用户名: 密码: 验证码:
藏北羌塘南部基性超基性岩的成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羌塘地体南以班公湖-怒江缝合带与冈底斯板块相隔、北以金沙江带与拉萨和松潘-甘孜地体相接,西部的喀啦昆仑地体是其西延部分。以龙木错-双湖-澜沧江板块缝合带为界,羌塘划分为羌南和羌北两大块体,研究区位于羌塘中部,地层分区属羌南地层区。羌塘中部由于构造破坏,地层出露不连续,但这里却保存有较为完整的蛇绿岩以及高压变质带,构成了龙木错-双湖-澜沧江板块缝合带的主体部分。羌塘南部地区基性超基性岩以基性岩墙为主,主体由辉绿岩墙构成,侵入晚古生代裂谷型沉积中。玄武岩和苦橄玢岩露头相对较少,玄武岩呈夹层状产出于晚古生代地层中,最大厚达百余米。苦橄玢岩零星出露于龙木错-双湖-澜沧江板块缝合带以南的戈木日、片石山、和玛依岗日北坡等地,岩体的规模都很小,以小型侵入体形式产出,一般宽度十几米到数百米,延伸数十米到上千米(玛依岗日北坡),多与基性岩墙和玄武岩一起产出。岩石类型包括单斜辉石橄榄岩、二辉橄榄岩等。基性超基性岩石的围岩为展金组,岩性以砾岩、板岩、千枚岩、石英砂岩、冰海杂砾岩等为主夹灰岩、大理岩和基性火山岩,属冈瓦纳大陆北缘裂谷型沉积。
     为了确定基性岩墙群展布的几何形态,绘制了羌塘南部地区基性岩墙群的展布图,客观地反映了它们的分布特点和展布形态,它们的主体展布范围东西向超过700km,南北向约150km。由于双湖以东中新生代的大面积覆盖,推测其实际展布尚可向东延伸。最密集的地区位于果干加年山以南地区,向东密度增大,分布越来越集中,而向西分布面积逐渐增大,但是密度越来越小,逐渐发散,具有由西向东收敛的特点,辐射角度较小,约为30度,呈现出放射状展布形态,根据展布图反应出的收敛中心位于玛依岗日一带,可能指示了地幔柱的中心或一个热点的位置。
     羌塘南部典型辉绿岩获得了锆石SHRIMP年龄为302±4Ma、284±3Ma、279±2Ma、285±3Ma、283±1Ma。本次获得的三件辉绿岩样品年龄分别为300.0±1.8Ma、291±2Ma、292±3Ma,综合以上年代学数据,羌塘南部基性岩的形成时代在279~302Ma),时间跨度为23Ma,具有快速侵位-喷溢的特点。
     地球化学方面,基性岩墙和玄武岩具有以下几个方面的特点:(1)成分上属于碱性系列岩石,富集钛和铁;(2)轻稀土元素富集,球粒陨石标准化稀土元素配分曲线形态为光滑一致的曲线,曲线呈向右倾斜型,不存在Eu的异常;(3)微量元素组成接近洋岛玄武岩,但是数样品的Nb、Ta表现为亏损。总的地球化学特点与板内玄武岩相似。不相容元素比值的平均值与峨眉山玄武岩和OIB型玄武岩接近。羌塘那部地区的超基性岩石主要为苦橄玢岩,而且其源区很可能为石榴石二辉橄榄岩,很可能来自于地幔柱岩浆,而且受到地壳物质的混染程度很低。
     总体而言,羌塘南部地区的基性超基性岩石很可能是地幔柱活动的产物,而基性岩墙锆石Hf同位素组具有亏损型地幔源区的特征则说明基性岩墙的源区来自于亏损型地幔。羌塘南部地区基性岩墙群由西向东可分为三个不同的展布区域,可能对应了地幔柱与板块相互作用的三个阶段,伴随着地幔柱在300~280Ma年间的生长和消亡,羌南板块发生了由东向西的漂移以及南北向的伸展,而且该过程很可能促进了古特提斯洋的关闭。
Qiangtang massif is isolated from Gangdise massif in the south by BangongCo-Nujiang River suture zone, and connected to Lhasa and Songpan-Ganzi massifwith Jinshajiang suture zone. Karakoram massif in the west is the westward extensionof the Qiangtang massif..Qiangtang massif is divided into south and north two partsby Longmu Co-Shuanghu-Lancang suture zone. The study region is located in thecentral Qiangtang, included by stratigraphic subregion of southern Qiangtang. Incentral Qiangtang, exposed strata is discontinuous due to structural damage. However,ophiolite and high-pressure metamorphic belt remained intact in the study region.,constituting main component of the Longmu Co-Shuanghu-Lancang suture zone.
