用户名: 密码: 验证码:
松辽盆地东南部上白垩统含油页岩系有机质富集环境动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松辽盆地上白垩统青山口组和嫩江组发育厚层的富有机质暗色泥岩,尤其松辽盆地东南部在这两组地层下部沉积了品质较好的厚层油页岩。这套含油页岩系由于有机质含量丰富,且干酪根成熟度较低,蕴含了丰富的古环境信息,是开展有机质富集环境动力学的最佳层段。
     开展含油页岩系有机质富集环境动力学研究,首先要弄清研究区的沉积环境,在岩心和野外剖面观察、测井曲线分析和系统的地球化学测试基础上,识别出本区主要发育湖泊相,可分为滨湖、浅湖、半深湖-深湖3种沉积亚相。此外还发育风暴沉积、火山灰沉积、介形虫迅速卸载沉积和震积岩四种事件沉积和三角洲沉积。结合地球化学数据,建立盆地不同沉积演化阶段的沉积相-有机相-地球化学相,其中油页岩最易形成的相类型为半深湖-深湖相—A-B(湖泊生物为主)—咸水-半咸水还原环境(青一段)和半深湖-深湖—A-B—半咸水-淡水还原环境(嫩一、二段)。
     等时层序地层格架的建立是揭示横纵向沉积环境演化的基础,研究区在青山口和嫩江组沉积时期多数区域为半深湖-深湖沉积,但深水沉积是最难用层序地层学术语解释的沉积体系。泥岩中的有机质蕴含着丰富的湖平面变化信息,根据TOC含量的变化特征,搭建了深水区域高精度层序地层格架。根据层序格架内油页岩展布特征,在水进体系域末期,发育劣质薄层油页岩,其展布面积逐渐增大;高水位体系域油页岩的展布面积达到最大,厚度大、品质好;水退体系域发育劣质薄层油页岩,且分布范围逐渐减少。
     有机质来源分析是研究有机质富集环境动力学的前提,在光片显微组分统计基础上,结合正构烷烃各碳链的相对含量及单体碳同位素、藿烷/甾烷的比值和有机元素比值,确定青山口组和嫩江组有机质主要来自于湖泊生物,以层状藻为主,含少量的结构藻、甲烷菌、蓝藻菌和绿硫菌等,同时还有少量孢子体、叶绿体、荧光体等陆源有机质注入。运用系统的HI、S2、Tmax、OI等指数和相关的生物标志化合物参数,油页岩发育层段(层序I、V、VI)有机质丰度高,干酪根主要为I型,随着湖平面下降,在层序II、III、、VII、VIII,有机质类型逐渐由I型过渡为III型,在每个层序内部由LST到RST,有机质类型及丰度也呈现先变好后继而变差的趋势。通过横向对比,深水区域有机质类型和来源更为稳定,浅湖区域沉积物中有机质类型变化较大。结合系统的光片鉴定和生标参数特征,反映有机质类型变差并非主要由于陆源有机质注入影响,而是保存条件逐渐变差,氧化作用等破坏有机质中氢元素造成的。
     高精度反演有机质富集环境动力学,需要赋予沉积地层精确的时间尺度,旋回地层分析是确定沉积时代的有效手段,泥岩中有机质丰度变化反映古气候的演化,是研究旋回地层学最有效的数据,根据TOC旋回变化,大周期TOC旋回主要受长偏心率控制,对应的沉积时限基本在为405Ka左右,小周期TOC旋回受短偏心率控制,对应的沉积时限基本在100Ka左右,依此建立青山口组浮动天文标尺。根据各个层段的沉积年限,并运用“岩石骨架体积率”的概念,计算不同沉积相带和盆地演化阶段的沉积速率(V),在深水区域当V<7cm/Ky时,沉积速率对有机质富集没有影响,当V>7cm/Ky时,随着沉积速率增加,陆源碎屑稀释并破坏有机质,影响有机质富集;在浅湖区域,随着V的增加,有机质丰度逐渐减少,高有机质丰度泥岩主要的V区间为5-10.6cm/Ky。
     在光片观察的基础上,深湖-半深湖区,陆源有机质含量占总有机质组分的8.0%左右,而浅湖区域藻类占有机质显微组分的相对含量与TOC呈对数关系,依此可将陆源有机质含量剔除,并根据HI方法对氧化作用等造成的有机破坏量进行恢复。通过有机碳法计算古湖泊生产力,深湖区油页岩形成时对应的古湖泊生产力大于2210C/m2a,半深湖大于1977C/m2a,浅湖区域大于1773C/m2a。根据生产力在层序格架内演化特征,油页岩形成于超富营养型水体中。在深水区域,由青山口组底部到顶部水体营养程度逐渐由超富营养型变为中养型,浅湖区域在青山口组顶部可能因为陆源营养元素或底泥释放导致湖泊生产力增高,但因保存条件较差,沉积物中的有机质丰度相对较低。
     在有机质来源、古湖泊生产力、沉积速率等研究的基础上,结合岩心、地球化学资料对本区的古气候、古地理及水体条件演化进行研究,综合分析这些环境因素之间的相互关系,建立本区的含油页岩系有机质富集环境动力学模式,主要分为两种模型:咸水有机质富集环境动力学模型(模型I)和半咸水-淡水有机质富集环境动力学模型(模型II)。模型I对应的典型层段为青山口一段含油页岩系,其环境动力学为在温暖湿润的古气候背景下(古温度为19-27℃),形成于超富营养型水体和较深透光带中的超高湖泊生产力,提供大量的有机质,随着湖平面的抬升,盆地基本为欠补偿-补偿沉积环境,咸水环境在半深湖-深湖区域形成盐度分层,造成缺氧环境,形成绝佳的保存条件,较小的沉积速率又避免有机质被稀释破坏,因而沉积品质好,厚度中等的油页岩;模型II对应的典型层段为嫩一、二段,其环境动力学为温湿的古气候背景(古温度18.70℃),陆源营养物质供给促进湖泊极高生产力,形成大量的有机质,湖平面大规模抬升,形成欠补偿-补偿沉积环境,半咸水-淡水环境使得含氧界面下降,水体氧化作用破坏部分有机质,较快的沉积速率促使有机质快速沉降、埋藏和保存,从而形成中等品质,厚度较大的油页岩。青二、三段、嫩二段上部和嫩三段水体主要为半咸水-淡水环境,但是水体营养程度的降低或者保存条件变差,均导致沉积物中有机质丰度降低;姚家组虽然在炎热的古气候背景下水体为半咸水,但是由于水深较小,强烈的氧化作用几乎将有机质全部破坏,从而导致沉积物中几乎不存在有机质。
Thick dark organic rich mudstones (OM) deposited in the Qingshankou Formation and NenjiangFormation, Upper Cretaceous, and especially in southeast of this basin, higher quality thick oil shale aredeveloped in the lower part of each formation. The oil-shale bearing layers are characterized by the highorganic matter content and with low maturity, which indicating lots of palaeo-environmental information iscontained in OM, and it should be the best layers to study the environmental dynamics of organicaccumulation.
     To reveal the sedimentary environment of study area is firstly before to research the environmentaldynamics. On the basis of core and field profile observation, well log analysis and systematic geochemicaltesting, lacustrine is the mainly sedimentary facies in this eare, and in can be divided into lakeshore shallowlake and semi deep-deep lake further. In addition, there are4types of event deposits such as storm deposits,volcanic ash deposits, rapidly ostracoda unloading deposits and seismites, and the front delta is alsodiscovered in this area. The sedimentary-organic-geochemical facies of different sedimentary evlution stagesof the basin is established combined with geochemical data. The main facies type of oil shale is semideep-deep subfacies-A-B(aquatic organisms)-brackish-salt water with reducing environment(K2qs1) and semideep-deep subfacies-A-B-brackish water-fresh water with reducing environment(K2n1-2).
     The established isochronous sequence frame is the basis of studying horizontal and vertical sedimentaryenvironmental evolution. During the depositional period of Qingshankou Formation and Nenjiang Formation,semi deep-deep lake deposits are mainly developed in the study area, and the deep water sedimentary systemsare most difficult to interpret by using principles of sequence stratigraphy. The organic matter in mudstonescontains a wealth of information of lake level changes. Based on the changing of TOC content, the highresolution sequence stratigraphic framework is established from boundary to deep water area of the basin.According to the oil shale distribution characteristics in the sequence stratigraphic framework, in the end ofTST mainly develops poor quality thin oil shale with gradually increased distribution area, and in the HST, thearea reaches maximum and develops high quality thick oil shale, and the thin poor quality oil shaledistribution area reduced gradually in the RST.
     Organic matter sources analysis is the premise to study the environmental dynamics. Based on the polishsection observation, and combing the alative amount of each n-alkanes, specific carbon isotope value andsterane/hopane as well as organic element ratios, the organic matter of Qingshankou and Nenjing Formation is mainly from aquatic organisms. The constituent of aquatic organisms is mainly lamalginite with a smallnumber of telalginite, methanobacteria, cyanobacterium and chloracea etc. Meanwhile, there is a smallamount of terrigenous organic matter of sporophyte, chloroplast and phosphor in the mudstone.
     Systematically use the indices of HI, S2, Tmax and OI, as well as biomarker compounds parameters, itturned out that the oil shale developed layers(Sequence I,V,VI) have high abundance of organic matter and thekerogen type is I. With the lake level regression, the type of organic matter in Sequence II,III,VII,VIIIgradually change from type I to type III, and in each sequence from LST to RST, the organic matterabundance and type turn to better first and then to worse. Through horizonal contrast, in the deep water area,the organic matter type and source are stable, and changed greatly in the shallow water. Polish sectionobservation and biomarker parameter characteristics reflect that the lower HI ratio organic matter type mainlyresults from the poorer preservation conditions but not the terrigenous organic matter, because of thedestroyed organic hydrogen by oxidation.
