用户名: 密码: 验证码:
吉林省中东部地区侏罗纪钼矿床的地质、地球化学特征与成矿机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吉林省中东部地区是我国重要内生钼金属成矿区,继新中国成立初期发现超大型大黑山钼矿床以来,近十年来再度相继发现并勘探了季德屯、大石河大型斑岩型钼矿,福安堡、一心屯、刘生店、东风等中型钼矿以及小型钼矿6处,并发现30余处矿点、矿化点。截止2008年累计探明资源储量200余万吨,已成为我国第二大钼矿资源地和被关注与研究的热点地区。为了深入揭示该区钼矿的成矿规律和资源潜力,本论文在前人研究成果基础上,开展了各类钼矿床的矿床地质、流体性质、矿床地球化学和成岩成矿年代学研究,深入揭示了成岩成矿时代、成矿专属性、动力学背景,反演了成岩成矿机理,建立了成岩成矿模式和动力学模型,取得的主要成果与进展如下。
     1.通过对研究区各类内生钼矿床的矿床地质特征研究,将该区内生钼矿床划分为斑岩型、接触交代热液型和中温热液石英脉型三种成因类型。斑岩型钼矿床矿体主要呈不规则状、透镜状,产于二长花岗(斑)岩或花岗闪长(斑)岩的岩体内,围岩蚀变主要有钾化、硅化、绢云母化、绿泥石化及碳酸盐化等,矿化经历了石英-黄铁矿阶段(Ⅰ)、石英-磁黄铁矿-黄铁矿阶段(Ⅱ)、石英-辉钼矿阶段(Ⅲ)、石英-多金属硫化物阶段(Ⅳ)和石英-碳酸盐阶段(Ⅴ)五个阶段。中温热液石英脉型钼矿床矿体以脉状为主,产在花岗岩的断裂体系中,围岩蚀变主要有硅化、绢云母化和钾化等,矿化基本经历了无矿石英脉阶段(Ⅰ)、石英-辉钼矿-黄铁矿阶段(Ⅱ)和石英-碳酸盐阶段(Ⅲ)三个阶段;接触交代热液型钼矿床矿体以脉状、扁豆状和透镜状为主,产于花岗岩岩体与古生代地层接触带上,围岩蚀变主要为绿泥石化、绿帘石化、矽卡岩化、绢云母化、碳酸盐化、硅化等,矿化基本经历了干矽卡岩阶段(Ⅰ)、湿矽卡岩阶段(Ⅱ)、石英-辉钼矿阶段(Ⅲ)、石英-多金属硫化物阶段(Ⅳ)和石英-碳酸盐阶段(Ⅴ),即:两期五个阶段。三类矿床之间具有明显的时空性,常构成斑岩或中温热液石英脉-接触交代成矿系统。
     2.矿床的矿物流体包裹体研究揭示,斑岩型钼矿床以气液两相和含子矿物三相包裹体为特征,各矿化阶段的均一温度分别为>420~400℃、360~350℃、340~230℃、220~210℃、180~160℃,盐度依次为>41.05%~9.8%NaCleq、38.16%~4.48%NaCleq、35.78%~4.49%NaCleq、7.43%NaCleq、7.8%~9.5%NaCleq;接触交代热液型钼矿床主要发育气液两相包裹体、少量含CO_2三相包裹体,各矿化阶段均一温度分别为>337~280℃、260~200℃、190~101℃,盐度分别为>18.5%~9.3%NaCleq、20.5%~9.98%NaCleq、22.9%~7.33%NaCleq;中温热液石英脉型钼矿床主要发育气液两相包裹体,各矿化均一温度分别为>330~300℃、280~170℃、160~120℃,盐度分别为>12.07%~8.81%NaCleq、9.86%~3.37%NaCleq、9.21%~4.63%NaCleq。
     3.将流体测温与流体包裹体气相成分分析和氢-氧同位素地球化学特征相结合,进一步揭示斑岩型钼矿床的初始流体为富CO_2和少量CH_4、N_2、H_2S的CO_2-H2O-NaCl多相岩浆流体体系,成矿晚期有大气降水混入;中温热液石英脉型钼矿床成矿初始流体为H2O-CO_2-NaCl多相岩浆流体,成矿阶段亦有大气降水加入;接触交代热液型钼矿床初始流体为中高温、中高盐度含CO_2、少量CH_4、N_2的H2O-CO_2-NaCl岩浆流体,主成矿阶段有大气降水混合。初步得出斑岩型钼矿床含矿流体成矿过程发生了强烈的流体不混溶作用;而中温热液石英脉型和接触交代热液型钼矿床流体演化过程中发生了混合作用。
     4.成岩成矿年代学研究表明,研究区钼矿床的成岩成矿主要发生在200~165Ma之间;其中,斑岩型矿床成矿作用发生在186~167Ma,与成矿密切相关的花岗岩为花岗闪长(斑)岩和二长花岗(斑)岩,成矿发生在岩浆演化期后(189~167Ma);中温热液石英脉型矿床成矿作用发生在176.4Ma,成矿与中侏罗世二长花岗岩岩浆活动关系密切;接触交代热液型矿床形成于196.6Ma,成矿与早侏罗世岩浆活动、庙岭组碳酸盐类岩石及碎屑岩关系密切。
     5.上述与成矿密切的花岗杂岩的元素地球化学特征揭示,与斑岩型钼床有关的花岗闪长(斑)岩-二长花岗(斑)岩为高硅、高铝、富碱、准铝质/弱过铝质的高钾钙碱性系列(SiO_2=62.59~73.5%,Na_2O=2.61~5.38%,K_2O=3.03~5.74%,K_2O/Na_2O=0.81~2.17,A/CNK=0.92~1.22,A/NK=1.14~1.64),富集Rb、Ba、Th、K等大离子亲石元素,亏损Nb、Ta、P等高场强元素,具有弱的负Eu异常、强烈稀土分馏为特征(其∑REE=100.42~154.27ppm,LREE/HREE=10.91~16.52,(La/Yb)N=1.49~14.56,δEu=0.85~1.08);与中温热液石英脉型钼矿床成矿相关的二长花岗岩为高硅、高铝、富碱、弱过铝质的高钾钙碱性系列(SiO_2=76.47~76.6%,均值为76.54%,Na_2O=3.15~3.17%,K_2O=5.35~5.42%,K_2O/Na_2O=1.68~1.72,A/CNK=1.01~1.02,A/NK=1.12~1.13),富集大离子亲石元素,亏损高场强元素,具有明显的负Eu异常、强烈稀土分馏为特征(其∑REE=91.43~99.22ppm,LREE/HREE=14.9~15.32,(La/Yb)N=4.68~7.94,δEu=0.5);与接触交代热液型钼矿床成矿相关的花岗闪长岩为高硅、高铝、富碱的准铝质/弱过铝质的钙碱性系列(SiO_2=63.98~71.14%,Na_2O=4.02~4.76%,K_2O=2.11~4.29%,K_2O/Na_2O=0.52~0.95,均值为0.71,A/CNK=0.99~1,A/NK=1.21~1.81);富集Rb、Ba、Th、K等大离子亲石元素,亏损Nb、Ta、P等高场强元素,具有弱的负Eu异常、强烈稀土分馏为特征(其∑REE=128.24~159.48ppm,LREE/HREE=12.8~15.41,(La/Yb)N=17.26~24.01,δEu=0.99~1.04)。
     6.与成矿密切的花岗杂岩的Sr-Nd-Pb同位素地球化学特征显示,与斑岩型钼床成矿密切的花岗闪长(斑)岩-二长花岗(斑)岩的(~(87)Sr/~(86))i、εNd(t)值分别为0.70404~0.70554、-0.9~2.4,~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(2040Pb分别为18.4576~19.2028,15.5623~15.6144,38.2591~38.8874;与接触交代热液型钼矿床成矿相关的花岗岩闪长岩的(87Sr/86)i、εNd(t)值分别为0.70413~0.70474、3.3~3.6,~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(2040Pb分别为18.5199~18.6146,15.5698~15.5805,38.3686~38.4782;与中温热液石英脉型钼矿床成矿相关的二长花岗岩的(~(87)Sr/~(86))i、εNd(t)值分别为0.70656~0.70721、1.6~1.8,~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(204)Pb分别为18.6488~18.6631,15.5884~15.5922,38.6708~38.6762。三类矿床均具有较低的初始锶和高初始钕的特征,表明与成矿有关的花岗岩经历了壳幔混合作用。
     7.将成岩成矿年代、Sr-Nd同位素、含矿流体、物源区属性相结合,进一步厘定斑岩型、接触交代热液型、中温热液石英脉型钼矿床的成矿热动源为古太平洋板块俯冲过程中流体交代元古代次生岩石圈地幔发生部分熔融形成的玄武质岩浆。其中,斑岩型矿床成矿过程至少有2种:第一种为早侏罗世玄武质岩浆以底侵作用诱发下地壳熔融形成岩浆房,继而岩浆发生分异结晶作用,形成含矿流体,上升过程中伴随着温压降低,发生沸腾,导致金属元素大量卸载,形成角砾状、细脉浸染状矿体等。另一种是中侏罗世玄武质岩浆底侵引发下地壳熔融形成岩浆房,少部分玄武质岩浆内侵与下地壳熔融岩浆混合,导致含矿流体形成,流体上升过程中发生沸腾,形成角砾状、细脉浸染状矿体等;接触交代热液型钼矿床成矿过程为早侏罗世玄武质岩浆底侵诱发下地壳熔融形成岩浆房,岩浆房发生分异结晶作用,形成含矿流体,在上升过程中与大气降水混合,并与上部古生代含钼的碳酸盐岩地层交代,形成接触交代热液钼矿床;中温热液石英脉型钼矿床成矿过程为中侏罗世玄武质岩浆底侵引发下地壳熔融形成岩浆房,少量玄武质岩浆内侵与下地壳熔融岩浆混合,导致含矿流体形成,含矿流体沿着断裂上升并与大气降水发生混合后,引起流体温度、压力等物理化学条件改变,从而造成辉钼矿大量沉淀,形成中温热液石英脉型钼矿床。
The Mid-East area of Jilin province is an important polymetallic metallogenic district since theDaheishan Mo deposit was discovered, a number of deposits have been discovered in the region, includingthe Jidetun, Dashihe, Fuanpu, Yixintun, Liushengdian, Dongfeng medium scale Mo deposits, as well as sixsmall sized Mo deposits and more than30occurrences in recent ten years. More than200million tons ofproven reserve had been confirmed until2008, it makes the study area to be the second-richestconcentration of Mo resource in China, a fact that attracted a large amount of interest to research in themineralization of this area. In order to further reveal the Mo mineralization regularity and resourcepotential, this study focuses on the geological characteristics, fluid property, geochemistry andgeochronology to deeply reveal that diagenesis and mineralization age, metallogenetic specialization,tectonic settings, petrogenetic-metallogenic mechanism, and then establish metallogenic model anddynamical model. The main advance achievements from this study are as followings.