     Basic-ultrabasic rocks in southern Qiangtang mostly consist of basalt interbededin Late Palaeozoic strata.The maximal thickness of basalt can be more than onehundred metres. Picrite-porphyrite mostly sporadically together with basic dykes andbasalt outcrops in Gemuri, Pianshishan, Erlianhu and Mayigangri, south of LongmuCo-Shuanghu-Lancang suture zone.The rock is of small scale in the form of minorintrusions with a width range from ten meters to hundreds of metres, a length fromdozens of meters to several kilometers(northern Mayigangri). Picrite-porphyritemainly includes clinopyroxene-peridotites and lherzolite. The feature suggestsultrabasic rocks may be from the mantle plume. According to the geochemistryresearch done by us before, the ultrabasic rocks are meimechites and might have beenderived from garnet lherzolite of the mantle with little contamination of crustmaterials. The surrounding rocks of the basic-ultrabasic rocks mainly consisit ofconglomerate,sandstone, sandstone with limestone, oolites and glacial-marineconglomerate formed by Gondwana continental rift valley-type sedimentation.
     A map that shows the distribution of basic dykes is pictured. In this map,distribution area of basic dykes is more than80000km2with a range of700km from east to west, and150km from north to south. Considering that there arelarge areas of Mesozoic and Cenozoic strata in east of Shuanghu, the actual rangecan be extended eastwards. The densest distribution is in south of Guoganjianainmountain.To the east distribution density increases, more concentrated, and to thewest distribution area increase gradually while density decreases and spreadgradually, with the characteristics of the convergence from west to east. Theradiation angle is about30degrees, Convergence center is reflected to be locatedin Mayigangri, which may be the center of mantle plume.
     Zircon U–Pb isotope analyses indicate that the dykes were emplaced in the EarlyPermian (302±4Ma,284±3Ma,279±2Ma,285±3Ma,283±1Ma). The ages ofthe three diabase samples are300.0±1.8Ma,291±2Ma,292±3Ma. Thus, we inferthat the mafic dykes in southern Qiangtang were emplaced within23Ma between279Ma and302Ma, having the feature of rapid emplacement and extrusion.
     The basic rocks in southern Qiangtang exhibit the following characteristics:(1)they resemble alkaline rocks which are identified as the products of mantle plume(Whitehead and Luther1975; Morgan1981; Campbell and Griffiths1990; Griffithsand Campbell1990);(2) they are rich in Ti resembling the Emeishan basalts androcks from typical mantle plumes;(3) they are Fe-rich, which may also suggestassociation with mantle plume activity;(4) they are LREE-enriched without a Euanomaly and similar to the oceanic island basalt in composition of trace elements butdepleted in Nb and Ta. The mean ratios of the incompatible elements in the basicrocks in southern Qiangtang are close to those of the Emeishan basalts and OIBbasalts, which suggests a similar origin. Basic-ultrabasic rocks in southernQiangtang are likely to be the products of a mantle plume and the zircon Hf isotopecomposition is similar to that of depleted mantle, which implies that the mafic dykesmay have originated from a depleted mantle source.
     The three different distribution regions of the mafic dykes may indicate thecombined effect of plate motions and mantle plume activity. The southern Qiangtangblock shifted westwards together with the north–southwards extension as the mantleplume rose and died away300–280Ma ago. Furthermore, the mantle plume in southern Qiangtang may have propelled the closing of the Paleo-Tethys Ocean.
引文
[1]. Achayya S K.2000. Break up of Australia-India-Madagascar Block,Opening ofthe Indian Ocean and continental accretion in Southeast Asia with specialreference to the characteristics of the Peri-Indian Collision Zones.GondwanaResearch,3(4):425-443.
    [2]. Audle y-Charles M G.1983. Reconstruction of eastern Gondwanaland.Nature,306:48-50.
    [3]. Audle y-Charles M G.1984. Cold Gondwana, warm Tethys and the TibetanLhasa block. Nature,310:165-166.
    [4]. Audle y-Charles M G.1988. Evolution of the southern margin of Tethys(NorthAustralian region) from early Permian to late Cretaceous.Geological SocietySpecial Publication,37:79-100.
    [5]. Allege CJ and thirty-four others.1984. Strueture and evolution of theHimalaya—Tibet orogenie belt.Nature,307:17–22.
    [6]. Baker D K and Willey P J.1992. High pressure apatite solubility incarbonate-rich liquids; implications for mantle metasomatism.Geochim.Cosmochim. Acta,56:3409-3422.
    [7]. Baer G., Heimann A.1995.Physics and Chemistry of dykes. Balkema,Rotterdam.13-39.
    [8]. Basu,A.R., Poreda, R. J., Renne, P. R., et al.,1995. High-3He plume oringin andtemporal-spatial evolution of the Siberian flood basalts. Science,269:822–825.
    [9]. Bryan S E and Ernst R E.2008. Revised definition of large igneous provinces(LIPs). Earth-Science Reviews,86:175–202.
    [10]. Campbell I H, Griffiths R W, Hill R I.1989. Melting in an Archcan mantleplume, head it's komatiites. Nature,339:697–699.
    [11]. Campbell, I. H., Czamanske, G. K., Fedorenko, V. A.,1992. Synchronism of theSibereria traps and the Permian-Trias-sic boundary. Science,258:1760–1763.
    [12]. Campbell, I. H.,Griffiths, R. W.,1990. mplications of mantle plume struc-turefor the evolution of flood basalts.Earth Planet Sci Lett,99:79–83.