     To carry out high-resolution inversion environmental dynamics organic accumulation, accurate timescale need to match to sedimentary strata, strata cycle analysis is an efficient measure to determine thesedimentary age. Organic matter abundance in mudstones could directly reflect paleoclimatic evolution, so it’sthe most efficient data to study cyclostratigraphy. Based on the TOC cycle changes,the marjor TOC cylce ismainly controlled by long eccentricity, and its corresponding chronological interval is about405Ka, and theminor TOC cycle is mainly controlled by short eccentricity, and its corresponding chronological interval isabout100Ka. Based on the age of each chronological interval,using “volume fraction of rock matrix”principle to calculate the deposition rate (V) of different sedimentary facies and basin evolution stages. Indeep water area, the deposition rate makes no influence on organic matter accumulation when V<7cm/Ky,when V>7cm/Ky, with the increasing rate of terrigenous clastic input, the organic matter is destroyed, thusaffecting the organic matter abundance. In shallow water area, the organic matter abundance is tapering offwith the increasing deposition rate, and when the V is range from5to10.6cm/Ky, the organic matter contentis high.
     Based on the polish section observation, the terrigenous organic matter content is about8.0%in semideep-deep lake, but in shallow water area, the algae content is logarithmic to TOC, thus the terrigenousorganic matter content could be excluded based on that relationship. Using the “HI” method to restore theorganic matter which destroyed by the oxidation. The palaeo-lacustrine productivity was calculated by oganiccarbon method, and the oil shale formed in deep lake when the palaeo-lacustrine productivity of is greaterthan2210C/m~2a, and in the semi deep lake it is greater than1977C/m~2a and it is greater than1773C/m~2a inthe shallow lake. According to the evolution characteristics of productivity in the sequence framework, the oilshale formed in super eutrophic water. The water body in semi deep-deep lake turns from super eutrophic tomedium eutrophic from bottom to top of Qingshankou Formation. Perhaps because of the mudstone nutrients releasing or terrigenous nutrients input, the shallow water body has higher degree of nutrition in the top ofQingshankou Formation, but the organic matter abundance is relatively low due to the poorer preservationconditions.
     Based on organic matter sources, palaeo-lacustrine productivity, deposition rate study, Combing withcore and geochemistry data to study the evolution and correlation of paleoclimate, paleogeography and waterconditions. Through analyzing the interaction of each organic matter enrichment conditions, the models oforganic matter accumulation environmental dynamics were established. There are mainly2models: salt watermodel (model I) and brackish-fresh water model (model II).
     Model I responds to the oil shale bearing layers of K2qs1, it’s formed in warm and humidpaleoclimate(the paleotemperature is19-27℃), superhigh productivity developed in the salt water and deepeuphotic zone, providing a lot of organic matter. With the uplift of lake level, the basin environment is unfilledto fill. In semi deep-deep lake area, the salt water environment becomes salinity stratification and leads toanaerobic environment, and it’s the best preservation condition. The lower deposition rate has prevented thedilute and damage of organic matter, therefore, the medium-thick high quality oil shale accumulates here.Model II responds to the typical oil shale bearing layers of K2n1-2, it’s formed in warm and humidpaleoclimate(the paleotemperature is18.7℃), the terrigenous nutrients supplement promotes excellent lakeproductivity and producing a large number of organic matter. With the large-scale uplift of lake level, thesedimentary environment becomes unfilled to fill. The brackish-fresh water body increase the depth of oxygenzone, and the oxidation destroyed part of the organic matter. However, the rapid deposition promoted the rapidsubsidence, burial and preservation of organic matter, and forms the medium quality thick oil shale. The waterbody of K2qs2-3and Kn3is mainly brackish-fresh, but it has lower organic matter abundance because of thedecreased lake eutrophication and worse preservation conditions. The paleoclimate of Yaojia Formation is hotand water body is brackish and there is almost no organic matter. It is because the water is not so deep that thestrong oxidation nearly damaged all the organic matter.
引文
[1] Aigner, T. Strom depositional systems[M]. Springer-Verlag,1985.
    [2] Aitken J D. Classification and environmental significance of cryptalgal limestone and dolomites, with illustration from theCambrian and Ordovician of Southwestern Alberta. J. Sedimentary Petrology,1967,37:1163-1178
    [3] Allegre C J,Minster J F. Quantitative models of trace element behavior in magmatic proce-sses [J]. Earth Planet, Sci,Lett.,1978,38(1):1-25.
    [4] Anderson R F, Lehuray A P, Fleisher M Q, et al. Uranium deposition in Saanich Inlet sediments, Vancouver Island.Geochim, Cosmochim[J], Acta,1989,53:2205~2213.
    [5] Arthur M A and Sageman B B.Marine black shales:Depositional mechanisms and environments of ancient depositionsAnnual Review of Earth and Planetary Sciences,1994,22:499-551.
    [6] Barakat A O,Rullk tter J. A comparative study of molecular paleosalinity indicators:chromans,tocopherols and C20isoprenoid thiophenes in Miocene lake sediments (N rdlinger Ries,Southern Germany [J]. Aquatic Geochemistry,1997,3:169-190.
    [7] Bechtel A, Hámor-Vidó M,Gratzer R,et al. Facies evolution and stratigraphic correlation in the early Oligocene TardClay of Hungary as revealed by maceral, biomarker and stable isotope composition [J]. Marine and PetroleumGeology,2012,35:55-74
    [8] Bechtel, A., Jia, J. L., Strobl, S. A. I. et al,. Palaeoenvironmental conditions during deposition of the Upper Bohacs K.M..Source quality variations tied to sequence development in the Monterey and associated formations, southwesternCalifornia[J]. Katz B J, Pratt L M. Lake basins through space and time[C]. AAPG Studies in Geology,1993,37:177-204.
    [9] Bechtel A,Jia J L,Strobl S A I,Sachsenhofer R F,et al. Paleoenvironmental conditions during deposition of the UpperCretaceous oil shale sequences in the Songliao Basin (NE China):implications from geochemical analyses [J]. OrganicGeochemistry,2012,46(5):76-95.
    [10] Bechtel A,Woszczyk M,Reischenbacher D,et al. Biomarkers and geochemical indicators of Holocene environmentalchanges in coastal Lake Sarbsko (Poland). Organic Geochemistry,2007,38:1112-1131.
    [11] Berger A. Milankovitch theory and climate [J]. Reviews of Geophysics,1988,26:624-657.
    [12] Berner R A,Raiswell R. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time:A new theory [J].Geochimica et Cosmochimica Acta,1983,47:862-885
    [13] Berner R A. Sedimentary pyrite formation:An update [J]. Geochimica et Cosmochimica Acta,1984,48:605-615.
    [14] Betts J N and Holland H D.The oxygen content of ocean bottom waters,the burial efficiency of organic carbon,and theregulation of atmospheric oxygen.Global and Planetary Change,1991,5(1-2):5-18.
    [15] Bock B, McLennan S M, Hanson G N.Geochemistry and provenance of the Middle Ordovician Austin Glen Member(Normanskill Formation)and the Taconian Orogeny in New England[J].Sedimentology,1998,45:635-655
    [16] Bohacs K. M., Carroll A. R., Neal J. E., et al. Lake-basin type, source potential, and hydrocar-bon character: anIntegrated sequence-stratigra–phicgeochemical framework[J].AAPG Studies in Geology,2000,46:3-34.
    [17] Bohacs K.M.. The Devil in the Details: What controls vertical and lateral variation of hydrocarbon source and shale-gasreservoir potential at millimeter to kilometer scales?[R]. ExxonMobil Upstream Research Company Houston Texas,2010.
    [18] Boucot A. J., Gray Y. J.. A critique of Phanerozoic climatic modes involving changes in the CO2content of theatmosphere[J]. Earth Science Reviews,2001,56:1-159.
    [19] Boyer B. W.. Green river laminites:Does the playa-lake model really invalidate the statratified-lake model?[J]. Geology,1982,10:321-324.
    [20] Bradely W. H., Eugster H. P.. Geochemistry and palimnology of the trona deposits and associated auhigenic minerals ofthe Green river Formation of Wyoming[A]. America:U.S..Geological Survey professional paper.1969,803:53-53.
    [21] Brassell S C,Eglinton G,Maxwel J R,et al. Natural background of alkanes in the aquatic environment [M]. Oxford:Pergamon Press,1978:69-86.
    [22] Brennan S T, Lowenstein T K, Horita J. Seawater chemistry and the advent of biocalcification[J]. Geology,2004,32(6):473-476
    [23] Burov, E., Frottier L G.(), The plume head-continental lithosphere interaction using a tectonically realistic formulation forthe lithosphere [J]. Geophys. J. Int,2005,161,469-490,
    [24] Calvert S E, Bustin R M, Ingall E D. Influence of water column anoxia and sediment supply on the burial andpreservation of organic carbon in marine shales[J].Geochimica et Cosmochimica Acta,1996,60(9):1577-1593.
    [25] Canfield D E. Reactive iron in marine sediments [J]. Geochimica et Cosmochimica Acta,1989.53(3):619-632.