     According to geological features of endogenic Mo deposits in the region are mainly divided intoporphyry type, contact-metasomatic hydrothermal type and medium temperature hydrothermal quartz veintype. The orebodies for porphyry Mo deposits are hosted by monzonitic granite (porphyry) or granodiorite(porphyry), which are lenticular and irregular forms in shape. Wall-rock alteration includesK-feldspathization, silicification, sericitization, epidotization and carbonation. The mineralization can bedivided into a quartz–pyrite stage (I), a quartz–pyrrhotite-pyrite stage (II), a quartz–molybdenite stage (III),a quartz–polymetallic sulphides stage (IV), and a quartz–carbonate phase (V). The medium temperaturehydrothermal quartz vein type deposits are distributed in granite fracture, and the orebodies are vein formin shape. Wall-rock alteration includes silicification, sericitization, K-feldspathization. The mineralizationcan be divided into a quartz stage (I), a quartz–molybdenite-pyrite stage (II), and a quartz–carbonate phase(III). The contact-metasomatic hydrothermal type deposits are hosted by contact zone between granites andthe Paleozoic stratum, and the orebodies are vein and lenticular forms in shape. Wall-rock alterationincludes chloritization, epidotization, sericitization, carbonation and silicification. The mineralization can be divided into a dry skarn stage (I), a wet skarn stage (II), a quartz–molybdenite stage (III), aquartz–polymetallic sulphides stage (IV), and a quartz–carbonate phase (V). Three types of deposits haveobvious relativity in space-time, and often constitute porphyry or medium temperature hydrothermal quartzvein type-contact-metasomatic hydrothermal type mineralization system.
     The mineral fluid inclusions reveal that fluid inclusions from porphyry deposits mainly are aqueoustwo-phase inclusions and minor daughter minerals bearing polyphase inclusions. The homogenizationtemperatures are>420~400℃,360~350℃,340~230℃,220~210℃and180~160℃, respectively.Salinity are>41.05%~9.8%NaCleq,38.16%~4.48%NaCleq,35.78%~4.49%NaCleq,7.43%NaCleqand7.8%~9.5%NaCleq, respectively. The mineral fluid inclusions from contact-metasomatichydrothermal deposit mainly are aqueous two-phase inclusions and minor CO_2bearing three-phaseinclusions. The homogenization temperatures are>337~280℃,260~200℃and190~101℃,respectively. Salinity are>18.5%~9.3%NaCleq,20.5%~9.98%NaCleq and22.9%~7.33%NaCleq,respectively. The mineral fluid inclusions from medium temperature hydrothermal quartz vein deposit areaqueous two-phase inclusions. The homogenization temperatures are>330~300℃,280~170℃and160~120℃, respectively. Salinity are>12.07%~8.81%NaCleq,9.86%~3.37%NaCleq and9.21%~4.63%NaCleq, respectively.
     Combining with temperature measurement, gas phase composition for fluid inclusions and hydrogenand oxygen isotope characteristics for group inclusions indicate that the initial ore-forming fluid for theporphyry Mo deposits is CO_2-H2O-NaCl magmatic fluid of CO_2-bearing with minor CH_4, N_2and H_2S, andparticipation of meteoric waters in the late ore-forming stage. The medium temperature hydrothermalquartz vein Mo deposit is H2O-CO_2-NaCl multiphase fluid, and participation of meteoric waters in the lateore-forming stage. The initial ore-forming fluid for the contact-metasomatic hydrothermal Mo deposit ischaracterized by medium to high temperature, medium to high salinity H2O-CO_2-NaCl fluid ofCO_2-bearing with minor CH_4and N_2, and influxing of meteoric waters in the ore-forming stage. We candraw a conclusion that the porphyry Mo deposits undergo strongly fluid immiscibility in the mineralizationprocess, while mixing of fluid happened in the evolution of fluid in the contact-metasomatic hydrothermaland medium temperature hydrothermal quartz vein Mo deposits.
     Studies on diagenetic and metallogenetic epoch show that Mo mineralization in the study area mainlyoccurred in200~165Ma. Porphyry Mo deposits mineralization occurred in186~167Ma, and the relatedmagmato-thermal event for the Porphyry Mo deposits are closely related to the magmatic evolution of themonzonitic granite (porphyry) and granodiorite (porphyry). The metallogenesis occurred in the late stageof magmatic evolution (189~167Ma). The medium temperature hydrothermal quartz vein Mo depositoccurred in176.4Ma, and the mineralization is associated with the Middle Jurassic monzonitic granite.The contact-metasomatic hydrothermal Mo deposit occurred in196.6Ma, and the mineralization is associated with the Early Jurassic magmation, carbonate rocks and clastic rocks.
     Element geochemical characteristics for granite complex associated with mineralization shows thatmonzonitic granite (porphyry) and granodiorite (porphyry) associated with mineralization of porphyrydeposits have high-Si, K, Al and alkali-rich, and belong to quasi-aluminous/weakly peraluminous high-Kcalc-alkaline series(SiO_2=62.59~73.5%, Na_2O=2.61~5.38%, K_2O=3.03~5.74%, K_2O/Na_2O=0.81~2.17, A/CNK=0.92~1.22, A/NK=1.14~1.64), enrichment of LREE(∑REE=100.42~154.27ppm,LREE/HREE=10.91~16.52,(La/Yb)N=1.49~14.56), weak or negligible Eu anomalies (Eu=0.85~1.08),enrichment of the large ion lithophile element (LILE) and depletion of the high field-strength element(HFSE). Monzonitic granite associated with mineralization for medium temperature hydrothermal quartzvein Mo deposits have high-Si, K, Al and alkali-rich, as well as weakly peraluminous high-K calc-alkalineseries (SiO_2=76.47~76.6%, Na_2O=3.15~3.17%, K_2O=5.35~5.42%, K_2O/Na_2O=1.68~1.72,A/CNK=1.01~1.02, A/NK=1.12~1.13), obvious LREE enrichment, negative Eu anomalies(∑REE=91.43~99.22ppm, LREE/HREE=14.9~15.32,(La/Yb)N=4.68~7.94, δEu=0.5), enrichmentof LILE and depletion of the HFSE. Granodiorite associated with mineralization for contact-metasomatichydrothermal Mo deposits have high-Si, K, Al and alkali-rich, as well as quasi-aluminous/weaklyperaluminous calc-alkaline series (SiO_2=63.98~71.14%, Na_2O=4.02~4.76%, K_2O=2.11~4.29%,K_2O/Na_2O=0.52~0.95, A/CNK=0.99~1, A/NK=1.21~1.81), LREE enrichment(∑REE=128.24~159.48ppm, LREE/HREE=12.8~15.41,(La/Yb)N=17.26~24.01), weak or negligible Eu anomalies(δEu=0.99~1.04), enrichment of the LILE and depletion of the HFSE.
