrespect to the coincident loop. It can detect a large coverage area of3D groundwater in highresolution with a small number of measurements.
     4. To the issues of large number meshes, low precision imaging and instability ofalgorithm, I propose a non-uniform mesh generation mouthed based on the resolution radius,combine with discrepancy principle and L-curve method to select the regularization parameter,and apply Jacobain transform in objective function linearization and non-constraint spaceconversion. Finally, the stability high-precision MRS imaging of2D water content is solvedby the initial value inversion (IVI).
     5. By simulating and inverting a complicated groundwater model by IVI, I contrastimaging results of coincident, separated and array loop configurations, and find therectangular array loop in half-over-lapping measurement mode provides a high resolution of2D MRS even in the case of low signal-to-noise (SNR). The conclusion consists with thetheoretical analyses of2D resolution studies.
     6. Due to the storage of2D sensitivity kernels with multi-relaxation process in QTinversion using complete envelop data, I offer two solutions. One is to simplify the kernel inmono-relaxation process, and the imaging with two parameters, water content and singlerelaxation time, is inverted. In addition, the inversion results are more stable than IVI. Theother is base on the2D water cell inversion, which can achieve the water content andmulti-relaxation times imaging.
     7. For the low precision in the3D imaging based on uniform meshes and high-errorestimation of water volume, I use the non-uniform meshes with different density in the targetand the surrounding regions, and accomplish the3D water content imaging based on IVI. Thesummation and filed data from Einersberger Lake in Germany is tomography inverted inhigh-precision3D image, and the water volume is quantified with high accuracy.
     8. According to the composition and defects of existing single-channel surface MRSsystem, I develop multi-channel receiver units and control software for array loopconfiguration. By improving the rapid consumption circuit, the dead time of system reducesfrom38ms to15ms, and the data resolution of acquisition circuit and the signal conditioningcircuit are also improved. The structure of master with multi-client and hand-by-handconnection is used to achieve the high-precision synchronization control and high-speed datatransmission. These key technologies make the new system to catch up the most advantageinstrument in the world. Based on the study of the above contents, I complete the development of2D/3D MRSgroundwater imaging method and its array surface detection system. The main innovation liesas follow:
     The array loop configuration I proposed can achieve high-resolution profiledetection by one measurement in2D, and large coverage area detection by diagonaloffset measurement in3D, which solves the low-efficiency and low-resolutionproblem of traditional MRS measurement.
     The resolution radius I proposed is useful for the evaluation method of surface MRSdetection, and after the contras, I find the rectangular array loop in half-over-lappingmeasurement mode provides the highest resolution in2D. Based on the resolutionradius, I also general the non-uniform meshes in2D and3D for high-precisionimaging.
     I combine the regularization parameter selection methods with discrepancy principleand L-curve method and apply Jacobain transform in objective function linearizationand non-constraint space conversion to realize the stability high-precision MRSimaging of2D and3D water content by the initial value inversion (IVI).
     To the single relaxation and multi-relaxation properties of MRS signal envelope, Iimprove the QT inversion and propose Cell inversion to image the water content andalso relaxation timeT*2.
     The MRS imaging method and surface MRS system have been applied in engineeringpractice, like the groundwater source detection for Halatura iron ore in Mongolia, the damleakage detection in Huanren, Liaoning province of China, and the landslide stabilitydetection in Yantaicun Landsilde, Anhui province of China. The results of2D groundwaterimaging are consisting with the other geophysics methods, verifying the effectiveness andpracticality of the method and system. It provides a strong technical support for groundwaterexploration in southwest of China and complicated geological environment.
引文
[1]中华人民共和国水利部.全国水利发展第十个五年计划和2010年规划[EB/OL].2001,8.http://ghjh.mwr.gov.cn/xxyj/ldjh/200201/P020091022643420008502.doc.
    [2]新浪网.西南地区旱灾[N/OL].2010,3.http://news.sina.com.cn/z/xngh/.