    [26] Carozzi A V. Cyclic sedimentation of primary dolomite and limestone[J]. Journal of Sedimentary Research,1960,32(3):451-471.Carroll A. R., Bohacs K. M.. Controls Stratigraphic classification of ancient lakes: Balancing tectonic andclimatic [J]. Geology,1999,27:99-102.
    [27] Carroll A. R., Bohacs K. M.. Iake type controls on petroleum source rock potential in nonmarine basins[J]. AAPGBulletin,2001,85(6):1033-1053.
    [28] Carroll A R, Brassell S C, Graham S A. Upper Permian lacustrine oil shale of the southern Junggar basin, northwest China[J].AAPG,1992,76:1874-1902.
    [29] Carroll A R. Upper Permian lacustrine organic facies evolution, Southern Junggar Basin, NW China [J]. Org. Geochem,1998,28(11):649-667.
    [30] Catuneanu O. Principles of Sequence Stratigraphy [M].Amsterdam,Elsevier,2006.
    [31] Catuneanu O, Abreu V, Bhattacharya J P, et al.Towards the Standardization of Sequence Stratigraphy?[J]. Earth-ScienceReviews,2009,92:1-33.
    [32] Cesare E, J. Harold H, Eugene A. S, et al. Oxygen and Carbon Isotopic Growth Record in a Reef Coral from the FloridaKeys and a Deep-Sea Coral from Blake Plateau. Science,1978,202:627-629
    [33] Chamberlain C P,Wang X Q,Graham S A,et al. Stable isotopic evidence for climate and basin evolution of the LateCretaceous Songliao basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2012(in pressed)
    [34] Chase Z, Anderson R F, Fleisher M Q.Evidence from authigenic uranium for increased productivity of the glaciasubantarctic ocean[J]. Paleoceanography,2001,16:468-478
    [35] Chen J. M., Jennifer C. M., Xie X. N., et al. Hydrochemistry of formation water with implication to diagenetic reactionsin Sanzhao depression and Qijia-gulong depression of Songliao Basin, China[J]. Journal of Geochemical Exploration,2006,88,86–90.
    [36] Chow N,James N P. Facies-specific,calcitic and bimineralic ooids from Middle and Upper Cambrian platformcarbonates,western Newfoundland,Canada[J]. Journal of Sedimentary Research,1987,57(5):907-921.
    [37] Collister J W, Rieley G, Stern B, et al. compound-specificδ13C analyses of leaf lipids from plants with differing carbonmetabolisms. Org Geochem,1994a,21(6-7):619-627.
    [38] Collister J M, Lichtfous e E, Hieshima G, et al. Partial resolution of sources of n-alkanes in the saline portion of theParechute Creek Member, Green River Formation (Piceance Creen Basin, Colorado). Org Geochem,1994b,21(6-7):645-659.
    [39] Condie K C, Noll J P D, Conway C M.Geochemical and detrital mode evidence for two sources of Early Proterozoicsedimentary rocks from the Tonto Basin Supergroup, central Arizona[J].Sedimentary Geology,1992,77:51-76
    [40] Creaney S., Passey Q. R.. Recurring patterns of to-tal organic carbon and source rock quality within a sequencestraitigraphic framework[J]. AAPG Bull-etin,1993,74(3):386-401.
    [41] Cretaceous oil shale sequences in the Songliao Basin (NE China): implications from geochemical analysis. OrganicGeochemistry,2012,46,76-95.
    [42] Crusius J, Calvert S, Pedersen T, et al. Rhenium and molybdenum enrichments in sediments as indications of oxic,suboxic and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters,1996,145:65-78
    [43] Curry J K, Bennett H R, Mayer M L, et al. Direct visualization of clay micro fabric signatures dri-ing organic matterpreservation in fine-grain ed sediment [J]. Geochimica et Cosmochimica Act a.2007,71:1709.
    [44] Das S K, Routh J, Alakendra N, et al. Major and trace element geochemistry in Zeekoevlei, South Africa: A lacustrinerecord of present and past processes[J]. Applied Geochemistry,doi:10.1016lj.apgeochem,2008.2.11
    [45] Deckker P D, Last W M. Modern Dolomite Deposition in Continental, Saline Lakes, Western Victoria, Australia.Geology,1988,16:29~33.
    [46] Deelman J C. Low temperature Formation of Dolomite and Magnesite (revised edition in a digital form). Netherlands:compact Disc Publications Geology Series,2003.
    [47] Deelman J C. Low temperature Nucleation of Magnesite and Dolomite. Neuse Jahrb. Mineral. Mh. J g.,1999,289-302Einsele G. Sedimentary Basins: Evolution, Facies, and Sediment budget.2nd ed. Berlin Heidelberg:Springer-Verlag,2000.1-790.
    [48] Degens E T and Mopper K. Factors controlling the distribution and early diagenesis of organic material in marinesediments.In:Riley J P and Chester R(Eds.).Chemical Oceanography,v.6,2d(Ed.).New York:Academic Press.1976:59-113.
    [49] Demaison G J and Moore A G T. Anoxic environments and oil source bed genesis[J].AAPG Bulletin,1980,64(8):1179-1209.
    [45] Demaison G. J., Moore G. T.. Anoxic environments and oil source bed genesis. Org. Geochem.,1980,2:9-31.
    [51] Didyk, B.M., Simoneit, B.R.T., Brassell, S.C., et al. Organic geochemical indicators of palaeoenvironmental conditions ofsedimentation [J]. Nature1978,272,216-222.
    [52] Espitalié, J., Laporte, J. L., Madec, M., Marquis, F., Leplat, P., Paulet, J., Boutefeu, A.,1977. M éthode rapide decaractérisation des roches mères, de leur potentiel pétrolier et de leur degré d’évolution. Revue de l’ Institut Francais duPétrole32,23-42.
    [53] Espitalié, J., Marquis, F., Barsony, I. Geochemical logging. In: Voorhess, K.J.(Ed.), Analytical Pyrolysis. Butterworths,Boston,1984,53-79.
    [54] Fedo C M and Nesbtit H W.Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosoles,with implications for paleoweathering conditions and provenance [J].Geology,1995,23:921-924.
    [55] Feng, Z. Q., Jia, C. Z., Xie, X. N., et al. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliaobasin,northeast China. Basin Research,2010,22(1),79–95.
    [56] Floyd P A, Leveridge B E.Tectonic environment of the Devonian Gramscatho Basin, South Comwall: Framework modeand geochemical evidence from turbiditic sandstone [J]. Journal of Geology Society London,1987,144(4):531-542.
    [57] Flügel E. Microfacies of Carbonate Rocks[M]. New York:Spring-Verlag,2004:142-156.
    [58] Force E G and MeCarty P L. Anaerobic decomposition of algae.Environmental Science&Technology,1970,4(10):842849.
    [59] Frank M.C. and Tyson R.V.. Parasequence-scale organic facies variations through an Early Carb-oniferous Yoredalecyclothem, Middle Limestone Group, Scremerston, Northumberland[J]. Journal ofthe Geological Society, London,1995,152:41-50.
    [60] Fuhman J. A.. Bacteriop lankton secondary production estimates for coastal waters of British Columbia and California[J].Appl Environ Microbial,1980,39(6):1085-1095.
    [61] Fuhrmanna A, Mingram J, Luckea A, et al. Variations in organic matter composition in sediments from Lake HuguangMaar (Huguangyan), south China during the last68ka: implications for environmental and climatic change [J]. OrganicGeochemistry,2003,34:1497–1515.
    [62] Gallego—Torres D,Martinez·Ruiz F,Paytan A,et al. Pliocene·Holoeene evolution of depositional conditions in theeastern Mediterranean:Role of anoxia vs.productivity at time of sapropel deposition[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2007,246(2—4):424~439.
    [63] Gatens, M.,2005. Unconventional gas in Canada: An important new resource. Energy&Environment Workshop. Calgary:CERI.
    [64] Geology,1961,58:430-487.
    [65] Gilbert G K. Sedimentary measurement of geological time [J]. Journal of Geology,1985,3:121-125.
    [66] Goncalves F T T. Organic and isotope geochemistry of the Early Cretaceous rift sequence in the Camamu Basin, Brazil:paleolimnological inferences and source rock models[J]. Organic Geochemistry,2002,33(1):67-80
    [67] Gradst ein F M, Ogg J G, Smith A G, et al. A new g eological time scale, w ith special ref er ence to Precamb rian andNeogene[J]. Epis odes,2004,27(2):83-100.
    [68] Grantham P K,Posthuma J,de Groot K. Variation and significance of the C27and C28triterpane content of a North Seacore and various North Sea crude oils. A dvances in org. geochemistry,1979[C]. Oxford:Pergamon Press,1980,29-39.
    [69] Grice, K., de Mesmay, R., Glucina, A., Wang, S.,2008. An improved and rapid5molecular sieve method for gaschromatography isotope-ratio mass spectrometry of n-alkanes (C8-C30+). Organic Geochemistry39,284-288.
    [70] Hakansson S. A review of various factors influencing t he stable carbon isotope ratio of organic lake sediment s by t hechange from Glacial to Post2Glacial environmental conditions [J]. Quaternary Science Reviews,1985,4:135-146.
    [71] Haq, B. U., Schutter S. R. A chronology of Paleozoic sea-level changes [J]. Science,2008,322,64-68.
    [72] Harris N B, Freeman K H, Pancost R D, et al. The character and origin of lacustrine source rocks in the Lower Cretaceoussynrift section, Congo Basin, west Africa[J]. AAPG,2004,88(8):1163-1184.