     Sr-Nd-Pb isotopic geochemistry compositions for granite complex associated with mineralizationindicate that monzonitic granite (porphyry) and granodiorite (porphyry) associated with mineralization forthe porphyry Mo deposits have (~(87)Sr/~(86)Sr)iratios range from0.70404to0.70554, εNd(t) values range from-0.9to2.4.~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb and~(208)Pb/~(204)Pb ratios are18.4576~19.2028,15.5623~15.6144,38.2591~38.8874, respectively. Granodiorite associated with mineralization for the contact-metasomatichydrothermal Mo deposits have (~(87)Sr/~(86)Sr)iratios range from0.70413to0.70474, εNd(t) values range from3.3to3.6.~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb and~(208)Pb/~(204)Pb ratios are18.5199~18.6146,15.5698~15.5805,38.3686~38.4782, respectively. Monzonitic granite associated with mineralization for the mediumtemperature hydrothermal quartz vein Mo deposits have (87Sr/86Sr)iratios range from0.70656to0.70721,εNd(t) values range from1.6to1.8.206Pb/204Pb,~(207)Pb/~(204)Pb and~(208)Pb/~(204)Pb ratios are18.6488~18.6631,15.5884~15.5922,38.6708~38.6762, respectively. The three types of granites have low value of initialSr and high value of initial εNd(t), which indicate that the granite is the product of crust-mantle mixing.
     Combing with diagenetic and metallogenic epoch, Sr-Nd isotope, ore-bearing fluid and provenanceproperty, we further confirm that metallogenic thermal source for porphyry type, contact-metasomatichydrothermal type and medium temperature hydrothermal quartz vein type Mo deposit is derived from basaltic magma derived from partial melting of secondary lithospheric mantle, and incentive is subductionof the Pacific Palte. There are two kinds of mineralization process for porphyry Mo deposits. The first isthat the magma formed by melt of the lower curst, which induced by underplating of the Early Jurassicbasaltic magma, and then the lower crust melt and form magma chamber through underplating, and thenformed ore-forming fluid by magmatic fractional crystallization. The ore-forming fluid rises with reducingof temperature and pressure, and boiling, which lead to unload ore-forming elements and formedbrecciated and veinlet disseminated orebodies.
     The other is that magma chamber formed by underplating of the Middle Jurassic basaltic magma, anda few basaltic magma mixing with the lower curst formed ore-forming fluid. The ore-forming fluid riseswith boiling and formed brecciated and veinlet disseminated orebodies. The magma related to thecontact-metasomatic hydrothermal Mo deposit is derived from basaltic magma underpalting the lowermafic crust in the Early Jurassic, and ore-forming fluid formed by crystal fractionation of magma chamber.The ore-forming fluid mixed with meteoritic water, and metasomatism carbonate rocks during rising, andthen formed the hydrothermal contact metasomatic Mo deposit. The mineralization process of the mediumtemperature hydrothermal quartz vein Mo deposit is that magma chamber formed by underplating of theMiddle Jurassic basaltic magma, and a few basaltic magma mixing with the lower curst formedore-forming fluid. The ore-forming fluid rising along fracture and mixing with meteoritic water, which leadtransform of physical and chemical conditions. Thus molybdenum precipitated and formed the mediumtemperature hydrothermal quartz vein Mo deposit.
引文
[1] Altherr R, Holl A, Hegner E et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides:Northern Vosges(France) and northern Schwarzwald (Germany)[J].Lithos,2000,50:51-73.
    [2] Berzina A N, Sotnikov V I, Economou-Eliopoulos M, Eliopoulos D G. Distribution of rhenium in molybdenitefrom porphyry Cu–Mo and Mo–Cu deposits of Russia (Siberia) and Mongolia[J]. Ore Geology Reviews,2005,26:91-113.
    [3] Bodnar RJ.1983. A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-T-Xproperties of inclusion fluids[J]. Economic Geology,78:535-542.
    [4] Boztug D, Harlavan Y and Arehart GB.2007.K-Ar age, whole-rock and isotope geochemistry of A-type granitoidsin the Diverigi-Sivas Region,eastern-central Anatolia,Turkey[J].Lithos,97:193-218
    [5] Campos E, Touret J L R, Nikogosian I and Delgado J. Overheated, Cu-bearing magmas in the Zaldivarporphyry-Cu deposit,Northern Chile: Geodynamic consequences[J]. Tectonophysics,2002,345(1):229-251.
    [6] Candela P A and Holland H D.A mass transfer model for copper and molybdenum in magmatic hydrothennalsystems: The origin of porphyry-type ore deposits[J].Economic Geology,1986,81(1):1-19.
    [7] Carten R B, White W H, Stein H J. High-grade granite-related molybdenum systems:Classification andorigin[J].Geological Association of Canada,Special Paper,1993,40:521-554.
    [8] Cathles. L M, Erendi.A H J, Barrie. T. How long can a hydrothermal system be sustained by a single intrusiveevent?[J].Economic Geology,1997,92:766-771.
    [9] Clayton R N, O'Neil J R, Mayeda T K. Oxygen Isotope Exchange between Quartz and Water[J]. Journal ofGeophysical Research,1972,77:3057-3067.
    [10] Cooke D R,Hollings P,Walshe J L.Giant porphyry deposits:characteristics,distribution and tectoniccontrols[J].Economic Geology,2005,100:801-818.
    [11] Doe B R, Zartman R E.Plumbotectonics[A] the Phanerozoic. In: Barnes H L(ed). Geochemistry of hydrothermalore deposits[C]. John Wiley and Sons. New York, United States,1979,22-70.
    [12] Driesner T, Heinrich C A.. The system H2O-NaCl. Part Ⅰ: Correlation formulae for phase relations intemperatures-pressures-composition space from0to1000℃,0to5000bar,0-1X-NaCl [J]. Geochimica etCosmochimica Acta,2007,71,4880-4901.
    [13] Du A D,Wu S Q,Sun D Z, Wang S X, Qu W J, Markey R, Stain H, Morgan J,Malinovskiy D. Preparation andcertification of Re-Os dating reference materials:Molybdenite HLP and JDC[J].Geostand Geoanal Res,2004,28:41-52.
    [14] Ellam R M, Hawkeswort h C J, Menzies M A, Rogers N W.The volcanism of southern Italy:role of subductionand relationship between potassic and sodic alkaline magmatism[J].J. Geophysics Research,1989,94:4589-4601.
    [15] Giles D L, Schilling J H. Variation in rhenium content of molydenite.24th International Geological Congress[J].Section10. Geochemistry, Montreal,1972,145-152.
    [16] Hall DL, Sterner SM, Bodnar RJ. Freezing Point Depression of NaCl-KCl-H2O Solutions [J]. Economic Geology,1988,83:197-202
    [17] Haynes F M, Kesler S E. Compositions and sources of mineralizing fluid for chimney and manto limestone-replacement ores in Mexico[J]. Economic Geology,1988,83:1985-1992.
    [18] Heinrich C A.Fluid-fluid interactions in magmatic hydrothermal ore formation[J]. Reviews in MineralogyGeochemistry,2007,65:363-387.
    [19] Hofmann AW,1988.Chemical differentiation of the Earth: The relationship between mantle,continental crust andoceanic crust[J]. Earth and Planetary Science letters,90:297-314.