    [13]. Chauvet, F., Lapierre, H., Bosch, D., Guillot, S., Mascle, G., Vannay, J.C.,Cotten, J., Brunet,P., Keller, F.,2008. Geochemistry of the Panjal Traps basalts(NW Himalaya):records of the Pangea Permian break-up. Bulletin de la SociétéGéologique deFrance179(4),383–395.
    [14]. Chung S L, Jahn B M.1995. Plume-lithosphere interaction in generation of theEmeishan flood basalt at The Permian-Triassic boundary.Geology,23:889–892.
    [15]. Coffin M F, Eldholm O.1994. Large igneous provinces: Crustal structure,dimensions, and external consequences. Rev Geophys,32:1–36.
    [16]. Compston W,Froude D O, Reland TR,et al.1985. The age of (a tiny partof)the Australian continent. Nature.317:359-360.
    [17]. Compston W,Pidgeon RT. JackHills.1986. evidence of more very old detritalzircons in western Australian. Nature.321:766-769.
    [18]. Courtillot, V., Jaupart, C., Manighetti, I., et al.,1999. On causal links betweenflood basalts and continental breakup. Earth Planet Sci Lett,166:177–195.
    [19]. Czamanske, G. K., Gurevitch, A. B., Fedorenko, V and Simonov,O.1998.Demise of the Siberian plume, paleogeographic and paleotectonic reconstructionfrom the prevolcanic and volcanic record, north-central Siberia. InternationalGeology Review,40:95-115.
    [20]. Devey C. W, Stephens W. E.1991.Tholeiitic dykes in the Seychelles and theoriginal spatial extent of the Deccan. Journal of the Geological Society.148(6):979-983.
    [21]. Dewey J F, Shackelton R M, Chang C, Sun Y.1988. The tectonic evolution ofthe Tibetan Plateau.Phil.Trans. R.Soc.Lond, A327:379–413.
    [22]. Duncan, R. A., Hooper, P. R., Rehace, J., et al.,1997. The timing and durationof the Karoo igneous event, southern Gondwana. Journal of GeophysicalResearch,102(B8):18127–18138.
    [23]. Duncan, R. A., Richards, M. A.,1991. Hotspots, mantle plumes, flood basalts,and true polar wander. Rev. Geophys,29:31–50.
    [24]. Ellen D.Mullen.,1983.MnO/TiO2/P2O5: a minor element discriminant forbasaltic rocks of oceanic environments and its implications for petrogenesis.Earth and Planetary Science Letters.62:53-62.
    [25]. Ernst R E,Buchan K L and Palmer H C.1995.Giant dyke swarms: characteristics,distribution and geotectonic application,in physics and chemistry of dykes.BaerG And Heimann A., Balkema, Rotterdan pp:3-21.
    [26]. Ernst, R. E., Buchan, K. L., West, T. D., et al.,1996. Diabase (dolerite) dykeswarms of the world: first edition,1:35,000,000map. Geol.Sury.Can.Open File3,241:1–104.
    [27]. Erwin, D. H.,1994. The Premo-Triassic extinction.Nature,367:231–236
    [28]. Griffiths, R. W., Campbell, I. H.,1990. Stirring and structure in mantle plumes.Earth Planet Sci Lett,99:66–78.
    [29]. Guo, F., Fan, W. M and Wang, Y. J.,2004. When did the Emeishan plumeactivity start? Geochronological evidence from ultramafic-mafic dikes inSouthwestern China. International Geology Review,46:226-234.
    [30]. Halls H C.1982,The importance and potential of mafic dyke swarms in studiesof geodynamic processes. Geoscience Canada.9(3):145-154.
    [31]. Halls H C.1987. Dyke swarms and continental rifting:some concludingremarks[A]. Halls H C and Fahrig W F. Mafic Dyke Swarms. GeologicalAssociation of Canada Special Paper34:5-24.
    [32]. Halls H C. Fahrig W F(Editors).1987.Mafic dyke swarms.GeologicalAssociation of Canada Special Paper.34:1-503.
    [33]. Hennig, A.1915. Zur Petrographie and geologie von Sudwest Tibet,in SouthernTibet,vol.5,edited by S. Hedin,220pp., Norstedt, Stockholm.
    [34]. Hill R I.1991. Start plumes and continental break-up.Earth Planet Sci Lett,104:398–416.
    [35]. Hill R.H I.1992.Mantle plume and continental tectonics,Science,256:186–193.
    [36]. Hoek J D, Seitz H M.1995.Continental mafic dykes swarms as tectonicindicators: an example from the vestfold hills.EastA.ntarctica.Precambrian.Research.75:121-139.
    [37]. Hoernle, K., Hauff, F., Bogaard, P. V. D.,2004.70m. y. history (139~69Ma) forthe Caribbean large igneous province. Geology,32(8):697–700.