    [73] Hays J D. Variations in th e Earths Orbit: pacemaker of the ice ages[J]. Science,1976,194:1121-1132.
    [74] Hayes J M, Freeman K H, Popp B N, et al. Compound-specific isotopic analyses: A novel tool for reconstruction ofancient biogeochemical processes. Org Geochem,1990,16(4-6):1115-1128
    [75] He H. Y., Deng C. L., Wang P. J., et al. Toward age determination of the termination of the Cretaceous NormalSuperchron[J]. Geochemistry Geophysics Geosystems,2012,13(1):1-20.
    [76] Helland-Hansen, W., Gjelberg, J.G.,1994. Conceptual basis and variability in sequence stratigraphy: a differentperspective. Sedimentary Geology92,31–52.
    [77] Hetenyi M,SajgoC,Veto I,et al. Organic matter in a low productivity anoxic intraplatform basin in the TriassicTethys[J].Organic Geochemistry.2004,35(11-l2):1201-l219.
    [78] Hilgen F J, Krijgaman W, Langereis C G, et al. Break through made in dating of the geological records [J]. EOS,1997,78(28):285,288-289.
    [79] Hill, D. G., Nelson, C. R.. Reservoir properties of the Upper Cretaceous Lewis Shale, a new natural gas play in the SanJuan Basin. AAPG Bulletin,2000,84(8):1240.
    [78] Hinnov L A. New perspectives on orbit ally forced stratigraphy [J]. Annual Review of Earth and Planet ary Sciences,2000,28:419-475.
    [81] Hinnov L A, Ogg J G. Cyclostratigraphy and the astronomical time scale [J]. Stratigraphy,2007,4:239-251.
    [82] Hobbie J. E.. Use of nuclepore filters for counting bacteria by fluresence microscopy[J]. Appl Environ Microbial,1977,33:1225-1228.
    [83] Hofmann P., Wagner T., Beckmann B.. Millennial-to centennial-scale record of African climate variability and organiccarbon accumulation in the Coniacian–Santonian eastern tropical Atlantic (Ocean Drilling Program Site959, off IvoryCoast and Ghana). Geology,2003,31(2):135-138.
    [84] Horibe Y,Kim K R,Craig H. Hydrothermal methane plumes in the Mariana back-arc spreading centre[J].Nature,1986,324:131-133
    [85] Hunt, D., Tucker, M.E.,1992. Stranded parasequences and the forced regressive wedge systems tract: deposition duringbase-level fall. Sedimentary Geology81,1–9.
    [86] Hunt, D., Tucker, M.E.,1993. Sequence stratigraphy of carbonate shelves with an example from the mid-Cretaceous(Urgonian) of Southeast France. In: Posamentier, H.W., Summerhayes, C.P., Haq, B.U., Allen, G.P.(Eds.), SequenceStratigraphy and Facies Associations. Special Publication,18. International Association of Sedimentologists, pp.307–341.
    [87] Hutton A. C.. Classification, organic petrography and geochemistry of oil shale//Proc[J].1990Eastern Oil Shale Symp.Univ.Kentucky, Institute for Mining and Minerals Research,Lexington,1991:163–172.
    [88] Ibach L. E. J.. Relationship between sedimentation rate and total organic carbon content in ancient marinesediments[J].AAPG Bullet in,1982,66:170-188.
    [89] Ingall E D and Jahnke R A. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygendepleted waters[J].Geochmica et Cosmochimica Acta,1994,58(11):2571-2575.
    [90] Ingall E R,Bustin M and Van Capellen P.Influence of water column anoxia on the burial and preservation of carbon andphosphorus in marine shales.Geochimica et Cosmochimica Acta,1993,57(2):303-316.
    [91] Jcrgensen B B. Mineralization of organic matter in the sea bed—The role of sulfate reduction[J].Nature.1982,296:643-645.
    [92] Johnsson M J.The system controlling the composition of clastic sediments[J].GSA Special Publication,1993,284:1-19.
    [93] Kelts K. Environments of deposition of lacustrine petroleum source rocks: an introduction. In: Fleet A J, Kelts K, TalbotM R, eds. Lacustrine Petroleum Source Rocks. Oxford: Geological Society Paper,1988:3-26.
    [94] Khudololey, A.K., Sokolov, S.D.. Structural evolution of the northeast Asia continental margin: an example from thewestern Koryak fold and thrust belt (northeast Russia). Geological Magazine,1998,135,311–330.
    [95] Kristensen E and Blackburn T H. The fate of organic carbon and nitrogen in experimental marine sediment systems:Influence of bioturbation and anoxia[J].Journal of Marine Research,1987,45(1):23l-257.
    [96] Lambeck A, Huston D, Maidment D, et al.Sedimentary geochemistry, geochronology and sequence stratigraphy as toolsto typecast stratigraphic units and constrain basin evolution in the gold mineralized Palaeoproterozoic Tanami Region,Northern Australia[J[.Precambrian Research,2008,166:185-203.
    [97] Langford, F. F., Blanc-Valleron, M. M. Interpreting Rock-Eval pyrolysis data using graphs of pyrolyzable hydrocarbonsvs. total organic carbon. American Association of Petroleum Geologists Bulletin,1990,74(6),799–804.
    [98] Laskar, J., Fienga, A., Gastineau, M., Manche, H.. La2010: a new orbital solution for the long-term motion of the Earth.Astronomy and Astrophysics,2011,532, A89.
    [99] Laskar J, Robutel P, Joutel F, et al. A long term numerical solution for the insulation quantities of the Earth [J].Astronomy and Astrophysics,2004,428:261-285.
    [100] Li G, Wang XQ, David JB, et al.2009. Spinicaudatans from the Upper Cretaceous Nenjiang Frmation of the SongliaoBasin, Northeast China: Taxonomy and biostratigraphy[J]. Cretaceous Research,30:687-698
    [101] Lijmbach G W.On the origin of petroleum.Proceedings of the9th World Petroleum Congress2[J].London:AppliedScience.Publishers Ltd.1975,357-369.
    [102] Li M,Larter S R,Taylor P,et al. Biomarkers or not biomarkers? A new hypothesis for the origin of pristine involvingderivation from methyltrimethyltridecylchromans (MTTCs) formed during early diagenesis from chlorophyll andalkylphenols [J]. Organic Geochemistry,1995,23:159-167.
    [103] Liu, L., Spasojevic S, Gurnis M. Reconstructing Farallon plate subduction beneath North America back to the LateCretaceous [J]. Science,2008,322,934-937.
    [104] Logan B W. Cryptozoan and associated stromatolites from the Recent, Shark Bay, Western Australia. J.
    [105] Long X P, Sun M, Yuan C, et al.Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonicevolution[J].Sedimentary Geology,2008:88-100.
    [106] Machlus M.L,Olsen P.E., Christie-Blick N.,et al. Spectral analysis of the lower Eocene Wilkins Peak Member, GreenRiver Formation, Wyoming: Support for Milankovitch cyclicity[J]. Earth and Planetary Science Letters,2008,1-2:64-75
    [107] Mann U. and Stein R..Organic Facies Variations, Source Rock Potential and Sea Level Changes in Cretaceous BlackShales of the Quebrada Ocal, Upper Magdalena Valley, Colombia[J].AAPG Bulletin,1997,81(4):556-576.
    [108] Martini, A. M., Walter, L. M., Ku, T. C. W., et al.. Microbial production and modification of gases in sedimentary basins:A geochemical case study from a Devonian shale gas play, Michigan basin. AAPG Bulletin,2003,87(8):1355-1375.
    [109] McLennan S M, Hemming S, McDaniel D K et al.Geochemical approaches to sedimenta-tion, provenance, andtectonic[J].GSA Special Publication,1993,284:21-40.
    [110] McLennan S M, Hemming SR, Taylor S R et al.Early Proterozoic crustal evolution: Geochemical and Nd-Pb isotopicevidence from metasedimentary rocks, southwestern North America[J].Geochimica et Cosmochimica Acta,1995,59:1153-1177.
    [111] McLennan S M.Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes.In: LipinBR and McKay GA (Eds.). Geochemistry and Mineralogy of Rare Earth Elements[J].Reviews in Mineralogy,1989,21:169-200.
    [112] Meyers P A, Lallier-Verges E. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates [J].Journal of Paleolimnology,1999,21:345-372.
    [113] Meyers P A, Ishiwatari R. Lacust rine organic geochemistry-an overview of indicators of organic matter sources anddigenesis in lake sediment s [J]. Organic Geochemistry,1993,20:867-900.
    [114] Middleburg J J, de Lange GJ, Kreulen R. Dolomite Formation in Anoxic Sediment s of Kau Bay. Indonesia Geology,1990,18:399-402.
    [115] Middleton G V,Hampton M A. Sediment gravity flow:mechanics of flow and deposition[A] In:Middleton GV, Bouma A H,eds,Turbidites and deep-water sedimentation[C].Soc.Economic Paleontologists Mineralogists,PacificSection,Short Course Notes,1973,1~38
    [116] Milankovtich M. Kano der Erdbest rahhlu ng und seine Anwendung auf das Eiszeiten problem[J]. Academic Serbe,1941,133:1-633.
    [117] Miller, K. G., Kominz M. A., Browning J. V., et al, The Phanerozoic Record of Global Sea-Level Change[J]. Science,2005,310,1293-1298.
    [118] Moft H,Jacquat O,Adatte T, et al. The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and SpainEnhanced productivity and/or better preservation? Cretaceous Research,2007,28(4):597-612.