    [20] Hou Z Q, Ma H W, Za w K, et al. The Himala Yan Yulong Porphry Copper Belt: product of laree-scale strike-slipfaulting in Eastern Tibet[J]. Economic Geology,2003,98:125-145.
    [21] Keith JD Christiansen EH, Carten RB and Nevada R. The genesis of giant Porphyry molybdenum deposits. InWhiting BH,Hodgson CJ and Mason R ed.Giant ore depositsⅡ. Ottawa: Laneaste Press,1992,285-316
    [22] Kirkham R V and Sinclair W D. Porphyry copper, gold, molybdenum, tungsten, tin, silver[A]. In: Eckstrand O R,Sinclair WD, Thorpe R I, ed. Geology of Canadian mineral deposit t ypes[C].Ottawa: Geological Survey ofCanada.1995,421-446.
    [23] Kwak T A P. Fluid inclusions in skarns (carbonate replacement deposits)[J]. Journal of Metamorphic Geology,1986,4:363-384.
    [24] Li X H, Li Z X, Li W X, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin ofJurassic I-and A-type granites from central Guangdong, SE China: a major igneous event in response tofoundering of a subducted flat-slab[J]? Lithos,2007,96:186-204.
    [25] Liu S, Hu RZ, Gao S, Feng CX, Feng GY, Coulson IM, Li C, Wang T, Qi YQ. Zircon U–Pb age and Sr-Nd-Hfisotope geochemistry of Permian granodiorite and associated gabbro in the Songliao Block, NE China andimplications for growth of juvenile crust[J]. Lithos,2010,114,423-436.
    [26] Ludwig K R. Isoplot/Ex version2.0: a geochronological toolikit for Microsoft excel[J]. Berkeley GeochronologyCenter Special Publication No.1a,1999,46.
    [27] Mao Jingwen, Zhang Zhaochong, Zhang Zuoheng, Du Andao. Re-Os isotopic dating of molybdenites in theXiaoliugou W(Mo) deposit in the northen Qilian mountaions and its geological significance[J].Geochimica ETCosmochimica Acta,1999,63:1815-1818.
    [28] Mutschler F E,Wright EG,Ludington S and Abbott JT. Granite molybdenite systems[J]. Economical Geology,1981,76:874-897.
    [29] Pearce JA,Harris NBW and Tigdle AG.1984.Trace element discrimination diagram for the tectonic interpretationof granitic rocks[J]. Journal of Petrology,25(4):956-983
    [30] Potter, Robert W. The Volumetric Properties of Aqueous Sodium Chloride Solutions from0to500℃at Pressuresup to2000bars based on a Regression of Available Data in the Literature [J]. Geology Survey Bulletin,1977,1421-c.
    [31] Richard B. Carten, Ennis P. Geraghty, Bruce M. Walker, James R. Shannon. Cyclic development of igneousfeatures and their relationship to high-temperature hydrothermal features in the Henderson porphyry molybdenumdeposit, Colorado. Economic geology,1988,83:266-296.
    [32] Richard H. Sillitoe. Porphyry Copper Systems.2010.Economic Geology,105,3-41.
    [33] Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit fomation [J].Economic Geology,2003,98(8):1515-1533.
    [34] Robb L. Introduction to ore-forming process[M].Oxford:Blackwell.2005,1-166.
    [35] Roedder E. Fluid inclusions. Mineralogical Society of America Reviews in Mineralogy,1984,12:644.
    [36] Ross P S, JéBRAK M, WALKER B M. Discharge of Hydrothermal Fluids from a Magma Chamber andConcomitant Formation of a Stratified Breccia Zone at theQuesta Porphyry Molybdenum Deposit, NewMexico[J].EeonomieGeology,2002,97(8):1679-1699.
    [37] Schmidberger SS and Henger E. GeoChemistry and isotope systematic of calc-alktaline volcanic rocks from theSaar-Nahe basin(SW Germany):implications for Late-Varscan orogenic development[J]. Contribuions toMineralogy and Perology,1999,135:373-385.
    [38] Schwartz MO.Determining Phase Volumes of Mixed C2O-H2O Inclusions Using MicrothermetricMeasurements[J]. Mineral Deposita,1989,24:43-47.
    [39] Seedorff E, Dilles JH, Proffett JM, Einaudi MT, Zurcher L Stavast WJA, Johnson DA and Barton MD. Porphyrydeposits: Characteristics and origin of hypogene features[J]. Economic Geology100th Anniversary Volume:2005,251-298
    [40] Seedorff E. Cyclic development of hydrothermal mineral assemblages related to multiple intrusions at theHenderdon porphyry molybdenum deposit, Colorado[M]. Can. Inst. Mining Melt. Spec,1988,39:367-393.
    [41] Selby D, Nesbitt B E, Muehlenbachs K and Prochaska W. Hydrothermal alteration and fluid chemistry of theEndako porphyry molybdenum deposit, British Columbia[J]. Econ. Geol.,2000,95:183-202.
    [42] Selby D,Creaser R A. Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis ofmolybdenite:Testing spatial restrictons for reliable Re-Os age determinations and implications for the decouplingof Re and Os within molybdenite[J].Geochimica ET Cosmochimica Acta,2004,68:3897-3908.
    [43] Sheppard S M F. Characterization and isotope variation in nature water. Stable isotopes in high temperatregeological process. Reviews in Mineralogy and geochemistry,1986,16:165-183.
    [44] Sillitoe R H. Porphyry copper systems[J]. Economical Geology,2010,105:3-41.
    [45] Sillitoe R H. Types-porphyry molybdenum deposits[J]. Mining Magazine,1980,142:550-553.
    [46] Sillitoe R H.A plate tectonic model for the origin porphyry copper deposits[J]. Economic Geology.1972,67:184-197
    [47] Simon A C, Ripley E P.The role of magmatic sulfur in the formation of ore deposits[J]. Mineralogy Geochemistry,2011,73:513-578.
    [48] Sinclair W D. Porphyry deposits, in Goodfellow WD(ed). Mineral deposits of Canada: A synthesis of majordeposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. GeologicalAssociation of Canada[M]. Mineral Deposits Division, Special Publication,2007,5:223-243.
    [49] Sotnikov, V.I., Berzina, A.N., Berzina, A.P., Ponomarchuk, V.A.,Gimon, V.O., Fluorine and chlorine in magmaticand metasomatic ore processes in the Cu–Mo porphyry deposits of Siberia and Mongolia. Petrology11,2003,301-304.
    [50] Stein H J, Markey R J, Morgan J W, Hannah J L and Schersten A. The remarkable Re-Os chronometer inmolybdenite: How and why it works[J]. Terra Nova,2001,13:479-486.
    [51] Stein H J,Markey R J, Morgan J W, Du A and Sun Yl. Highly precise and accurate Re-Os ages for mlybdenitefrom the East Qinling molybdenum belt, Shanxi Province,China[J]. Economic Geology,1997,92:827-835.
    [52] Sun DY, Suzuki K, Kajizuka I, Kamikubo H, Lu XP, Wu FY. CHIME dating of monazite from the Dongqingpluton in SE Jilin, China[J].The Journal of Earth and Planetary Sciences (Nagoya University),2009,55,23-37
    [53] Sun S S and McDonough W F. Chemical and isotopic systematics of oceanic basalta: implications for mantlecomposition and processes.In: Saunders A D and Norry M J, eds,Magmatism in the ocean basins, GeologicalSociety Special Pulication[C].1989,42:303-345.
    [54] Sylvester Paul J. Post-collisional strongly peraluminous granites[J].Lithos,1998,45:29-44.
    [55] Taylor B E. Degassing of H2O from rhyolite magma during eruption and shallow intrusion, and the isotopiccomposition of magmatic water in hydrothermal lsystems.In Hedenquist J W(eds).Magmatic contributions tohydrothermal systems[J].Geological Survey of Japan,1992,190-194.
    [56] Touret J, Bottinga Y. Equation of State for Carbon Dioxide: Application to Carbonic Inclusions[J]. Bulletin DeMineralogie,1979,102(5/6):577-583.
    [57] Uyeda S, Kanamori H. Back-arc opening and the model of subduction[J]. Journal of Geophysics Research.1979.84:1040-1061.
    [58] Wallace SR,Mackenzie WB,Blair RG and Muncaster NK. Geology of the Urad and Henderson molybdenitedeposits,Clear Creek County,Colorado,with a section on a comparison of these deposits with those atClimax,Colorado[J]. Economical Geology,1978,73:325-368.