    [3]人民网.国内近年旱情一览[N/OL].2010,3.http://yn.people.com.cn/GB/zt/228456/index.html.
    [4]林君.核磁共振找水技术的研究现状与发展趋势[J].地球物理学进展,2010,25(2):681-691.
    [5]陆云祥,陈建荣,陈华根,等.我国多参数激电测深找水应用综述[J].地球物理学进展,2011,26(4):1448-1456.
    [6]底青云,石昆法,王妙月,等.CSAMT法和高密度电法探测地下水资源[J].地球物理学进展,2001,16(3):55-57.
    [7] SCHIROV M, LEGCHENKO A, CREER G. New Direct Non-Invasive GroundwaterDetection Technology for Australia [J]. Exploration Geophysics,1991,22(2):333–338.
    [8]林君,蒋川东,段清明,等.复杂条件下地下水磁共振探测与灾害水源探查研究进展[J].吉林大学学报(地球科学版),2012,42(5):1560-1570.
    [9]林君,段清明,王应吉.地面核磁共振仪器[M].北京:科学出版社,2011.
    [10] YARAMANCI U, LANGE G, KN DEL K. Surface NMR within a Geophysical Studyof an Aquifer at Haldensleben (Germany)[J]. Geophysical Prospecting,1999,47(6):923–943.
    [11] LEGCHENKO A, VALLA P. A Review of the Basic Principles for Proton MagneticResonance Sounding Measurements [J]. Journal of Applied Geophysics,2002,50(1-2):3-19.
    [12] LEVITT M H. Spin Dynamics-Basics of Nuclear Magnetic Resonance [M]. Chichester:John Wiley&Sons, LTD,2002.
    [13] CALLAGHAN P. Principles of Nuclear Magnetic Resonance Microscopy [M], NewZealand: Oxford University Press,2007.
    [14] GRUNEWALD E, KNIGHT K. The effect of pore size and magnetic susceptibility onthe surface NMR relaxation parameter T2*[J]. Near Surface Geophysics,2011,9,169-178.
    [15] BLüUMICH B, PERLO J, CASANOVA F. Mobile single-sided NMR [J]. Progress inNuclear Magnetic Resonance Spectroscopy,2008,52,197-269.
    [16] WEICHMAN P B, LAVELY E M, RITZWOLLER M H. Theory of surface nuclearmagnetic resonance with applications to geophysical imaging problems [J]. PhysicalReview E,2000,62,1290-1312.
    [17] HERTRICH M. Imaging of groundwater with nuclear magnetic resonance [J]. Progressin Nuclear Magnetic Resonance Spectroscopy,2008,53,227-248.
    [18] HOULT D I. The principle of reciprocity in signal strength calculations–Amathematical guide [J]. Concepts in Magnetic Resonance,2000,12,173-187.
    [19] GUILLEN A, LEGCHENKO A. Application of Linear Programming Techniques to theInversion of Proton Magnetic Resonance Measurements for Water Prospecting from theSurface [J]. Journal of Applied Geophysics,2002,50(1-2):149-162.
    [20] LEGCHENKO A, SHUSHAKOV O A. Inversion of surface NMR data [J]. Geophysics,1998,63,75-84.
    [21] GüNTHER T, MüLLER-PETKE M. Hydraulic properties at the North Sea island ofBorkum derived from joint inversion of magnetic resonance and electrical resistivitysoundings [J]. Hydrology and Earth System Sciences,2012,16,3279-3291.
    [22] MüLLER-PETKE M, YARAMANCI U. QT inversion-Comprehensive use of thecomplete surface NMR data set [J]. Geophysics,2010,75, WA199-WA209.
    [23] VOUILLAMOZ J M, FAVREAU G, MASSUEL S, et al. Contribution of MagneticResonance Sounding to Aquifer Characterization and Recharge Estimate in SemiaridNiger [J]. Journal of Applied Geophysics,2008,64(3-4):99–108.