    [119] Moldowan J M,Seifert W K,Gallegos E J. Relationship between petroleum composition and depositional environmentof petroleum source rocks [J]. American Association of Petroleum Geologists Bulletin,1985,69:1255-1268.
    [120] Moore P A, Reddy K R. Role of Eh and pH on phosphorus and geochemistry in sediments of Lake Okeechobee, Florida.Journal of Environment Quality,1994,23:955-964.
    [121] Mortimer C H. Chemical exchanges between sediments and water in the Great Lakes-Speculation on probableregulatory mechanisms [J]. Limnology and Oceanography,1971,16(2):387-404.
    [122] Moucha, R., Forte A. M., Mitrovica J. X.,et al. Dynamic topography and long-term sea-level variations: There is no suchthing as a stable continental platform [J]. Earth Planet. Sci. Letts.2008,271,101-108.
    [123] Mulholland J.W.. The parasequence[J].The Lea-ding Edge,1998:1374-1376.
    [124] Muller P J, Suess E. Productivity, sedimentation rate and sedimentary organic matter in the ocean. I. Organic carbonpreservation. Deep-Sea Research,1979,26:1347~1362
    [125] Muller, R. D., Sdrolias M., Gaina C., et al. Long-term sea-level fluctuations driven by ocean basin dynamics[J]. Science,2008,319,1357-1362.
    [126] Murphy A E,Sageman B B,Hollander D J,et al. Black shale deposition and~unal overturn in the DevonianAppalachian Basin:Clastic starvation,seasonal water—column mixing,and efficient biolimiting nutrient recyclingPaleoceanography,2000,15(3):280-291.
    [127] Murphy L. S., Hangen E M. The dist ribution and abundance of phototrophicult rapankton in t he North h Atlantic [J].Limnol Oceanogr,1985,30:47-58.
    [128] Nesbitt H W M, Young G M.Early Proterozoic climates and plate motions inferred from major element chemistry oflutites[J].Nature,1982,299:715-717.
    [129] Orr W L and Gaines A G. Observations on rate of sulfate reduction and organic matter oxidation in the bottom watersof an estuarine basin:The upper basin of the Pettaquamscutt River(Rhode Island) In:Advances in OrganicGeochemistry.Paris:Technip.1974,790-812.
    [130] Passey Q. R., Creaney S. Kulla J. B., et al. A pract-ical model for organic richness from porosity and resistivity logs[J].AAPG Bulletin,1990,74(12):1777-1794.
    [131] Pearson F J, Coplen T B. Stable isotope studies of lake [A]. Lakes: Chemistry, Geology, Physics[C]. New York:Springer-Verlag,1978.235-236.
    [132] Pedersen T F, Calvert S E. Anxia vs. Producivity: what controls the Formation of Organic-Carbon-Rich Sediments andSedimentary Rocks?[J]. AAPG,1990,74(4):454-466.
    [133] Pentecost A, Riding R. Calcification in: cyanobacteria. In Leadbeater B S C, Riding R, eds. Biomineralization of lowerplants and animals. Oxford, England: Clarendon,1986:73-90.
    [134] Peters K E,Moldowan J M. The Biomarker Guide:Interpreting Molecular Fossils in Petroleum and Ancient Sediments[M]. New Jersey:Prentice Hall Englewood Cliffs,1993:575-578.
    [135] Peters K. E., Snedden J. W., Sulaeman A., et al. A new geochemical-sequence stratigraphic model for the Mahakam deltaand Makassar slope, Kali-mantan, Indonesia[J]. AAPG Bulletin,2000,84(1):3-34.
    [136] Peters, K. E., Walters, C. C., Moldowan, J. M.,.The Biomarker Guide, Biomarkers and Isotopes in PetroleumExploration and Earth History, Vol.1&2, Cambridge University Press, New York, NY,2005.
    [137] Pfennig N. Phototrophic green and purple bacteria:a comparative,systematic survey [J]. Annual Review ofMicrobiology,1977,31:275-290.
    [138] Pichevin L, Bertrand P, Bou ssafir M, et al. Organic matter accumulation and preservation controls in a deep sea modernenvironment: an example from Namibian s lope sediments[J].Org Geochem,2004,35:543.
    [139] Posamentier, H.W., Vail, P.R.,1988. Eustatic controls on clastic deposition II—sequence and systems tract models. In:Wilgus, C.K., Hastings, B.S., Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A., Van Wagoner, J.C.(Eds.), Sea LevelChanges—An Integrated Approach. Special Publication,42, Society of Economic Paleontologists and Mineralogists(SEPM), pp.125–154.
    [140] Prokoph A, Vill eneuve M, Agterberg F P. Geochronology and calibration of global Milankovitch cyclicity at theCenomanian-Turonian boundary[J]. Geology,2001,29(6):523-526.
    [141] Radke, M., Willsch, H., Welte, D. H.,1980. Preparative hydrocarbon group type determination by automated mediumpressure liquid chromatography. Analytical Chemistry52,406-411.
    [142] Riding R. Cyanophyte calcification and changers in ocean chemistry. Nature,1982,299:814-815
    [143] Riding R. Microbial carbonates: the geological record of calcified bacterial2algal mats and biofilms. Sedimentology,2000,47(Supplement1):179-214
    [144] Riding R. Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. EarthScience Reviews,2002,58:163-231
    [145] Rio D, Silva I P, Capraro L. The geological time scale and the Italian stratigraphic record[J]. Episodes,2003,26(3):259-263.
    [146] Robinson S A, Aandrews J E, Hesselbo S P,et al. Atmospheric pCO2and depositional environment fromstable2isotope geochemistry of calcrete nodules (Barremian, Lower Cretaceous, Wealden Beds, England)[J]. Journalof the Geological Society, London,2002,159:215~224.
    [147] Ronald C S, Claudla A W. Green River Formation, Wyoming: A Playa-Lake Complex [J]. Geological Sageman B B,Murphy A E,W erne J P,et al. A tale of shales:The relative roles of production,decomposition,and dilution in theaccumulation of organic—rich strata,Middle-Upper Devonian,Appalachian Basin.Chemical Geology,2003,195(1-4):229—273.
    [148] Sachsenhofer R F,Curry D J,Horsfield B,et al. Characterization of organic matter in late Cretaceous black shales of theEastern Alps (Kainach Gosau Group,Austria)[J]. Organic Geochemistry,1995,23:915-929.
    [149] Sachsenhofer R F,Shymanovskyy V A,Bechtel A,et al. Palaeozoic source rocks in the Dniepr–Donets Basin,Ukraine[J]. Petroleum Geoscience,2010,16:377-399.
    [150] Sachsenhofer R F,Stummer B,Georgiev G,et al. Depositional environment and hydrocarbon source potential of theOligocene Ruslar Formation (Kamchia Depression; Western Black Sea)[J]. Marine and Petroleum Geology,2009,26:57-84.
    [151] Schwark L,Vliex M,Schaeffer P. Geochemical characterization of Malm Zeta laminated carbonates from theFranconian Alb,SW-Germany (II)[J]. Organic Geochemistry,1998,29:1921-1952.
    [152] Selley R. C..Ancient Sedimentary Environments and their Sub-surface Diagnosis[M]. Chapman&Hall,Lond on,2000:1-291.
    [153] Semikhatov M A, Raaben M E. Proterozoic stromatolite taxonomy and biostratigraphy. In: Riding R and Awramid SM,eds. Microbial Sediments. Springer-Verlag. Heidelberg,2000,295-306.
    [154] Shanley K W,McCabe P J.Perspectives on the sequence stratigraphy of continental strata [J].AAPG bulletin,1994,78(4):544~568
    [155] Sicre M A,Marty J C, Saiiot A et al. Aiiphatic and aromatic hydrocarbons in different sized aerosois over theMediterranean Sea:Occurrence and origin. Atmospheric Environment,1987,21(10):2247~2259
    [156] Sinninghe Damsté J S,Keely B J,Betts S E,et al. Variations in abundances and distributions of isoprenoid chromans andlong-chain alkylbenzenes in sediments of the Mulhouse Basin:a molecular sedimentary record of palaeosalinity [J].Organic Geochemistry,1993,20:1201-1215.
    [157] Sinninghe Damsté J S,Kock-Van Dalen A C,de Leeuw J W,et al. The identification of mono-,di-,and trimethyl2-methyl-2-(4,8,12-trimethyltridecyl) chromans and their occurrence in geosphere [J]. Geochimica et CosmochimicaActa,1987,51:2393-2400.
    [158] Society of American Bulletin,1975,86(3):335-345
    [159] Song, T.G.. Inversion styles in Songliao Basin (northeast china) and estimation of the degree of inversion [J].Tectonophysics,1997,283,173–188.
    [160] Spasojevic, S., Liu L., Gurnis M., et al. The case for dynamic subsidence of the US east coast since the Eocene[J].Geophys. Res. Letts.,2008,35.
    [161] Stein R. Organic carbon and sediment at ion rate further evidence f oranoxic deep-water conditions in theCenomanian/Turonian Atlantic Ocean[J]. Marine Geology,1986,72:199-209.
    [162] Summons R E,Powell T G. Identification of aryl isoprenoids in source rocks and crude oils:biological markers for thegreen sulphur bacteria [J]. Geochimica et Cosmochimica Acta,1987,51:557-566.
    [163] Sun P. C., Sachsenhofer R. F., Liu Z. J., et al. Organic matter accumulation in the oil shale-and coal-bearing HuadianBasin (Eocene; NE China)[J]. International Journal of Coal Geology,2013,105:1-15.