    [59] Watson E B and Harrison T M. Zircon saturation revisited:temperature and composition effect in avariety ofcrustal magmas types[J]. Earth and Planetary Science Letters,1983,64:295-304.
    [60] Watson EB and Harrison TM. Zircon thermometer reverals minimum melting conditions on earliestearth[J].Science,2005,308:841-844.
    [61] Watson EB,Wark DA and Thomas JB. Crystallization thermometers for zircon and rutile[J].Contrib.Moneral.Petrol.,2006,151:413-433.
    [62] Westra G and Keith SB. Classification and genesis of stockwork molybdenum deposits[J].Econ.Geol.,1981,76:844-873
    [63] White W H, Bookstrom A A, Kamilli R J, Ganster M W, Smith R P, Ranta D E and Steininger R C.1981.Character and origin o f Climax-type molybdenum deposits[J].(in Economic Geology75th Anniversary Volume,1905-1980) Econ.Geo.l Pub.l Co. United States:270-316.
    [64] Wilson M. Igneous petrogenesis[M]. Dordrecht:Kluwer,1989,1-450.
    [65] Woodcock JR and Hollister VF. Porphyry molybdenite deposits of the North American cordillera[J].Miner.Sci.Eng,1978,10:3-18.
    [66] Wu F Y, Jahn B M, Wilde S, Sun D Y, Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from thegranites in northeastern China[J]. Tectonophysics,2000,328:89-113.
    [67] Wu F Y, Wilde S A, Zhang G L, Sun D Y. Geochronology and petrogenesis of the post-orgenic Cu-Nisulfide-bearing mafic-ultramafic complexes in Jilin province, NE China[J]. Journal of Asian Earth Sciences,2004,23:781-797.
    [68] Wu Fu-Yuan,Sun De-You,Ge Wen-Chun,Zhang Yan-Bin,Grant Matthew L.,Wilde Simon A,JahnBor-Ming.Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences,2011,41:1-30.
    [69] Wu FY, Simon AW, Zhang GL and Sun DY. Geochronology and Petrogenesis of the Post-orgenic Cu-Nisulfide-bearing Mafic-ultramafic complexes in Jilin province,NE China. Journal of Asian EarthScience,23:781-797.
    [70] Zeng Q D, Liu J M,Zhang Z L, Chen W J and Zhang W Q. Geology and geochronology of the Xilamulunmolybdenum metallogenic belt in eastern Inner Mongolia, China. International Journal of Earth Sciences,2010a.DOI:10.1007/s00531–010–0617–z
    [71] Zeng QD,Liu JM,Qin F and Zhang ZL.Geochronology of the Xiaodonggou porphyry Mo deposit in northernmargin of North China Craton[J].Resource Geology,2010,60:192-201.
    [72] Zeng Qingdong, Liu Jianming, Chu Shaoxiong, Wang Yongbin, Sun Yan, Duan XiaoxiaZhou Lingli.2012.Mesozoic molybdenum deposits in the East Xingmengorogenic belt, northeast China: characteristics and tectonicsetting[J]. DOI:10.1080/00206814.2012.677498
    [73] Zhang Y B, Wu F Y, Wiled S A, Zhai M G, Lu X P, Sun D Y. Zircon U-Pb ages and tectonic implications of‘Early Paleozoic’ granitoids at Yanbian, Jilin Province, northeast China[J]. The Island Arc,2004,13:484-505.
    [74]包志伟,曾乔松,赵太平,原振雷.东秦岭钼矿带南泥湖-上房沟花岗斑岩成因及其对钼成矿作用的制约[J].岩石学报,2009,25(10):2523-2536.
    [75]陈冬.延边天宝山铜-铅-锌-钼多金属矿床的成矿作用与成矿模式研究[D].长春:吉林大学.2009,1-64.
    [76]陈刚,付友山,聂立军,等.敦化市大石河钼矿床地球化学及矿物学特征[J].吉林地质,2011,30:65-70.
    [77]陈伟军,刘建明,刘红涛,孙兴国,张瑞斌,张作伦,覃锋.内蒙古鸡冠山斑岩钼矿床成矿时代和成矿流体研究[J].岩石学报,2010,26(5):1423-1436
    [78]陈衍景,李超,张静,李震,王海华.秦岭钼矿带斑岩体锶氧同位素特征与岩石成因机制和类型[J].中国科学,2000,30(增刊):38-44.
    [79]陈衍景,倪培,范宏瑞,等.不同类型热液金矿系统的流体包裹体特征[J].岩石学报,2007,23(9):2085-2108.
    [80]陈衍景,翟明国,蒋少涌.华北大陆边缘造山过程与成矿研究的重要进展和问题[J].岩石学报,2009,25(11):2695-2726.
    [81]陈衍景,张成,李诺,杨永飞,邓轲.中国东北钼矿床地质[J].吉林大学学报(地球科学版),2012,42(5):1223-1268
    [82]陈衍景.中国西北地区中亚型造山-成矿作用的研究意义和进展[J].高校地质学报,2000,6(1):17-22.
    [83]陈志广,张连昌,卢百志,李占龙,吴华英,相鹏,黄世武.内蒙古太平川铜钼矿成矿斑岩时代、地球化学及地质意义[J].岩石学报,2010,26(5):1437-1449.
    [84]崔根,王金益,张景仙,崔革.黑龙江多宝山花岗闪长岩的锆石SHRIMP U-Pb年龄及其地质意义[J].世界地质.2008,27(4):387-394.
    [85]代军治,毛景文,杜安道,谢桂青,白杰,杨富全,屈文俊.辽西肖家营子钼(铁)矿床Re-Os年龄及其地质意义[J].地质学报,2007,81(7):917-923
    [86]代军治,毛景文,谢桂青,杨富全,赵财胜.辽西兰家沟钼矿床成矿流体特征及成因探讨[J].矿床地质,2007,26(4):443-454.
    [87]代军治.燕辽成矿带钼(铜)矿床成矿作用及成矿动力学背景.[D].北京:中国地质科学院.2008.
    [88]邸新,毕小刚,贾海明,李栋.蛟河地区前进岩体锆石U-Pb年龄及其与吉中-延边地区钼矿成矿作用的关系[J].吉林地质,2011,30(4):25-28.
    [89]杜安道,何红廖,殷万宁,等.辉钼矿的铼-锇同位素地质测年方法研究[J].地质学报,1994,68:339-347.
    [90]杜保峰,魏俊浩,王启,李艳军,刘国春,于海涛,刘永利.中国东部钼矿成矿背景与成岩-成矿时差讨论[J].矿床地质,2010,29(6),935-955.
    [91]杜德道,曲晓明,王根厚,辛洪波,刘治博.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据[J].岩石学报,2011,27(7):1993-2002.
    [92]方俊钦,聂凤军,张可,刘勇,徐备.辽宁姚家沟钼矿床辉钼矿Re-Os同位素年龄测定及其地质意义[J].岩石学报,2012,28(2):372-378.
    [93]方文昌.吉林省花岗岩类及其成矿作用[M].长春:吉林科学技术出版社.1992,1-271.
    [94]冯彩霞,刘燊,等.吉林红旗岭超基性岩体的锆石U-Pb年龄、Sr-Nd-Hf同位素特征及岩石成因[J].岩石学报,2011,27(6):1594-1606.
    [95]付长亮,孙德有,张兴洲,魏红艳,苟军.吉林珲春三叠纪高镁闪长岩的发现及地质意义[J].岩石学报,2010,26(4):1089-1102.
    [96]高晓峰.东北地区中生代火成岩Sr-Nd-Pb同位素填图及其对区域构造演化的制约[D].广州:中国科学院广州地球化学研究所.2008.
    [97]高岫生,吴卫群,韩寿军.天宝山东风北山钼矿床地质特征及成因探讨[J].吉林地质,2010,29(4):43-47.
    [98]葛文春,吴福元,周长勇,张吉衡.兴蒙造山带东段斑岩型Cu-Mo矿床成矿时代及其地球动力学意义[J].科学通报,2007,52(20):2407-2417.
    [99]郭波,朱赖民,李犇,许江,王建其,弓虎军.东秦岭金堆城大型斑岩钼矿床同位素及元素地球化学研究[J].地质学报,2008,82(2):204-220.
    [100]郭晓东.云南省马厂箐斑岩型铜钼金矿床岩浆作用及矿床成因[D].北京:中国地质大学,2009,1-179.