    [24] RYOM-NIELSEN M, HAGENSEN T F, CHALIKAKIS K, et al. Comparison ofTransmissivities from MRS and Pumping Tests in Denmark [J]. Near SurfaceGeophysics,2011,9(2):211-223.
    [25] VARIAN R H. Ground liquid prospecting method and apparatus: US Patent,3019383
    [P],1962-01-30.
    [26] SEMENOV A. NMR hydroscope for water prospecting [C]. Proceedings of the Seminaron Geotomography. Indian Geophysical Union, Hyderabad,1987,66-67.
    [27] SEMENOV A, SCHIROV M, LEGCHENKO A, et al. Device for measuring theparameter of underground mineral deposits: Great Britain Patent2198540B [P].1987-3-12.
    [28] SCHIROV M, LEGCHENKO A, CREER G. A new direct noninvasive groundwaterdetection technology for Australia [J]. Exploration Geophysics,1991,22:333-338.
    [29] SCHIROV M, GOLDMAN M, et al. Application of integrated NMR-TDEM method inground water exploration in Israel [J]. Journal of Applied Geophysics,1994,31:27-52.
    [30] IRIS Instruments. NIMUS [EB/OL]. http://www.iris-instruments.com/index.html
    [31] RASIC-RESEARCH. NMR [EB/OL]. http://www.radic-research.homepage.t-online.de/
    [32] VISTA CLARA INC. GMR [EB/OL]. http://www.vista-clara.com/instruments/gmr/
    [33]潘玉玲,张昌达.地面核磁共振找水理论和方法[M].北京:中国地质大学出版社,2000.
    [34]袁照令,潘玉玲,万乐,等.核磁共振找水方法的应用效果[J].地球科学—中国地质大学学报,2000,25(2):132-158.
    [35]李振宇,潘玉玲,张兵等.利用核磁共振方法研究水文地质问题及应用实例[J].水文地质工程质,2003.4:50-54.
    [36]潘玉玲,李振宇,张兵,等.核磁共振技术在秦始皇陵考古中的应用效果[J].工程地球物理学报,2004,1(4):299-303.
    [37]张小华,林君,王应吉,等.地面核磁共振(NMR)找水仪发射机的研制[J].仪器仪表学报,2006,27(7):689-692.
    [38]王中兴.地面核磁共振找水仪关键技术的研究[D].长春:吉林大学.2009.
    [39]林君,段清明,王应吉,等.核磁共振与瞬变电磁联用仪及其方法:中国,200610017226[P],2007-3-28.
    [40]尚新磊.TEM-MRS联用地下水探测关键技术研究[D].长春:吉林大学.2010.
    [41]蒋川东,林君,秦胜伍,等.磁共振方法在堤坝渗漏探测中的实验[J].吉林大学学报:地球科学版,2012,42(3):858-863.
    [42] GIRARD J F, BOUCHER M, LEGCHENKO A, et al.2D Magnetic ResonanceTomography Applied to Karstic Conduit Imaging [J]. Journal of Applied Geophysics,2007,63(3-4):103–116.
    [43] HERTRICH M, BRAUN M., GüNTHER T., et al. Surface Nuclear Magnetic ResonanceTomography [J]. IEEE Transactions On Geoscience And Remote Sensing,2007,45,3752-3759.
    [44] HERTRICH M, BRAUN M, YARAMANCI U. Magnetic resonance soundings withseparated transmitter and receiver loops [J]. Near Surface Geophysics,2005,3(3):141-154.
    [45] HERTRICH M, GREEN A G, BRAUN M,et al. High-resolution Surface NMRTomography of Shallow Aquifers Based on Multioffset Measurements [J]. Geophysics,2009,74(6):47–59.
    [46] WALSH D O. Multi-channel Surface NMR Instrumentation and Software for1D/2DGroundwater Investigations [J]. Journal of Applied Geophysics,2008,66(3-4):140-150.