    [164] Surdam R. C., Wolfbauer. Depositional environment of the Green river Formationof Wyoming:A preliminary report[J].Geological Society of American Bullein,1973,84:1115-1120.
    [165] Swennen R, Vandeginste V, Ellam R.. Genesis of Zebra Dolomites (Cathedral Formation: Canadian Cordillera Foldand Thrust Belt, British Columbia). Journal of Geochemical Exploration,2003,78-79:571-577.
    [166] Tait, R.V.1981. Elements of Marine Ecology: An Introductory Course.3rd Edition. Butterworths, London
    [167] Taylor, H., Teichmüller, M., Davis, A.,et al,1998. Organic Petrology. Borntraeger, Berlin-Stuttgart,704pp.
    [168] Taylor S R and McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell1985:12-312.
    [169] Ten Haven H L,de Leeuw J W,Sinninghe Damsté J S,et al. Application of biological markers in the recognition ofpalaeohypersaline environments [J]. Geological Society,London,Special Publications,1988,40:123-140.
    [170] Tissot B T,Welte D H. Petroleum Formation and Occurrences.2nd ed [M]. Berlin:Springer-Verlag,1984:699.
    [171] Tyson R V and Pearson T H. Modern and ancient continental shelf anoxia:An overview[J].Geological Society,London,Special Publications,1991,58:1-24.
    [172] Tyson R. V.. Sedimentation rate, dilution, preservat ion and total organic carbon: Some results of a modelingstudy[J].Organic Geochemistry,2001,32:333-339.
    [173] Tribovillard N, Ramdani A, Trentesaux A. Controls on organic accmulation in Upper Jurassic shale of NorthwesternEurope as inferred from trace-metal geochemistry [J]. In Harris N B eds., the deposition of organic-carbon-richsediments: models, mechanisms, and consequences. SEPM,2005:145-164.
    [174] Tucker M E,Wright V P,Dickson J A D. Carbonate sedimentology[D]. Blackwell Sciences, Oxford,1990.
    [175] Vasconcelos C, Mackenzie J A, Bernasconi S, et al. Microbial Mediation as a Possible Mechanism for NaturalDolomite Formation at Low Temperatures. Nature,1995,377:220-222.
    [176] Volkman J K,Maxwell J R. Acyclic isoprenoids as biological markers. Biological Markers and the Sedimentary Record(ed Johns R B),Amsterdam,1986[C]. New York:Elsevier,1986,1-42.
    [177] Wang C. S., Feng Z. Q., Zhang L. M., et al. Cretaceous paleogeography and paleoclimate and the setting of SKIborehole sites in Songliao Basin, northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2012, xxx,xxx-xxx.
    [178] Wang H. Z., Mo X. X. An outline of the tectonic evolution of China[J]. Episodes-Newsmagazine of the InternationalUnion of Geological Sciences,1995,18(1):6-16.
    [179] Watts, A. B., Tectonic subsidence, flexure and global changes of sea-level[J]. Nature,1982,297,469-474.
    [180] Weedon, G.. Time-Series Analysis and Cyclostratigraphy. Cambridge University Press, Cambridge,2003, pp.1–259.
    [181] Weissert H, Erba E. Volcanism, CO2and palaeoclimate: a Late J urassic Early Cretaceous carbon and oxygen isotoperecord. Journal of the Geological Society [J]. London,2004,161:695-702.
    [182] Wignall P. B., Maynard J. R.. The sequence strati-graphy of transgressive black shales[A]. Katz B J, Pratt L M. Lakebasins through space and time [C]. AAPG Studies in Geology,1993,37:35-48.
    [183] Wilkin R T,Barnes H L and Bartley S L..The size distribution of framboidal pyrite in modern sediments:An indicatorof redox conditions.Geochimica et Cosmochimica Acta,1996,60(20):3897-3912.
    [184] Wronkiewicz D J and Condie K C.Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa:Source-area weathering and provenance[J].Geochimica et Cosmochimica Acta,1987,51:2401-2416.
    [185] Wu, F.Y., Sun, D.Y., Li, H.M., Wang, X.L.,2001. The nature of basement beneath the Songliao Basin in NE China:geochemical and isotopic constraints. Phys. Chem. Earth (part A)26,793–803.
    [186] Wu H. C., Zhang S. H., Jiang G. Q., et al. Astrochronology of the Early Turonian–Early Campanian terrestrialsuccession in the Songliao Basin, northeastern China and its implication for long-period behavior of the Solar System[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2012(In pressed).
    [187] Wu H. C.,Zhang S. H., Jiang G. Q., et al. The floating astronomical time scale for the terrestrial Late CretaceousQingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimateimplications[J]. Earth and Planetary Science,2009,278,308–323.
    [188] Xie S,Nott C J, Avsejs L A et al. Paiaeociimate records in compound-specific δD values of a lipid biomarker inombrotrophic peat. Organic Geochemistry,2000,31(10):1053–1057.
    [189] Zheng Y, Weinman B, Cromin T, et al. A rapid procedure for the determination of thorium, uranium, cadmium andmolybdenium in small sediment samples by inductively coupled plasma-mass spectrometry: applicat-ion in ChesapekeBay[J]. Applied Geochemistry,2003,18:539-549.
    [190] Zheng Y, Anderson R F,Van Geen A, et al. Authigenic molybdenum formation in marine sediments: a link to pore watersulfide in the Santa Barbara Basin. Geochim. Cosmochim. Acta,2000,64:4165-4178.
    [191]包建平,朱翠山,马安来.江汉盆地烃源岩中甲基化烷基色瞒系列的分布及其与成熟度的关系[J].2008,38(增刊2):31-37.
    [192]毕义泉,田海芹,赵勇生,等.论泥晶套与次生白云岩原岩结构特征的恢复及意义.沉积学报,2001,17(3):491-500.
    [193]车长波,朱杰,李富兵,等.全球油气资源形势[J].天然气工业,2010,30(1):1-5.
    [194]陈代钊,汪建国,严德天,等.扬子地区古生代主要烃源岩有机质富集的环境动力学机制与差异[J].地质科学,2011,46(1):5-26.
    [195]陈光仲.安徽巢县二叠系地层的C/S比值及其指相意义[J].地层学杂志,1991,15(1):62-64.
    [196]陈骏,安芷生,汪永进,等.最近800ka洛川黄土剖面中Rb/Sr分布和古季风变迁[J].中国科学D辑:地球科学,1998,28(6):498-504.
    [197]蔡进功.泥质沉积物和泥岩中有机粘土复合体.北京:科学出版社,2003:1-115.
    [198]陈建平,黄第藩,陈建军等.酒东盆地油气生成和运移[M].石油工业出版社1996.
    [199]陈亮,刘春莲,庄畅,等.三水盆地古近系下部湖相沉积的稀土元素地球化学特征及其古气候意义[J].沉积学报,2009,27(6):1155-1162.
    [200]陈孟晋,宁宁,胡国艺等.鄂尔多斯盆地西部平凉组烃源岩特征及其影响因素[J].科学通报,2007,52(1)增刊:78-85.
    [201]程日辉,王国栋,王璞珺,高有峰.松科1井北孔四方台组-明水组沉积微相及其沉积环境演化[J].地学前缘,2009,16(6):85-95.
    [202]程日辉,王国栋,王璞珺,等.2009.松科1井南孔白垩系姚家组沉积序列精细描述:岩石地层、沉积相与旋回地层[J].地学前缘,16(2):272-287.
    [203]曹瑞骥.松辽盆地白垩纪青山口组叠层石的环境意义[J].古生物学报,1987,26(5):536-547.
    [204]曹瑞骥,袁训来.中国叠层石研究的历史和现状[J].微体古生物学报,2003,20(1):5-14.
    [205]陈世悦,袁文芳,鄢继华.济阳坳陷早第三纪震积岩的发现及其意义[J].地质科学,2003,38(3):413-424.
    [206]迟小燕.松辽盆地上白垩统油页岩特征及沉积环境分析[J].石油天然气学报,2010,32(4):161-165.
    [207]池英柳,张万选,张厚福等.陆相断陷盆地层序成因初探[J].石油学报,1996,17(3):19-26.
    [208]操应长.断陷湖盆层序地层中下降体系域的划分.石油大学学报,2000,24(1):22-25.
    [209]杜德文,石学法,孟宪伟,等.黄海沉积物地球化学的粒度效应[J].海洋科学进展,2003,21:78~82.
    [210]邓宏文,钱凯.沉积地球化学与环境分析[M].兰州:甘肃科学技术出版社,1993:1-150.
    [211]杜江峰.黑龙江汤原断陷古近系层序地层格架内湖泊砂体沉积特征及成因机制[D].吉林大学,2008:1-250.
    [212]邓晋福,莫宣学, FLOWER M F J,等.白垩纪大火成岩省与地幔对流[J].地学前缘,2005,12(2):217-221.
    [213]杜小弟,王璞珺.沉积速率的定量计算[J].长春地质学院学报,1992,22(1):67-70.
    [214] Dykstra J.埋藏史曲线的压实校正(刘方槐译)。天然气勘探与开发,1999,(1).
    [215]段毅,罗斌杰,等.生物标志化合物稳定碳同位素地球化学[J].地质地球化学,1995,3:39-41.
    [216]段毅,马兰花.生物标志化合物碳同位素地球化学研究的几个相关问题[J].地球科学进展,1996,11.
    [217]杜远生,彭冰霞,韩欣.广西北海润洲岛晚更新世火山活动引起的地震同沉积变形构造[J].沉积学报.