    [101]韩振哲,赵海玲,李娟娟,冷昌恩,吕军,李文龙.小兴安岭东南伊春一带早中生代花岗岩与多金属成矿作用[J].中国地质,2010,37(1):74-87.
    [102]韩振哲,赵海玲,王盘喜,杨霄,牛延宏,赵寒冬.黑龙江伊春地区晚三叠世-早侏罗世铝质A型正长-碱长花岗岩地球化学特征及其构造意义[J].岩石矿物学杂志,2009,28(2):97-108.
    [103]何学贤,朱祥坤,杨淳,唐索寒.多接收器等离子体质谱(MC-ICP-MS) Pb同位素高精度研究[J].地球学报,2005,26:19-22.
    [104]洪大卫,王式洸,谢锡林,张季生.兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长[J].地学前缘,2000,7(2):441-456.
    [105]侯增谦,杨志明.中国大陆环境斑岩型矿床:基本地质特征:岩浆热液系统和成矿概念模型[J].地质学报,2009,83(12):1779-1817.
    [106]侯增谦.斑岩Cu-Mo-Au矿床:新认识与新进展[J].地学前缘,2004,11(1):131-144.
    [107]胡宝群,王方正,孙占学,等.岩石圈中的地压梯度[J].地学前缘,2003,10(3):129-133.
    [108]黄典豪,杜安道,吴澄宇,刘兰笙,孙亚莉,邹晓秋.华北地台钼(铜)矿床成矿年代学研究[J].矿床地质,1996,15(4):365-371
    [109]黄凡,陈毓川,王登红,袁忠信,陈郑辉.中国钼矿主要矿集区及其资源潜力探讨[J].中国地质,2011,38(5):1111-1134
    [110]黄华盛.矽卡岩矿床的研究现状[J].地学前缘,1994,105-111.
    [111]黄永卫.黑龙江省东南部完达山-太平岭一带浅成低温热液矿床区域成矿规律及找矿前景研究[D].北京.中国地质大学,2010,1-163
    [112]纪伟强.吉黑东部中生代晚期火山岩的年代学和地球化学[D].长春:吉林大学,2007.
    [113]简伟,柳维,石黎红.斑岩型钼矿床研究进展[J].矿床地质,2010,29(2):308-316.
    [114]姜开军,周永昶.吉林珲春东北部中生代内生成矿作用探讨[J].地质与勘探,1992,28(10):8-12.
    [115]蒋少涌,杨竞红,赵葵东,于际民.金属矿床Re-Os同位素示踪与定年研究[J].南京大学学报(自然科学),2000,36(6):669-677.
    [116]金丕兴等吉林东部山区贵金属及有色金属矿产成矿预测报告[J].1992.
    [117]金胜国,金艳峰.安图县双山钼、铜矿床地质特征及找矿标志[J].吉林地质,2011,30(2):57-61.
    [118]金艳峰,刘凤英,郎伟民.延边三岔钼矿床地质特征及找矿方向[J].吉林地质,2007,26(3):22-28.
    [119]鞠楠,任云生,王超,等.吉林敦化大石河钼矿床成因与辉钼矿Re-Os同位素测年[J].世界地质,2012,31(1):68-76.
    [120]李宝树,李鹤年.多金属矿床的复式成因:吉林天宝山矿床成因讨论[J].长春地质学院学报,1991,21(2):175-182.
    [121]李超文,郭锋,范蔚茗,高晓峰.延吉地区晚中生代火山岩的Ar-Ar年代学格架及其大地构造意义[J].中国科学D辑,2007,37(3):319-330.
    [122]李超文.吉林省东南部晚中生代火山作用及深部过程研究[D].广州:中国科学科学院广州地球化学研究所,2006.
    [123]李东津.吉林省岩石地层[M].武汉:中国地质大学出版社,1997.
    [124]李锦轶.中国东北及领区若干地质构造问题的新认识[J].地质论评,1998,44(4):339-347.
    [125]李立兴,松权衡,王登红,王成辉,屈文俊,汪志刚,毕守业,于城.吉林福安堡钼矿中辉钼矿铼-锇同位素定年及成矿作用探讨[J].岩矿测试,2009,28(3):283-287.
    [126]李舢,王涛,童英.中亚造山系中南段早中生代花岗岩类时空分布特征及构造环境[J].岩石矿物学杂志,2010,29(6):642-662.
    [127]李永峰,毛景文,胡华斌,郭保健,白凤军.2005.东秦岭钼矿类型、特征、成矿时代及其动力学背景[J].矿床地质,24(3):292-304.
    [128]李之彤,朱群.吉黑东部花岗岩类的稳定同位素组成[J].岩石矿物学杂志,2001,20(3):353-359.
    [129]林强,葛文春,孙德有,吴福元.东北亚中生代火山岩的地球动力学意义[J].地球物理学报,1999,42(增刊):75-84.
    [130]林强,葛文春,吴福元,孙德有,曹林.大兴安岭中生代花岗岩类的地球化学[J].岩石学报,2004,20(3):403-412.
    [131]刘宝山,任凤和,李仰春,赵焕力.伊春地区晚印支期I型花岗岩带特征及其构造背景[J].地质与勘探,2007,43(1):74-78.
    [132]刘斌,段光贤. Nacl-H20溶液包裹体的密度式和等容式及其应用[J].矿物学报,1987,7(4):345-352.
    [133]刘斌.中高盐度NaCl-H20包裹体的密度式和等容式及其应用[J].地质论平,2001,47(6):617-622.
    [134]刘莉.黑龙省穆棱市砍椽沟钼铜矿床成矿地质条件及找矿远景评价[D].硕士学位论文.长春:吉林大学,2010,1-60
    [135]刘燊,冯彩霞,胡瑞忠,等.吉林东部海西期花岗岩锆石U-Pb年龄、Hf同位素特征与地壳增生[J].岩石学报,2012,28(11):3715-3720.
    [136]刘先文,申宁华,葛肖虹.吉黑东部中生代两种机制的碰撞构造[J].长春地质学院学报,1994,24(4):387-389.
    [137]刘兴桥,刘俊斌等.吉林省敦化市大石河钼矿地质特征及找矿方向[J].吉林地质,2009,28(3):39-42.
    [138]刘永江,张兴洲,金巍,等.东北地区晚古生代区域构造演化[J].中国地质,2010,34(7):943-951.
    [139]刘志宏.黑龙江省翠宏山钨钼锌多金属矿床地质特征及成因[D].硕士学位论文.长春:吉林大学,2009,1-80
    [140]卢欣祥,于在平,冯友利,王义天,马维峰,崔海峰.东秦岭深源浅成型花岗岩的成矿作用及地质构造背景[J].矿床地质,2002,21(2):168-178.
    [141]路风香,桑隆康.岩石学[M].北京:地质出版社,2002,1-339.
    [142]路远发. GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学,2004,33(5):459-464.
    [143]吕林素,毛景文,等.吉林红旗岭1号和7号岩体中含矿超镁铁质岩的矿物化学特征:对岩浆演化过程以及铜镍硫化物矿床形成机制的约束[J].岩石学报,2012,28(l):319-344.
    [144]罗铭玖,张辅民,董群英,等.中国钼矿床[M].郑州:河南科学技术出版社,1991.
    [145]毛景文,华仁民,李晓波.浅议大规模成矿作用与大型矿集区.矿床地质,1999.18(4):291-299.
    [146]毛景文,李晓峰,张荣华,王义天,赫英,张作衡.深部流体成矿系统[M].北京:中国大地出版社,2005.1-361.
    [147]毛景文,王志良.中国东部大规模成矿时限及其动力学背景的初步探[J].矿物岩石地球化学通报,2000,19(4):289-296.
    [148]门兰静.延边-东宁地区晚中生代浅成热液金铜矿床的成矿流体与成矿机理研究[D].长春:吉林大学,2011.
    [149]孟广才,鲁若飞,王玉增,王振贵.舒兰市福安堡钼矿床地质特征及找矿意义[J].吉林地质,2008,27(2):52-56.
    [150]孟祥金,侯增谦,高永丰,曲晓明,黄卫.碰撞造山型斑岩铜矿蚀变分带模式-以西藏冈底斯斑岩铜矿带为例[[J].地学前缘,2004.11(1):201-213.
    [151]孟祥金,徐文艺,吕庆田,屈文俊,李先初,史东方,文春华.安徽沙坪沟斑岩钼矿锆石U-Pb和辉钼矿Re-Os年龄[J].地质学报,2012,86(3):486-494.