    [38]. Hu Zhaochu, Yongsheng Liu, Shan Gao, Wengui Liu, Lu Yang, Wen Zhang,Xirun Tong, Lin Lin, Keqing Zong, Ming Li, Haihong Chen and Lian Zhou andLu Yang, Improved in situ Hf isotope ratio analysis of zircon using newlydesigned X skimmer cone and Jet sample cone in combination with the additionof nitrogen by laser ablation multiple collector ICP-MS, Journal of AnalyticalAtomic Spectrometry,2012,27,1391–1399.
    [39]. Hu Zhaochu, Yongsheng Liu, Shan Gao, Wengui Liu, Lu Yang, Wen Zhang,Xirun Tong, Lin Lin, Keqing Zong, Ming Li, Haihong Chen and Lian Zhou andLu Yang, Improved in situ Hf isotope ratio analysis of zircon using newlydesigned X skimmer cone and Jet sample cone in combination with the additionof nitrogen by laser ablation multiple collector ICP-MS, Journal of AnalyticalAtomic Spectrometry,2012,27,1391–1399.
    [40]. Irina Segal, Ludwik Halicz and Itzhak T. Platzner, Accurate isotope ratiomeasurements of ytterbium by multiple collection inductively coupled plasmamass spectrometry applying erbium and hafnium in an improved double externalnormalization procedure. Journal of Analytical Atomic Spectrometry,2003,18,1217–1223.
    [41]. Janne Blichert-Toft, Catherine Chauvel and F. Albarède, Separation of Hf andLu for high-precision isotope analysis of rock samples by magneticsector-multiple collector ICP-MS, Contributions to Mineralogy and Petrology,1997,127,248–260.
    [42]. Jin, X.C.,2002. Permo-Carboniferous sequences of Gondwana affinity insouthwest China and their paleogeographic implications. Journal of Asian EarthSciences,20:633–646.
    [43]. Jourdan, F., Féraud, G., Bertrand, H., et al.,2005. Karoo large igneous province:Brevity, origin, and relation to mass extinction questioned by new40Ar/39Ar agedata. Geology,33(9):745–748.
    [44]. Kamo, S. L., Czamanske, G. K., Krough, T. E.,1996. A minimum U-Pb age forSiberian flood-basalt volcanism. Geochimica et Geochimica Acta,60:3505–3511.
    [45]. Lapierre, H., Samper, A., Bosch, D., Maury, R.C., Bechennec, F., Cotten, J.,Demant, A.,Brunet, P., Keller, F., Marcoux, J.,2004. The Tethyan plume:geochemical diversity of Middle Permian basalts from the Oman rifted margin.Lithos74(3–4),167–198.
    [46]. LARSEN L M, PEDERSEN A K.2000.Processes in high-Mg, high-T magmas:Evidence from olivine,chromite and glass in Palaeo-gene picrites from WestGreenland. J Petrol.41:1071-1098.
    [47]. Lassiter J C, Depaolo D J.1997. Plume/lithosphere interaction in the generationof continental and oceanic flood basalts: Chemical and isotope constraints[A].Mahoney J ed. Large igneous provinces: Continental, oceanic, and planetaryflood volcanism. Geophysical Monography100, American Geophysical Union.335-355.
    [48]. Li C,Zhai Q G,Dong Y S,Huang X P.2006.Discovery of eclogite and itsgeological significance in Qiangtang area, central Tibet. Chinese ScienceBulletin51(9),1095–1100.
    [49]. Li C,Zhai QG,Dong YS,et al.2009.High-Pressure Eclogite-BlueschistMetamorphic Belt and Closure of Paleo-Tethys Ocean in Central Qiangtang,Qinghai-Tibet Plateau.Journal of Earth Science,20(2):209-218.
    [50]. Li, C., Zheng, A.,1993. Paleozoic stratigraphy in the Qiangtang region of Tibet:relations of the Gondwana and Yangtze continents and ocean closure near theend of the Carboniferous. International Geology Review,35:797–804.
    [51]. Lightfoot P C. Hawkesworth C J,Devey N W. Rugers. VanCatslern P WC.Source and differentiatton of Deccan Traps lavas:: Imphcations ofgeochemical and mineral chemical vanations.J.Petrol.,1990.31:1165-1200.
    [52]. Ludwing K R.2003. Isoplot/Ex version3.00—A Geochronology Toolkit forMicrosoft Excel. Berkeley Geochronology Center Special Publication,4:1–70.
    [53]. Mengel K and Green D H.1989. Stability of amphibole and phlogopite inmetasomatised peridotite under water-saturated and water-undersaturatedconditions. In: Ross J, ed. Fourth International KimberGte Conference.Australian Journal of Earth Sciences Special Publication,14:571-581.
    [54]. Meschede M. A.1986. method of discriminating between different type ofmid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram.Chem. Geol,56:207–218.
    [55]. Morgan W J.1971. Convection plumes in the lower mantle. Nature.280:42-43.
    [56]. Morgan, W. J.,1981. Hotspot tracks and the opening of the Atlantic and IndianOceans.In: Emiliani C,ed.The Sea7.New York:Wiley,443–487.
    [57]. Norin E.1946. Geological exploration in wenstern Tibet, in Sino-SewdishExpedition Report. Sweden Stockholm,1–214.