    [218]段毅,吴保祥,郑国东,等.沉积物的单体异构和环烷烃碳同位素研究[J].科学通报,2004,49(2):199-02.
    [219]方大钧,叶德全.中国松辽盆地白垩纪岩石磁化率-剩磁强度与古气候意义[J].地球物理学报,1989,32(1):111-114.
    [220]方德庆,张艳芯,徐敬惠.松辽盆地北部青山口组介形虫化石保存与沉积环境[J].大庆石油学院学报,1995,19(4):42-46.
    [221]樊馥,蔡进功,徐金鲤,等.泥质烃源岩不同有机显微组分的原始赋存态[J].同济大学学报(自然科学版),2011,39(3):434-439.
    [222]冯连君,储雪蕾,张启锐,等.化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J].地学前缘,2003,10(4):539-544.
    [223]范铭涛,杨麟科,方国玉,等.青西凹陷下白垩统湖相喷流岩成因探讨及其意义[J].沉积学报,2003,21(4):560-564.
    [224]方少仙,侯方浩,杨西燕,等.鄂尔多斯盆地内部中二叠统石盒子组盒8下亚段砂岩中的风暴岩[J].沉积学报,2011,29(1):23-30.
    [225]冯子辉,方伟,王雪,等.松辽盆地海侵制约油页岩形成的微体古生物和分子化石证据[J].中国科学D辑:地球科学,2009,39(10):1375-1386.
    [226]冯子辉,霍秋立,王雪,等.松辽盆地松科1井晚白垩世沉积地层有机地球化学研究[J].地学前缘,2009,16(5):181-191.
    [227]葛荣峰,张庆龙,王良书等.松辽盆地构造演化与中国东部构造体制转换[J].地质评论,2010,56(2):180-195.
    [228]郭建军,陈践发,陈仲宇,等.古隆1井海相地层中高丰度胡萝卜烷的检出及意义[J].新疆石油地质,2007,28(5):585-588.
    [229]顾家裕.1995.陆相层序地层学格架概念与模式[J].石油勘探与开发,22(4):6-10.
    [230]关平,徐水昌,刘文汇.烃源岩有机质的不同赋存状态及定量估算[J].科学通报,1998,43:1556.
    [231]高瑞祺,蔡希源.松辽盆地油气田形成条件与分布[M].北京:石油工业出版社,1997:1-11.
    [232]高瑞祺,何承全,乔秀云.松辽盆地白至纪两次海侵的沟鞭藻类新属种[J].古生物学报,1992,31(1):17-32.
    [233]高有峰,王璞珺,程日辉,等.松辽盆地松科1井上白垩统嫩江组-、二段沉积序列厘米级精细刻画:岩性·岩相·旋回[J].地学前缘,2011,18(6):195-217.
    [234]高有峰,王璞珺,程日辉,等.2009.松科1井南孔白垩系青山口组-段沉积序列精细描述:岩石地层、沉积相与旋回地层[J].地学前缘,16(2):314-323.
    [235]侯读杰,冯子辉,黄清华.松辽盆地白垩纪缺氧地质事件的地质地球化学特征[J].现代地质,2003,17(3):311-317.
    [236]侯读杰,黄清华,黄福堂,等.松辽盆地海侵地层的分子地球化学特征[J].石油学报,1999,20(2):30-34.
    [237]郝芳,陈建渝,孙永传,等.有机相研究及其在盆地分析中的应用[J].沉积学报,1994,12(4):77-86.
    [238]黄清华,陈春瑞,王平在,等.松辽盆地晚白垩世生物演化与古湖泊缺氧事件[J].微体古生物学报,1998,15(4):417-425.
    [239]黄清华,郑玉龙,杨明杰,等.松辽盆地白垩纪古气候研究[J].微体古生物学报,1999,16(1):95-103.
    [240]侯启军,冯志强,冯子辉.松辽盆地陆相石油地质学[M].北京:石油工业出版社,2009:11-20,73-74.
    [241]何起祥.沉积岩和沉积矿床[M].北京:地质出版社,1978,1~394.
    [242]胡受权.断陷湖盆陆相层序中体系域构型及其模式新论.西安石油学院学报[J],1998,13(6):1-8.
    [243]胡受权,郭文平,颜其彬,等.断陷湖盆陆相层序中体系域四分性探讨—泌阳断陷下第三系核桃圆组为例.石油学报,2000,21(1):23-28.
    [244]胡修棉.白垩纪中期异常地质事件与全球变化.地学前缘,2005,12(2):222-230.
    [245]洪有密.测井原理与综合解释[M].东营:石油大学出版社,1993.
    [246]贾建亮.基于地球化学-地球物理的松辽盆地上白垩统油页岩识别与资源评价[D].吉林大学,2012:1-118.
    [247]贾建忠,万晓樵,张翼翼等.白垩纪中期海相富有有机碳沉积的地球生物学背景[J].地学前缘,2009,16(5):143-152.
    [248]纪友亮,张世奇.陆相断陷湖盆层序地层学[M].北京:石油工业出版社.1996.
    [249]贾志海,洪天求,郑文武,李双应.皖北新元古代望山组震积岩的基本特征及其形成环境分析[J].地层学杂志,2003,27(2):146-149.
    [250]刘宝珺.沉积岩石学[M].北京:地质出版社,1980:97-98.
    [251]刘宝珺.沉积岩石学[M].北京:地质出版社,1980:286-289.
    [252]刘宝珺,张继庆,许效松.四川兴文四龙下二叠统碳酸盐风暴岩[J].地质学报,1986,1:55-69
    [253]李成博,郭巍,宋玉勤,等.新疆博格达山北麓油页岩成因类型及有利区预测[J].吉林大学学报:地球科学版,2006,36(6):949-953
    [254]刘春莲,秦红,车平等.广东三水盆地始新统“土+不”心组生油岩元素地球化学特征及沉积环境[J].古地理学报,2005,7(1):125-136.
    [255]刘传联,徐金鲤.生油古湖泊生产力的估算方法及应用实例[J].沉积学报,2002,20(1):144-150.
    [256]李富春,谢昌仁,潘根兴.南京老虎山黄土剖面的磁化率及Rb和Rb/Sr对古气候的指示意义[J].海洋地质与第四纪地质,2002,22(4):47-52.
    [257]刘和甫.中国沉积盆地演化与旋回动力学环境[J].地球科学中国地质大学学报,1996,21(4):345-356.
    [258]李红,柳益群,朱玉双.新疆三塘湖盆地二叠系湖相白云岩形成机理初探[J].沉积学报,2007,25(1):75-81.
    [259]李洪涛,宋之光,邹艳荣,等.冀北-辽西早白垩世沉积有机质特征与古气候环境演变[J].地质学报,2008,82(1):72-76.
    [260]李娟,舒良树.松辽盆地中、新生代构造特征及其演化[J].南京大学学报(自然科学),2002,38(4):525-531.
    [261]刘立,王东坡.湖相油页岩的沉积环境及其层序地层学意义[J].石油试验地质,1996,18(3):311-316.
    [262]李佩珍,张学军,黄蓉,等.低熟烃源岩的有机岩石学描述及研究[J].沉积学报,1997,15(2):169.
    [263]柳蓉.东北地区东部新生代断陷盆地油页岩特征及成矿机制研究[D].吉林大学,2007.
    [264]李思田.1993.含煤盆地层序地层分析的几个问题[J].煤田地质与勘探,21(4):18-25.
    [265]刘万洙,王璞珺.松辽盆地嫩江组白云岩结核的成因及其环境意义[J].岩相古地理,1997,17(1):22-26.
    [266]刘英俊,曹励明,李兆麟,等元素地球化学[M].北京:科学出版社,1984.
    [267]蔺毓秀.试论松辽大型陆相湖盆水进三角洲沉积相[J].石油实验地质,1983b,5(4):265-275.
    [268]李振广,孙晶,方伟,等.松辽盆地青-段泥岩生物标志化合物碳同位素特征[J].大庆石油地质与开发,2012,31(3):19-23.
    [269]刘占红,李思田,辛仁臣,等.地层记录中的古气候信息及其与烃源岩发育的相关性—以渤海黄河口凹陷古近系为例[J].地质通报,2007,26(7):830-840.
    [270]姜在兴.沉积学[M].北京:石油工业出版社,2003,1-540.
    [271]刘招君,车长波,等.全国油页岩资源评价报告[R].吉林大学和国土资源部油气资源战略研究中心,2006.
    [272]刘招君,程日辉,易海永.1994.层序地层学的概念、进展与争论[J].世界地质,13(3):56-68.
    [273]刘招君,董清水,王嗣敏,等.陆相层序地层学导论与应用[M].北京:石油工业出版社,2002:1-121.
    [274]郝芳,陈建渝.层序和体系域的有机相构成及其研究意义[J].地质科技情报,1995,14(3):79-83.
    [275]刘招君.湖泊水下扇沉积特征及影响因素——以伊通盆地莫里青断陷双阳组为例[J].沉积学报,2003.21.
    [276]刘招君,胡菲,孙平昌,等.再论陆相三级层序内四分方案及其在油气勘探中的应用[J].吉林大学学报:地球科学版,2013,43(1):1-12.
    [277]刘招君,孟庆涛,柳蓉等.抚顺盆地始新统计军屯组油页岩地球化学特征及其地质意义[J].岩石学报,2009,25(10):2340-2350.
    [278]刘招君,孙平昌,贾建亮,等.陆相深水环境层序识别标志及成因解释:以松辽盆地青山口组为例[J].地学前缘,2011,18(4):171-180.