    [152]孟祥金.西藏碰撞造山带冈底斯中新世斑岩铜矿成矿作用研究[D].北京,中国地质科学院,2004,1-105.
    [153]苗来成,范蔚茗,张福勤,等.小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及意义[J].科学通报,2003,48(22):2315-2323.
    [154]聂风军,张万益,杜安道,等.内蒙古小东沟斑岩型钼矿床辉钼矿铼-锇同位素年龄及地质意义[J].地质学报,2007,81(7):898-905.
    [155]聂凤军,樊建廷.陕西金堆城—黄龙铺地区含钼花岗岩类稀土元素地球化学研究[J].岩石矿物学杂志,1989.1(8):24-33
    [156]聂凤军,孙振江,李超,刘翼飞,吕克鹏,张可,刘勇.2011.黑龙江岔路口钼多金属矿床辉钼矿铼-锇同位素年龄及地质意义.矿床地质,30(5):828-836.
    [157]逄伟,孙景贵,门兰静,等.延边东部五道沟岩群的单颗粒锆石SHRIMP U-Pb年代学及其地质意义[J].中国地质,2008,35(6):1178-1184.
    [158]裴福萍,许文良,靳克.延边地区晚三叠世火山岩的岩石地球化学特征及构造意义[J].世界地质,2004,23(1):6-13.
    [159]彭玉鲸,翟玉春,张鹤鹤.吉林省晚印支期—燕山期成矿事件年谱的拟建及特征[J].吉林地质,2009,28(3):2-14.
    [160]朴英姬,张忠光,李国瑞.吉林省安图县刘生店钼矿地质特征及找矿远景[J].吉林地质,2010,29:54-58.
    [161]任纪舜,陈延愚,牛宝贵,等.中国东部及邻区大陆岩石圈的构造演化与成矿[M].北京:科学出版社.1990.
    [162]芮宗瑶,黄崇轲,齐国明.中国斑岩铜(钼)矿床[M].北京:地质出版.1984.
    [163]芮宗瑶,李荫清,王龙生,王义天.从流体包裹体研究探讨金属矿床成矿条件[J].矿床地质,2003,22(1):13-23.
    [164]芮宗瑶,赵一鸣,王龙生.王义天挥发分在矽卡岩型和斑岩型矿床形成中的作用[J].矿床地质,2003,22(1):141-148
    [165]桑海清.RGA10质谱计的改进及在K-Ar、Ar-Ar同位素定年中的应用.质谱学报,2002,23(4),241-247.
    [166]邵济安,牟保磊,何国琦,张履桥.华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用[J].中国科学D辑,1997,27(5):390-394.
    [167]邵济安,唐克东.中国东北地体与东北亚大陆边缘演化[M].北京:地震出版社,1995.
    [168]邵济安,张履桥,牟保磊.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘,1999,6(4):339-346.
    [169]邵洁莲.金矿找矿矿物学[M].北京:中国地质大学出版社,1990,1-150.
    [170]邵克忠,王宝德.中国北方地区燕山期岩浆作用及斑岩型钼(铜)矿床成矿作用[J].河北地质学院学报,1986,9(3-4):207-216
    [171]申文峰,莫苇.流体包裹体在地学中的应用.西部探矿工程[J],2007,5,45-46
    [172]石新增,李树田,时友东,等.二合屯砂板岩的地质特征及形成时代[J].1998,17:1-10.
    [173]史长义,鄢明才,刘崇民,迟清华,胡树起,顾铁新,卜维,鄢卫东.中国不同岩石类型花岗岩类元素丰度及特征[J].物探化探计算技术,2005,27(3):256-262
    [174]史鹏会,杨言辰,叶松青,韩世炯.2012.黑龙江五道岭钼铁矿床地质地球化学特征及成因[J].世界地质,31(2):262-270.
    [175]史致元,王玉增,孟广才,于宏伟,刘学波,史玥师.吉林省舒兰季德屯大型钼矿床地质特征及找矿过程中化探异常查证[J].吉林地质,2010,29(1):62-65.
    [176]隋振民,葛文春,吴福元,等.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J].岩石学报,2007,23(2):461-480.
    [177]孙德有,吴福元,高山,路孝平.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J].地学前缘,2005,12(2):263-275.
    [178]孙德有,吴福元,林强,路孝平.张广才岭燕山早期白石山岩体成因与壳幔相互作用[J].岩石学报,2001,17(2):227-235.
    [179]孙景贵,陈雷,赵俊康,门兰静,等.延边小西南岔富金铜矿田燕山晚期花岗杂岩的锆石SHRIMP U-Pb年龄及其地质意义[J].矿床地质,2008,27(3):319-328.
    [180]孙景贵,邢树文,郑庆道,等.中国东北部陆缘有色、贵金属矿床的地质、地球化学[M].长春:吉林大学出版社,2006,60-64.
    [181]孙景贵,张勇,邢树文,等.兴蒙造山带东缘内生钼矿床的成因类型、成矿年代及成矿动力学背景[J].岩石学报,2012,28(4):1317-1332.
    [182]孙燕,刘建明,曾庆栋.斑岩型铜(钼)矿床和斑岩型钼(铜)矿床的形成机制探讨—流体演化及构造背景的影响[J].地学前缘,2012,(19):1-15.
    [183]孙珍军.小兴安岭石林公园钼-钨-成矿作用及地球化学特征[D].长春:吉林大学,2010:48-53
    [184]谭钢,常国雄,佘宏全,李进文,张德全,杨郧城,张斌,向安平,董英君.内蒙古乌奴格吐山斑岩铜钼矿床辉钼矿铼-锇同位素定年及其地质意义[J].矿床地质,2010,29(增刊):506-508
    [185]唐克东,王莹,何国琦,邵济安.中国东北及邻区大陆边缘构造[J].地质学报,1995,69(1):16-30.
    [186]陶继雄,胡凤翔,陈志勇.华北陆块北缘印支期S型花岗岩带特征及其构造环境[J].岩石矿物学杂志,2003,22(2):112-118.
    [187]涂光炽.地球化学[M].上海:上海科技出版社.1984.
    [188]王成辉,松权衡,王登红,等.吉林大黑山超大型钼矿辉钼矿铼-锇同位素定年及其地质意义[J].岩矿测试,2009,28:269-273
    [189]王德滋,刘昌实,沈渭洲,陈繁荣.桐庐I型和相山S型两类碎斑熔岩对比[J].岩石学报,1993,9(1):44-54.
    [190]王宏博,刘桂香,邢彩霞.黑龙江漠河县洛古河含钼花岗岩体锆石U-Pb年龄及地质意义[J].地质与资源,2010,19(2):186-190
    [191]王辉,任云生,赵华雷,等.吉林安图刘生店钼矿床辉钼矿Re-Os同位素定年及其地质意义[J].地球学报,2011,32:707-715.
    [192]王奎良.包延辉.张业春.刘学波.吉林省桦甸火龙岭钼矿床地质特征及其成因[[J].吉林地质,2006,25(3):11-14.
    [193]王莉娟,王京彬,王玉往,王军升,廖震.不同构造环境中的斑岩铜、钼、钨等矿床成矿流体特征[J].矿产勘查,2011,2(6):704-713
    [194]王亮亮,莫宣学,李冰,董国臣,赵志丹.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学[J].2006,岩石学报,22(4);1001-1008.
    [195]王亮亮.西藏冈底斯带驱龙含矿斑岩的特征及与Cu(Mo)成矿的关系[D].北京:中国地质大学,2007,1-97.
    [196]王启志赵俊才等.吉林省桦甸市四方甸子钼矿南段详查及外围普查报告[R].吉林省第二地质调查所,1999.12
    [197]王元德,鲁中民,曲永年等.吉林省永吉县大黑山钼矿床地质研究报告[R].吉林省地质矿产局第二地质调查所,1986-12
    [198]魏庆国,原振雷,姚军明,陈伟,乔波,赵太平.东秦岭钼矿带成矿特征及其与美国克莱马克斯-亨德森钼矿带的对比[J].大地构造与成矿学,2009,33(2):259-269.
    [199]魏庆国,高昕宇,赵太平,陈伟,杨岳衡.大别北麓汤家坪花岗斑岩锆石LA-ICPMS U-Pb定年和岩石地球化学特征及其对岩石成因的制约[J].岩石学报,2010,26(5):1550-1562.