    [58]. Parker A J, Rickwood R C, Tucker D H.1990.Congres Mafic Dykes andEmplacement Mechanisms.Rotterdam Balkema.15-41.
    [59]. Pearce J A, Cane J R.1973. Tectonic setting of basic volcanic rocksdetermined using trace element analyses. Earth planet Sci. Lett.19:290-300.
    [60]. Pearce J A, Cane J R.1973. Tectonic setting of basic volcanic rocks determinedusing trace element analyses. Earth planet Sci. Lett.19:290–300.
    [61]. Pearce J A, Norry M J.1979. Petrogenetic implications of Ti,Zr,Y and Nbvariations in volcanic rocks.Contrib.Mineral.Petrol,69:33–47.
    [62]. Pierce J A, Mei H.1988.Volcanic rocks of the1985Tibet Geotra-verseLhasato Golmud.Phil Trans.Roy.Soc.Lond, A327:203–213.
    [63]. Puffer, J. H.,2001. Contrasting high field strength element contents of contnental flood basalts from plume versus reactivated-arc sources. Geology,29:675–678
    [64]. Renne, P. R., Deino, A. L., Walter, R. C., et al.,1994. Intercalibration ofastronomical and radio-isotopic time. Geology,22:783–786.
    [65]. Richards M A, Duncan R A, Courtillot V E.1989. Flood-basalts and hot spottracks: Plume heads and tails.Science,246:103–107.
    [66]. Ridd, M.F.,1980. Possible Palaeozoic drift of S. E.Asia and Triassic collisionwith China.Journal of the Geological society,137.
    [67]. Riley T R, Leat P T, Curtis M L, Millar I L, Robert A. Duncan R A and FazelA.2005. Early-Middle Jurassic Dolerite Dykes from Western Dronning MaudLand (Antarctica): Identifying Mantle Sources in the Karoo Large IgneousProvince.Journal of Petrology.46(7):1489-1524.
    [68]. Scarrow, J. H., Cox, K. G.,1995. Basalts generated by decompressive adiabaticmelting of a mantle plume:a case study from Isle of Skye, NW Scotland. J.Petrol,36:3–22.
    [69]. Searle M P, Cooper D J W, Rex A J.1991.Collision tectonics of the Ladakh-Znaskar Himalaya.Phil.Trans.R.Soc.Lond,A326:117–150.
    [70]. Sharma, M.,1997. SiberianTraps, Large Igneous Provinees: continental, oceanic,and planetary flood voleanism. Mahoney J J, Coffin M F, ed.273–296.
    [71]. Sheth, H.,2007. Large igneous provinces (LIPs): Definition, recommendedterminology, and a hierarchical classification.Earth-Science Reviews,85:117–124.
    [72]. Song, X.,Zhou, M., Hou,Z.,2001. Geochemical constraints on the mantlesource of the upper Permian Emeishan continental flood basalts, southern China.International Geology Review.43.213-225.
    [73]. Storey, B. C.,1995. The role of the mantle plumes in continental breakup: casehistories from Gonwana. Nature,377:301–308.
    [74]. Sun, S. S., McDonough, W. F.,1989. Chemical and isotopic systematics ofoceanic basalts: Implications for mantle composition and processes. In: SaundersAD and Norry MJ (eds.). Magmatism in the Ocean Basins. London:Geological Society Special Publications,42:313–345.
    [75]. Thistlewood L, Leat P T, Millar I L.1997.Basement geology andPalaeozoic-Mesozoic mafic dykes from the Cape Meredith Complex, FalklandIslands: a record of repeated intracontinnental extension. GeologicalMagazine.134:355-367.
    [76]. Thompson R N.1982. Magmatism of the British Tertiary volcanic provinceScottish. Journal of Geology,18(1):49-107.
    [77]. Watson E B.1980. Apatite and phosphorus in mantle source regions:anexperiment study of apatite/melt equilibria at pressures to25kbar. Earth Planet.Sci. Lett.。51:322-335.
    [78]. Whitehead, J. A., Luther, D. S.,1975. Dynamics of laboratory diapir and plumemodels. Jour Geophys Res,80:705–717.
    [79]. Wiedenbeck M, Alle P and Corfu F.1995.Three natural zircon standards forU-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards andGeoanalytical Research,19:1-23.
    [80]. Willson J T.1963.A possible origin of theHawaiian Island.Can. J. Phys.41:863-870.
    [81]. Wilson, M.,1989. Igneous petrogenesis. London:Unwin Hyman.
    [82]. Winchester J A, Floyd P A.1977. Geochemical discrimination of differentmagma series and their differentiation prod ucts using immobile elements. Chem.Geo1,20:325–343.
    [83]. Xu Y, He B, Chung SL, Menzies MA and Frey FA.2004. Geologic,geochemical,and geophysical consequences of plume involvement in the Emeishanflood-basalt province,32;917-920.
    [84]. Xu Y, Chung S, Jahn B and Wu G.2001. Petrologic and geochemicalconstraints on the petrogenesis of Permian-Triassic Emeishan flood basalts insouthern China. Lithos.58:145-168.