    [47] LECHENKO A, EZERSKY M, CAMERLYNCK C, et al. Locating water-filled karstcaverns and estimating their volume using magnetic resonance soundings [J].Geophysics,73(5):51-61.
    [48] PERTTU N, PERSSON L, ERLSTROM M, et al. Magnetic resonance sounding andradiomagnetotelluric measurements used to characterize a limestone aquifer in Gotland,Sweden [J]. Journal of Hydrology,2012,424-425:184-195.
    [49] LECHENKO A, DESCLOITRES M, VINCENT C, et al. Three-dimensional magneticresonance imaging for groundwater [J]. New Journal of Physics,2011,13(4):025022
    [50] VINCENT C, DESCLOITRES M, GARAMBOIS S, et al. Detection of a subglacial lakein Glacier de Tête Rousse (Mont Blanc area)[J]. Journal of Glaciology,2012,58(211):866-878.
    [51] LECHENKO A, VINCENT C, BALTASSAT J-M, et al. Monitoring of wateraccumulation in the Tête Rousse glacier (French Alps) using3D magnetic resonanceimaging [C].4th MRS Workshop,2012,
    [52]蒋川东,林君,段清明,等.二维阵列线圈核磁共振地下水探测理论研究[J].地球物理学报,2011,54(11):2973-2983.
    [53] DLUGOSCH R, MüELLER-PETKE M, GüENTHER T, et al. Assessment of thepotential of a new generation of surface NMR instruments [J]. Near Surface Geophysics,2011,9,89-102.
    [54] DALGAARD E, AUKEN E, LARSEN J. Adaptive noise cancelling of multichannelmagnetic resonance sounding signals [J]. Geophysical Journal International,2012,191(1):88-100.
    [55] LEGCHENKO A, VALLA P. Removal of power-line harmonics from proton magneticresonance measurements [J]. Journal of Applied Geophysics,2003,53:103-120
    [56] JIANG C D, LIN J, DUAN Q M, et al. Statistical Stacking and Adaptive NotchFilter to Remove High-level Electromagnetic Noise from MRS Measurements [J].Near Surface Geophysics,2011,9(5):459-468.
    [57] RADIC T. Improving the Signal-to-Noise Ratio of Surface NMR Data Due to theRemote Reference Technique [C]. Presented at the12th European Meeting ofEnvironmental and Engineering Geophysics, Helsinki, Finland,2006.
    [58] MüLLER-PETKE M, HILLER T, HERRMANN R, et al. Reliability and limitations ofsurface NMR assessed by comparison to borehole NMR [J]. Near Surface Geophysics,2011b,9,123-134.
    [59] MüLLER-PETKE M, YARAMANCI U. Resolution Studies for Magnetic ResonanceSounding (MRS) Using the Singular Value Decomposition [J]. Journal of AppliedGeophysics,2008,66(3-4):165-175.
    [60] GIRARD J F, LEGCHENKO A, BOUCHER M, et al. Numerical Study of the Variationsof Magnetic Resonance Signals Caused by Surface Slope [J]. Journal of AppliedGeophysics,2008,66(3-4):94-103.
    [61] BRAUN M, HERTRICH M, YARAMANCI U. Study on Complex Inversion ofMagnetic Resonance Sounding Signals [J]. Near Surface Geophysics,2005,3(3):155–163.
    [62]孙淑琴.地面核磁共振探测地下水数值模拟与影响因素分析[D].长春:吉林大学.2005.
    [63] LEGCHENKO A, EZERSKY M, GIRARD J-F, et al. Interpretation of MagneticResonance Sounding in Rocks with High Electrical Conductivity [J]. Journal of AppliedGeophysics,2008,66(3-4):118-127.
    [64] LEGCHENKO A, VOUILLAMOZ J M, ROY J. Application of the magnetic resonancesounding method to the investigation of aquifers in the presence of magnetic materials[J]. Geophysics,2010,75, L91-L100.