    [200]吴福元,江博明,林强.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义[J].科学通报,1997,42(20):2188-2192.
    [201]吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,15(5):181-189.
    [202]吴福元,孙德有.Re-Os同位素体系理论及其应用[J].地质科技情报,1999,18(3):43-46.
    [203]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.
    [204]郗爱华,葛玉辉,李绪俊,李碧乐.中亚蒙古造山带东段造山事件的40Ar-39Ar同位素年代学证据[J].中国地质,2006,33(5):1059-1065.
    [205]夏斌,陈根文,王核.全球超大型斑岩铜矿床形成的构造背景分析[J].中国科学:D辑,2002,32(增刊):87-95.
    [206]肖庆辉,邓晋福.花岗岩研究思维与方法[J].北京:地质出版社,2002,1-305.
    [207]肖庆辉,邱瑞照,邓晋福,李廷栋,莫宣学,洪大卫,卢欣详,王涛,吴福元,谢才富.中国花岗岩与大陆地壳生长方式初步研究.中国地质,2005,32(3):343-352.
    [208]徐兆文,杨荣勇,陆现彩,任启江.金堆城斑岩钼矿矿床地质地球化学特征及成因[J].地质找矿论丛,1998,13(4):18-27.
    [209]许文良,孙德有,周燕.满洲里—绥芬河地学断面岩浆作用和地壳结构[M].北京:地质出版社,1994.
    [210]薛春纪,陈毓川,杨建民,等.滇西北兰坪铅锌银铜矿田含烃富CO2成矿流体及其地质意义[J].地质学报,2002,76(2):244-253.
    [211]杨宝森,陈国库,杨大捷,贾洪波,李忠群,杨子龙.浅论后倒木钼矿的地质特征[J].吉林地质,2011,30(1):70-74.
    [212]杨志明.西藏驱龙超大型斑岩铜矿床-岩浆作用与矿床成因[D].北京:中国地质科学院,2008,1-144.
    [213]姚凤良,孙丰月.矿床学教程[M].北京:地质出版社,2006.
    [214]叶会寿,毛景文,李永峰,郭保健,张长青,等.东秦岭东沟超大型斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os年龄及其地质意义[J].地质学报,2006,80(7):1078-1088.
    [215]印贤波,张德会,王晨昇,赵关健.中国典型脉型钨、锡矿床和斑岩钼矿流体包裹体特征[J].桂林理工大学学报,2011,31(4):524-532.
    [216]于介江,门兰静,陈雷,等.延边地区五道沟群变质英安岩的锆石SHRIMP U-Pb年龄及其地质意义[J].吉林大学学报(地球科学版),2008,38(3):363-367.
    [217]于晓飞,侯增谦,钱烨,李碧乐.吉林中东部福安堡钼矿床成矿流体、稳定同位素及成矿时代研究[J].地质与勘探,2012,48(6):1151-1162.
    [218]袁海华.同位素地质年代学[M].重庆大学出版社,1987,7-128.
    [219]袁洪林,吴福元,高山,等.东北地区新生代侵人体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520.
    [220]曾普胜,李文昌,王海平,李红.云南普朗印支期超大型斑岩铜矿床:岩石学及年代学特征[J].岩石学报,2006,22(4):989-1000.
    [221]翟德高,刘家军,王建平,彭润民,王守光,李玉玺,常忠耀.内蒙古太平沟斑岩型钼矿床Re-Os等时线年龄及其地质意义[J].现代地质,2009,23(2):262-268.
    [222]张春艳,张兴洲,邱殿明.延边地区青龙村群斜长角闪岩中锆石U-Pb同位素年龄及地质意义[J].吉林大学学报(地球科学版),2007,37(4):672-677.
    [223]张德会.流体的沸腾和混合在热液成矿中的意义[J].地球科学进展,1997,12(6):546-552.
    [224]张红,孙卫东,杨晓勇,梁英华,王波华,王瑞龙,王玉贤.大别造山带沙坪沟特大型斑岩钼矿床年代学及成矿机理研究[J].地质学报,2011,85(12):2040-2059.
    [225]张吉衡.大兴安岭中生代火山岩年代学及地球化学研究[D].武汉:中国地质大学,2009,1-105.
    [226]张景森,张静,周俊杰.矽卡岩和矽卡岩型矿床研究方法[J].河北工程大学学报(自然科学版),2009,26(1):85-89.
    [227]张炯飞,权恒,武广,等.东北地区中生代火山岩形成的构造环境[J].贵金属地质,2000,9(1):33-38.
    [228]张可,聂凤军,侯万荣,李超,刘勇.内蒙古林西县哈什吐钼矿床辉钼矿铼-锇年龄及其地质意义[J].矿床地质,2012,31(1):129-138.
    [229]张连昌,吴华英,相鹏,张晓静,陈志广,万博.中生代复杂构造体系的成矿过程与成矿作用-以华北大陆北缘西拉木伦钼铜多金属成矿带为例[J].岩石学报,2010,26(5):1351-1362.
    [230]张旗,王焰,盘国强,李承东,金惟俊.花岗岩源岩问题-关于花岗岩研究的思考之四[J].岩石学报,2008.26(6):1193-1204.
    [231]张旗,赵太平,王焰,王元龙.中国东部燕山期岩浆活动的几个问题[J].岩石矿物学杂志,2001,20(3):273-292.
    [232]张苏江.黑龙江省铁力地区钼(铜)矿床成矿地质条件及找矿潜力分析[D].长春:吉林大学,2009,1-55.
    [233]张艳斌.延边地区花岗质岩浆活动的同位素地质年代学格架[D].长春:吉林大学,2002.
    [234]张勇,孙景贵,松权衡,赵志,陈冬,门兰静,白令安,韩世炯.延边天宝山多金属矿床的矿物流体包裹体激光探针40Ar/39Ar测年及其地质意义[J].矿物岩石,2011,31(2):42-48.
    [235]张兆昆.吉林省有色金属矿床类型及其典型矿床的地质特征[J].吉林地质,1988(2):102-114.
    [236]张遵忠,吴昌志,顾连兴,冯慧,郑远川,黄建华,李晶,孙亚莉.燕辽成矿带东段新台门钼矿床的Re-Os同位素年龄及其地质意义.矿床地质,2009,28(3):313-320
    [237]张作伦,曾庆栋,屈文军,刘建明,孙兴国,张瑞斌,陈伟军,覃锋.内蒙碾子沟钼矿床辉钼矿Re-Os同位素年龄及其地质意义[J].岩石学报,2009,25(1):212-218.
    [238]张作伦,刘建明,褚少雄.内蒙古西拉沐沦成矿带羊场石英脉型钼矿床成矿流体地球化学特征研究[J].岩石学报,2012,28(2):391-400.
    [239]张作伦,刘建明,段晓侠,陈伟军.内蒙古西拉沐沦成矿带碾子沟钼矿床成矿流体地球化学特征[J].岩石学报,2010,26(5):1375-1385.
    [240]赵俊兴,秦克章,李光明,等.冈底斯北缘沙让斑岩钼矿蚀变矿化特征及与典型斑岩钼矿床的对比[J].地质与勘探,2011,47(1):54-70.
    [241]赵一鸣,林文蔚,毕承思,李大新,蒋崇俊.中国矽卡岩矿床[M].北京:地质出版社,1990,1-354.
    [242]赵一鸣.环太平洋地区的矽卡岩矿床[J].矿床地质,1991,10(1):42-51.
    [243]赵院冬,迟效国,车继英,等.延边-东宁地区晚三叠世花岗岩地球化学特征及其大地构造背景[J].吉林大学学报(地球科学版),2009,39(3):425-434.
    [244]周建波,张兴洲,马志红,等.中国东北地区的构造格局与盆地演化[J].石油与天然气地质,2009,30(5):530-538.
    [245]周伶俐,曾庆栋,刘建明,张作伦,段晓侠,陈文文,李延春,魏金江.吉林大黑山斑岩型钼矿床成矿阶段及含矿裂隙分布规律[J].地质与勘探,2010,46(3):448-454.
    [246]周清.德兴斑岩铜矿含矿斑岩成因及成矿机制[D].南京大学,2011,1-99.
    [247]朱炳泉.地球科学中同位素体系理论与应用:兼论中国大陆壳慢演化[M].北京:科学出版社,1998.
    [248]朱上庆,黄华盛.层控矿床地球化学[M].北京:冶金工业出版社,1988,177-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700