    [85]. Yongsheng Liu, Shan Gao, Zhaochu Hu, Changgui Gao, Keqing Zong andDongbing Wang, Continental and oceanic crust recycling-inducedmelt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hfisotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology,2010,51,537–571.
    [86]. Zhai Q G, Bor ming Jahn, Su L, Richard E.Ernst,Wang K L,Zhang R Y,Wang J,Tang S H.2012.SHRIMP zircon U–Pb geochronology, geochemistry andSr–Nd–Hf isotopic compositions of a mafic dyke swarm in the Qiangtangterrane,northern Tibet and geodynamic implications.Lithos,(2012),http://dx.doi.org/10.1016/j.lithos.10.01.
    [87]. Zhai Q G, Li C, Huang X P.2007. The fragment of Paleo-Tethys ophiolite fromcentral Qiangtang,Tibet?—geochemical evidence of metabasites inGuoganjianian. Science in China(Series D),50(9):1302–1309.
    [88]. Zhai Q G,Li C, Wang J,Ji Z S,Wang Y.2009.SHRIMP U-Pb dating andHf isotopic analyses of zircons from the mafic dyke swarms in central Qiangtangarea, Northern Tibet.Chinese Sci Bull,54:2279–2285.
    [89]. Zhai Q G, Zhang R Y, Bor ming Jahn, et al.2011.Triassic eclogites from centralQiangtang, northern Tibet, China: Petrology,geochronology and metamorphicP–T path.Lithos, Lithos,125(2011):173–189.
    [90]. Zhu, D.C., Mo, X.X., Zhao, Z.D., Niu, Y.L., Wang, L.Q., Chu, Q.H., Pan, G.T.,Xu, J.F., Zhou,C.Y.,2010. Presence of Permian extension-and arc-typemagmatism in southern Tibet: paleogeographic implications. Geological Societyof America Bulletin122(7–8),979–993.
    [91].鲍佩声,肖序常,王军等.1999.西藏中北部双湖地区蓝片岩带及其构造涵义.地质学报,73(4):302-314.
    [92].陈莉,徐军,苏犁.2005.场发射环境扫描电子显微镜上阴极荧光谱仪特点及其在锆石研究中的应用.自然科学进展,15(11):1403–1408.
    [93].陈孝德,史兰斌,贾三发.1992.华北元古代基性岩墙群研究.地震地质,14(4):352-357.
    [94].邓晋福.岩石相平衡与岩石成因.武汉:武汉地质学院出版杜,1987.
    [95].董永胜,张修政,施建荣,王生云.2009.藏北羌塘中部高压变质带中石榴子石白云母片岩的岩石学和变质特征.地质通报,28(9):1201–1206.
    [96].段其发,杨振强,王建雄,白云山,牛志军,姚华舟.2006.青藏高原北羌塘盆地东部二叠纪高Ti玄武岩的地球化学特征.地质通报,25(1-2):157–162.
    [97].韩伟,罗金海,樊俊雷,等.2009.贵州罗甸晚二叠世辉绿岩及其区域构造意义.地质论评,55(6):795-803.
    [98].胡俊良,赵太平,陈伟,等.2007.华北克拉通1.75Ga基性岩墙群特征及其研究进展.大地构造与成矿学.31(4),457-470.
    [99].胡培远,李才,李林庆,解超明,吴彦旺.2009.藏北羌塘中部早古生代蛇绿岩堆晶岩中斜长花岗岩的地球化学特征.地质通报,28(9):1297–1308.
    [100].黄开年.1986.我国西南地区峨眉山玄武岩的岩石地球化学特征及其大地构造意义.北京:中国科学院地质研究所,173.
    [101].纪占胜,姚建新,武桂春,詹立培,蒋忠惕,傅渊慧.2005.拉萨林周地区下二叠统旁多群地层层序、岩石学特征及其成因的研究.地质学报,79(4):433–443.
    [102].江思宏,聂凤军,胡朋,等.2007.藏南基性岩墙群的地球化学特征.地质学报,81(1):62-71.
    [103].李才.1987.龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界.长春地质学院学报,17(2):155–166.
    [104].李才,程立人,胡克,洪裕荣.1995a.西藏羌塘南部地区的冰海杂砾岩及其成因.长春地质学院学报,25(4):368–374.
    [105].李才,程立人,胡克,等.1995b.西藏龙木错-双湖古特提斯缝合带研究.北京:地质出版社:74-85.
    [106].李才,张兴洲,和钟铧.1996.西藏羌塘地区几个地质构造问题.世界地质,15(3):18–23.
    [107].李才.1997.青藏羌塘中部蓝片岩青铝闪石40Ar/39Ar及其地质意义.科学通报,48(1):448.
    [108].李才,王天武,杨德明,等.2001.西藏羌塘中央隆起区物质组成与构造演化.长春科技大学学报31(1):26-31.
    [109].李才.2003.羌塘基底质疑.地质论评,49(1):5–9.
    [110].李才,程立人,张以春,等.2004a.西藏羌塘南部发现奥陶纪—泥盆纪地层.地质通报.23(5/6):602-604.