    [65] WALBRECKER J O, HERTRICH M, GREEN A G. Accounting for relaxation processesduring the pulse in surface NMR data [J]. Geophysics,2009,74, G27-G34.
    [66] GRUNEWALD E, KNIGHT R. Nonexponential decay of the surface-NMR signal andimplications for water content estimation [J]. Geophysics,2012,77, EN1-EN09.
    [67] MOHNKE O, YARAMANCI U. Forward modeling and inversion of MRS relaxationsignals using multi-exponential decomposition [J]. Near Surface Geophysics,2005,165-185
    [68] MOHNKE O, YARAMANCI U. Pore size distributions and hydraulic conductivities ofrocks derived from Magnetic Resonance Sounding relaxation data usingmulti-exponential decay time inversion [J]. Journal of Applied Geophysics,2008,66,73-81.
    [69] WALBRECKER J O, BEHROOZMAND A. A. Surface-NMR measurements of thelongitudinal relaxation time T1in a homogeneous sand aquifer in Skive, Denmark [J].Journal of Applied Geophysics,2012,87,46-52.
    [70] KAMHAENG W, STEN-AKE E. Direct and Indirect Methods for GroundwaterInvestigations: A Case-study of MRS and VES in the Southern Part of Sweden [J].Journal of Applied Geophysics,2008,66(3-4):104-117.
    [71] VOUILLAMOZ J M, CHATENOUX B, MATHIEU F, et al. Efficiency of Joint Use ofMRS and VES to Characterize Coastal Aquifer in Myanmar [J]. Journal of AppliedGeophysics,2007,61(2):142–154.
    [72] GOLDMAN M, RABINOVICH B,RABINOVICH M, et al. Application of theIntegrated NMR-TDEM Method in Groundwater Exploration in Israel [J].Journal of Applied Geophysics,1994,31(1-4):27-52.
    [73]翁爱华,李周波,王雪秋.层状导电介质中地面核磁共振影响特征理论研究[J].地球物理学报,2004,47(1):156-163.
    [74]翁爱华,王雪秋.高精度地面核磁共振数据正演计算[J].吉林大学学报(地球科学版),2007,37(3):621-623.
    [75]翁爱华,李舟波,王雪秋.地表大回线源在任意层状介质中产生磁场的计算。物探化探计算技术,2000,22(3):245-249.
    [76] COMSOL MULTIPHYSICS. COMSOL [EB/OL]. http://www.comsol.com/.
    [77] LEGCHENKO A, VALLA P. Processing of Surface Proton Magnetic Resonance SignalsUsing Non-linear Fitting [J]. Journal of Applied Geophysics,1998,39(2):77-83.
    [78] Abragam A. Principles of nuclear magnetism [M]. New Zealand: Oxford UniversityPress.1983.
    [79] HERTRICH M, YARAMANCI U. Complex transient Spin dynamic in MRSapplications [C]. Proceedings of the2nd International Workshop on MRS, Orl′eans,France,2003a.141–144.
    [80] LEGCHENKO A. Magnetic Resonance Sounding: Enhanced Modeling of a Phase Shift[J]. Applied Magnetic Resonance,2004.25,621–636.
    [81] MENKE W. Geophysical data analysis: Discrete inverse theory [M]. San Diego:Academic Press Inc,1989.
    [82] ASTER R M, BROCHERS B, THURBER C. Parameter Estimation and InverseProblems [M]. Elsevier Academic Press,2004.
    [83] FRIEDEL S. Resolution, stability and efficiency of resistivity tomography estimatedfrom a generalized inverse approach [J]. Geophysical Journal International,2003,153;305-316.
    [84]戴苗.地面核磁共振找水正反演研究[D].中国地质大学(武汉),硕士论文,2008.
    [85] MOHNKE O, YARAMANCI U. Smooth and block inversion of surface NMRamplitudes and decay times using simulated annealing [J]. Jounral of AppliedGeophysics,2002,5:163-177.