    [111].李才,和钟铧,李惠民.2004b.青藏高原南羌塘基性岩墙群U-Pb和Sm-Nd同位素定年及构造意义.中国地质,31(4):384–389.
    [112].李才,翟庆国,程立人,等.2005.青藏高原羌塘地区几个关键地质问题的思考.地质通报.24(4):296-301.
    [113].李才,黄小鹏,翟庆国,等.2006a.龙木错—双湖—吉塘板块缝合带与青藏高原冈瓦纳北界.地学前缘,13(4):136-147.
    [114].李才,翟庆国,董永胜,等.2006b.青藏高原羌塘中部发现榴辉岩及其意义.科学通报.51(1):70-74.
    [115].李才,翟庆国,陈文等.2006c.青藏高原羌塘中部榴辉岩Ar-Ar定年.岩石学报,22(12):2843-2849.
    [116].李才,翟庆国,陈文,等.2007a.青藏高原龙木错-双湖板块缝合带闭合的年代学证据——来自果干加年山蛇绿岩与流纹岩的Ar-Ar和SHRIMP年龄制约.岩石学报.23(05):911-918.
    [117].李才,瞿庆国,董永胜,等.2007b.青藏高原龙木错-双湖板块缝合带与羌塘古特提斯洋演化记录.地质通报.26(1):13-21.
    [118].李才,董永胜,翟庆国,王立全,阎全人,吴彦旺,何彤彤.2008a.青藏高原羌塘早古生代蛇绿岩——堆晶辉长岩的锆石SHRIMP定年及其意义.岩石学报,24(01):31–36.
    [119].李才,谢尧武,蒋光武,施建荣,王生云.2008b.藏东吉塘地区冈瓦纳相冰海杂砾岩的特征及其意义.地质通报,27(10):1664–1658.
    [120].李才,程立人,翟庆国,等.2012.西藏1∶25万玛依冈日幅区域地质调查报告.中国地质大学(武汉)出版社.
    [121].李江海,何文渊,钱祥麟.1997.元古代基性岩墙群的成因、构造背景及其古板块再造意义.高校地质学报,3(3):272-281.
    [122].梁定益,聂泽同,郭铁鹰,等.1983.西藏阿里喀喇昆仑南部的冈瓦纳-特提斯相石炭-二叠系.地球科学,19(1):9-27.
    [123].卢成忠,汪庆华,顾明光.2007.杭州河上地区新元古代火山岩与侵入岩的岩浆同源性.高校地质学报,13(4):694-702.
    [124].陆松年,蒋明媚.2003.地幔柱与巨型放射状岩墙群.地质调查与研究,26(3):136-144.
    [125].毛建仁,苏郁香,陈三元,等.1989.东南沿海中生代侵入岩及与火山岩的时空演化关系.中国地质科学院南京地质矿产研究所.10(3):45-59.
    [126].牟世勇,熊兴国,陈厚国等.2012.西藏1∶25丁固幅区域地质调查报告.中国地质大学(武汉)出版社.
    [127].聂泽同,梁定益,宋志敏,姜建军,聂伟.1997.早二叠世亲冈瓦纳相在思茅地块西缘的发现及其意义.现代地质,11(3):261–267.
    [128].聂泽同,宋志敏,姜建军,梁定益.1993.滇西亲冈瓦纳相生物群特征及地层时代的重新厘定.现代地质,7(4):384–393.
    [129].施建荣,董永胜,王生云.2009.藏北羌塘中部果干加年山斜长花岗岩定年及其构造意义.地质通报,28(9):1236–1243.
    [130].宋谢炎,侯增谦,汪云亮,张成江,曹志敏,李佑国.2002.峨眉山玄武岩的地幔热柱成因.矿物岩石,22(4):27–32.
    [131].汪云亮,张成江,修淑芝,2001.玄武岩类形成的大地构造环境的Th/Hf一Ta/Hf图解判别.岩石学报,17(3):403一412.
    [132].王国芝,王成善.2001.西藏羌塘基底变质岩系的解体和时代厘定.中国科学D.31(增刊):77-82.
    [133].王立全,潘桂棠,李才,董永胜,朱弟成,袁四化,朱同兴.2008.藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIMP U-Pb年龄──兼论原-古特提斯洋的演化.地质通报,27(12):2045–2056.
    [134].王明,李才,翟庆国,等.2009.藏北羌塘南部地区基性岩墙与玄武岩的岩浆同源性.地质通报.28(9):1281-1289.
    [135].王明,李才,翟庆国,彭帅英,解超明,吴彦旺,胡培远.2010.青藏高原羌塘南部晚古生代地幔柱?——来自基性—超基性岩的地球化学证据地.质通报报,29(12):1754–1772.
    [136].王权,董挨管,段春森,等.2004.西藏北部拉竹龙地区泥盆纪岩石地层单位划分与时代讨论.地质通报.24(3):30-37.
    [137].王义昭,李兴林,段丽兰,等.2000.三江地区南段大地构造与成矿北京:地质出版社,1-113.
    [138].文世宣.1979.西藏北部地层新资料.地层学杂志,3(2):150-156.
    [139].吴福元,李献华,郑永飞,高山.2007.Lu-Hf同位素体系及其岩石学应用.岩石学报,23(2):185–220.
    [140].吴瑞忠,胡成祖,王成善,等.1985.藏北羌塘地区地层系统//青藏高原地质文集第9集.1-32.
    [141].吴彦旺,李才,董永胜,解超明,胡培远.2009.藏北羌塘中部桃形湖早古生代蛇绿岩的岩石学特征.地质通报,28(9):1290–1296.
    [142].西藏自治区地质矿产局.1993.西藏自治区区域地质志.北京:地质出版社,269-272.
    [143].夏军,王陆太,钟华明,童劲松,鲁如魁,王明.2009.青藏高原龙木错地区志留纪大型古三角洲沉积体系的识别及其意义.地质通报,28(9):1267–1275.
    [144].肖龙.2004.地幔柱构造与地幔动力学——兼论其在中国大陆地质历史中的表现.矿物岩石地球化学通报.23(3):239-245.
    [145].谢桂青,胡瑞忠,蒋国豪,赵军红.2001.锆石的成因和U-Pb同位素定年的某些进展.地质地球化学.29(4):64-69.
    [146].徐义刚,钟孙霖.2001.峨眉山大火成岩省:地幔柱活动的证据及其熔融的条件.地球化学,30(1):1–9.
    [147].徐义刚,何斌,黄小龙,等.2007.地幔柱大辩论及如何验证地幔柱假说.地学前缘.14(2):1-9.
    [148].杨经绥,吴才来,夏林圻,樊祺诚,徐义刚,徐夕生.2009.火成岩的10年研究进展和未来的挑战.地质论评.55(3):406-419.
    [149].姚建新,纪占胜,武桂春,詹立培,刘贵忠,蒋忠惕,傅渊慧.2007.西藏申扎地区德日昂玛-下拉剖面:冈瓦纳和特提斯晚石炭世—早二叠世地层和古生物对比的桥梁.地质通报,26(1):31–41.
    [150].于红.2011.陕西商南松树沟橄榄岩矿物地球化学特征及其成因机理示踪.北京:中国地质大学,22-25.
    [151].翟庆国,李才,程立人,等.2004.西藏羌塘角木日地区二叠纪蛇绿岩地质特征及构造意义.地质通报.23(12):1228-1230.
    [152].翟庆国,李才,黄小鹏.2006西藏羌塘角木日地区二叠纪玄武岩地球化学特征及构造意义.地质通报25(12):1419-1427.
    [153].翟庆国,李才,王军.2009.藏北羌塘中部戈木日榴辉岩的岩石学、矿物学及变质作用PTt轨迹.地质通报,28(9):1207-1220.
    [154].翟庆国,王军,李才,苏犁.2010.青藏高原羌塘中部中奥陶世变质堆晶辉长岩锆石SHRIMP年代学及Hf同位素特征.中国科学(D辑),40(5):565–573.
    [155].张招崇,王福生,范蔚茗,邓海琳,徐义刚,许继峰,王岳军.2001.峨眉山玄武岩研究中的一些问题的讨论.岩石矿物学杂志,20(3):239–246.
    [156].张招崇,王福生,郝艳丽.2004.峨眉山大火成岩省中苦橄岩与其共生岩石的地球化学特征及其对源区的约束.地质学报,78(2):171–180.
    [157].张招崇,王福生,郝艳丽.2005a.峨眉山大火成岩省中的苦橄岩:地幔柱活动的证据.矿物岩石地球化学通报.24(1):17-22.
    [158].张招崇,王福生,郝艳丽,John J. Mahoney.2005b.峨眉山大火成岩省和西伯利亚大火成岩省地球化学特征的比较及其成因启示.岩石矿物学杂志,24(1):12–20.
    [159].赵政璋,李永铁等.2001.青藏高原地层.北京:科学出版社.
    [160].朱炳泉,崔学军.2006.板块构造学说面临的挑战.大地构造与成矿学.30(3):265-274.
    [161].张修政,董永胜,解超明等.2010a.安多地区高压麻粒岩的发现及其意义.岩石学报:26(7),2106-2112.
    [162].张修政,董永胜,李才等.2010b.青藏高原羌塘中部不同时代榴辉岩的识别及其意义—来自榴辉岩及其围岩40Ar-39Ar年代学的证据.地质通报,29(12):1815-1824.
    [163].张修政,董永胜,李才等.2010c.青藏高原羌塘中部榴辉岩地球化学特征及其大地构造意义.地质通报,29(12):1804-1814.
    [164].朱弟成,赵志丹,牛耀龄等.2012.拉萨地体的起源和古生代构造演化.高校地质学报,18(1):1-15.
    [165].西藏区域地质调查大队.1:100万日土幅地质报告.1987.
    [166].西藏自治区地矿局.西藏自治区地质志.地质出版社,1993,269-272.
    [167].西藏自治区地质矿产局.1997.西藏自治区岩石地层.武汉:中国地质大学出版社.
    [168].西藏自治区地质矿产局.1986.改则幅1∶100万区域地质调查报告:105-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700