    [86] GUILLEN A, LEGCHENKO A. Inversion of surface nuclear magnetic resonance databy an adapted Monte Carlo method applied to water resource characterization[J]. Journalof Applied Geophysics,2002,50:193-205.
    [87] PERSSION P O, STRANG G. A Simple Mesh Generator in MATLAB [J]. SIAMReview,200446(2), pp.329-345.
    [88] PERSSON P O. Mesh Generation for Implicit Geometries [D]. Ph.D. thesis, Departmentof Mathematics, MIT,2004.
    [89] CONSTABLE S C, PARKER R L, CONSTABLE C G. Occam's Inversion: a practicalinversion method for generating smooth models from EM sounding data [J]. Geophysics,1987,52,289-300.
    [90] GüNTHER T, RüCKER C, SPITZER K. Three-dimensional modelling and inversion ofdc resistivity data incorporating topography—II. Inversion [J]. Geophysical JournalInternational,2006,166(2):506-517.
    [91] FARQUHARSON C G, OLDENBURG D W. A comparison of automatic techniques forestimating the regularization parameter in non-linear inverse problems. GeophysicalJournal International,2004,156:411–425.
    [92] LI Y, OLDENBURG D W.3-d inversion of dc resistivity data using an l-curve criterion.In69th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, pages,1999:251–254.
    [93] WAHBA G. Spline models for observational data [M]. Society for industrial and appliedmathematics,1990.
    [94] HANSEN P C, SEKII T, SHIBAHASHI H. The modified truncated SVD method forregularization in general form [J]. SIAM Journal on Scientific and Statistical Computing,1992,13(5):1142-1150.
    [95] VOGEL C R. Computational methods for inverse problems [M]. Siam,2002.;Farquharson,2004
    [96] FARQUHARSON C G, OLDENBURG D W. A comparison of automatic techniques forestimating the regularization parameter in non‐linear inverse problems[J]. GeophysicalJournal International,2004,156(3):411-425.
    [97] MOHNKE O, YARAMANCI U. Forward modeling and inversion of MRS relaxationsignals using multi-exponential decomposition [J]. Near Surface Geophysics,2005,3:165-185.
    [98]王培珍,杜培明,陈维南.一种用于多阈值图象自动分割的混合遗传算法[J].中国图象图形学报,2000,5(1):44-47.
    [99]司呈勇,杨东升,田红军,等.一种改进的模拟退火粒子群算法在有约束函数优化问题中的应用[J].中南大学学报(自然科学版),2011,42:176.
    [100] MüLLER-PETKE M, DLUGOSCH R, YARAMANCI U. Evaluation of surfacenuclear magnetic resonance-estimated subsurface water content [J]. New Journal ofPhysics,2011,13:095002.
    [101]陶向华,袁丽颖,王复明,等.探地雷达(GPR)在路面工程质量检测中的应用[J].Journal Zhengzbou Unive-ty of Technology,2001,500:200l.
    [102]荣亮亮.多匝线圈核磁共振找水技术研究[D].长春:吉林大学.2009.
    [103]林君,荣亮亮,段清明等.IGBT桥路及驱动保护电路检测装置:中国,200810051520.X [P],2009-4-22.
    [104]荣亮亮,王中兴,林君等.核磁共振发射波形质量评估及影响因素分析[J].仪器仪表学报,2010,31(2):442-448.
    [105]李珊珊.阵列式核磁共振找水仪控制软件系统研制[D].吉林大学硕士论文.2012.
    [106]林君,荣亮亮,王中兴,等.地面核磁共振找水仪器系统检测、标定装置及检测方法:中国,200810050579.7[P],2008-4-9.
    [107]王中兴,荣亮亮,林君.地面核磁共振找水信号中的奇异干扰抑制[J].吉林大学学报:工学版,2009,39(5):1282-1287.
    [108]王煜琦.核磁共振找水仪阵列式接收机研制[D].吉林大学硕士论文.2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700