    [279]刘招君,孙平昌,杜江峰,等.汤原断陷古近系扇三角洲沉积特征[J].吉林大学学报:地球科学版,2010,40(1):1-8.
    [280]刘招君,王东坡,刘立.松辽盆地白至纪沉积特征[J].地质学报,1992,66(4):327-338.
    [281]刘招君,杨虎林,董清水,等.中国油页岩[M].北京:石油出版社,2009,(1):148~154.
    [282]罗笃清,姜贵周.松辽盆地中新生代构造演化[J].大庆石油学院学报,1993,17(1):8-15.
    [283]牟保磊.元素地球化学[M].北京:北京大学出版社,1999.
    [284]梅冥相.显生宙罕见的巨鲕及其鲕粒形态多样性的意义:以湖北利川下三叠统大冶组为例.现代地质,2008,22(5):683-698.
    [285]孟庆涛.桦甸盆地始新统油页岩岩石地球化学特征及富集规律研究[D].吉林大学,2010:27-53.
    [286]马素萍,贺建桥,夏燕青.油气形成过程中-个最明显的氧化还原反应实例—胡萝卜烷的形成[J].沉积学报,2004,22(增):124-128.
    [287]马永生,仲力.风暴沉积、风暴岩的研究现状[J].地质科技情报,1990,9(3):9-13.
    [288]宁维坤,付丽,霍秋立.松辽盆地松科1井晚白垩世沉积时期古湖泊生产力[J].吉林大学学报:地球科学版,2010,40(5):1020-1026.
    [289]濮培民,王国祥,胡春华,等.底泥疏浚能够控制湖泊营养化吗?[J].湖泊科学,2000,12(3):269-279.
    [290]潘树新,梁苏娟,史永苏,等.松辽盆地上白垩统青山口组介形虫群集性死亡事件成因[J].古地理学报,2010,12(4):409-414.
    [291]秦伯强,朱广伟,张路,等.大型浅水湖泊沉积物内源营养盐释放模式及其估算方法—以太湖为例[J].中国科学D辑:地球科学,2005,35(增刊Ⅱ):33-44.
    [292]钱家麟,尹亮,王剑秋,等.油页岩—石油的补充能源[M].北京,中国石化出版社,2008,4-14.
    [293]秦建中.中国的烃源岩[M].北京:科学出版社,2005:1-13620.
    [294]邱树玉,梁玉左,朱士兴,等.1998.中国叠层石新属(群)索引.古生物学报,37(3):387-394.
    [295]乔秀夫,宋天锐,高林志,等.地层中的地震记录[M].地质出版社,2006:1-255.
    [296]申家年,王庆红,何江林,等.松辽盆地白垩纪湖泊水体温度与古气候温度估算[J].吉林大学学报:地球科学学报,2008,38(6):946-952.
    [297]沈吉,王苏民,羊向东.湖泊沉积物中有机碳稳定同位素测定及其古气候环境意义[J].海洋与湖沼,1996,27(4):400-404.
    [298]邵龙义,何宏,彭苏萍,等.塔里木盆地巴楚隆起寒武系及奥陶系白云岩类型及形成机理.古地理学报,2002,4(2):19-30.
    [299]宋均秋.板块运动对松辽盆地构造演化的影响[J].工程技术,2008,30:59-60.
    [300]孙平昌.桦甸盆地古近系桦甸组沉积特征研究[D].吉林大学,2010:14-49.
    [301]孙平昌,刘招君,孟庆涛,等.桦甸盆地古近纪充填特征及对油页岩成矿的影响[J].煤炭学报,2011,36(7):1110-1116.
    [302]孙平昌,刘招君,李宝毅,等.桦甸盆地桦甸组油页岩段地球化学特征及地质意义.吉林大学学报(地球科学版),2012,42(2):948-960.
    [303]单学东,刘文海,潘明臣,等.辽西蓟县系雾迷山组震积岩的发现及其构造意义[J].辽宁地质,2000,17(4):267-270.
    [304]宋鹰,任建业,阳怀忠,等.松辽盆地北部姚家组底界面特征及其动力学背景[J].石油学报,2010,31(2):187-195.
    [305]孙镇城,杨藩,张枝焕,等.中国新生代咸化湖泊沉积环境与油气生成[M].北京:石油工业出版社,1997.
    [306]腾格尔,刘文汇,徐永昌,等.无机地球化学参数与有效烃源岩发育环境的相关研究[J].地球科学进展,2005,20(2):103-200.
    [307]田洪水,万中杰,王华林.鲁中寒武系馒头组震积岩的发现及初步研究[J].地质评论.2003,49(2):123-133.
    [308]王爱华.不同形态锶钡比的沉积环境判别效果比较[J].沉积学报,1996,14(4):168-173.
    [297]魏垂高,张世奇,姜在兴,等.东营凹陷现河地区沙三段震积岩特征及其意义[J].沉积学报,2006,24(6):798-805.
    [309]吴崇筠.湖盆砂体类型[J].沉积学报.1986,4(4):1-24.
    [310]王成善.白垩纪地球表层系统重大地质事件与温室气候变化研究—从重大地质事件探寻地球表层系统耦合[J].地球科学进展,2006,51(8):838-842.
    [311]王东坡,刘立.1994.大陆裂谷盆地层序地层学研究[J].岩相古地理,14(3):1-9.
    [312]王国栋,程日辉,王璞珺,高有峰.松辽盆地青山口组震积岩的特征、成因及其构造-火山事件[J].岩石学报,2010,26(1):121-129.
    [313]王国栋.松辽盆地上白垩统旋回地层与坳陷盆地的沉积演化[D].吉林大学,2010:1-56.
    [314]王广利,王铁冠,张林晔等.2-甲基藿烷:陆相湖盆中古沉积环境的分子化石[J].地质学报,2006,80(6):902-909.
    [315]吴怀春,张世红,黄清华.中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立[J].地学前缘,2008,15(4):159-169.
    [316]韦恒业,陈代钊,遇昊,等.鄂西地区中二叠统栖霞组下部烃源岩形成机理[J].地质科学,2011,46(1):68-82.
    [317]魏菊英,等.同位素地球化学[M].北京:地质出版社,191,145.
    [318]王良忱,张金亮.沉积环境和沉积相[M].北京:石油工业出版社,1996:1-156.
    [319]王宁,何幼斌,李向东,等.深水异地鲕粒灰岩的特征及成因探讨—以宁夏中宁地区香山群徐家圈组为例[J].海相油气地质,2012,17(3):72-78.
    [320]王璞珺,高有峰,程日辉,等.2009.松科1井南孔白垩系青山口组二、三段沉积序列精细描述:岩石地层、沉积相与旋回地层[J].地学前缘,16(2):288-313.
    [321]王璞珺,刘万洙,单玄龙,等.事件沉积:导论·实例·应用[M].吉林科学技术出版社,2001:42-50,83-92.
    [322]王书宝,孙钰,钟建华,等.2008.松辽盆地晚白垩世古气候变化对层序发育的影响[J].石油地质与工程,22(4):30-32.
    [323]吴欣松,郭娟娟,黄永建,等.松辽盆地晚白垩世古气候变化的测井替代指标[J].古地理学报,2011,13(1):103-110.
    [324]王永春,康伟力,毛超林.吉林探区油气勘探理论与实践[M].石油工业出版社,2007:1-263.
    [325]吴艳宏,李世杰.湖泊沉积物色度在短尺度古气候研究中的应用[J].地球科学进展,2004,19(5):789-792.
    [326]王英华,杨承运,张秀莲.关于鲕粒与沉积环境的探讨[C]//北京大学地质学系.北京大学地质学系地质研究论文集.北京:北京大学出版社,1982:78-85.
    [327]王永莉.松辽盆地南部上白垩统油页岩特征及成矿规律[D].长春:吉林大学,2006.
    [328]温志峰,钟建华,李勇,等.叠层石成因和形成条件的研究综述[J].高校地质学报,2004,10(3):418-428.
    [329]许德如,马驰, Nonna B C,等.海南岛北西部邦溪地区奥陶纪火山碎屑沉积岩岩石学、矿物学和地球化学:源区及构造环境暗示[J].地球化学,2007,36(1):11-26.
    [330]徐道.天文地质年代表与旋回地层学研究进展[J].地层学杂志,2005,29(增刊):635-640.
    [331]席党鹏,万晓樵,冯志强,等.松辽盆地晚白垩世有孔虫的发现:来自松科1井湖海沟通的证据[J].科学通报,2010,55(35):3433-3436.
    [332]席党鹏,李罡,万晓樵,等.2009.松辽盆地东南区姚家组-嫩江组-段地层特征与湖泊演变[J].古生物学报,48(3):259-271XH徐怀大等.从地震地层学到层序地层学[M].北京:石油工业出版社,1997.
    [333]谢树成,殷鸿福,谢习农等.地球生物学方法与海相优质烃源岩形成过程的正演和评价[J].地球科学—中国地质大学学报,2007,32(6):727-740.
    [334]夏正楷,韩军清.泥河湾盆地虎头梁湖相叠层石的生态环境分析[J].第四纪研究,1998,(4):344-350.
    [335]余俊清,王小燕,李军,等.湖泊沉积有机碳同位素与环境变化的研究进展[J].湖泊科学,2001,13(1):72-78.
    [336]袁静.山东惠民凹陷古近纪震积岩特征及其地质意义[J].沉积学报,2004,22(1):41-46
    [337]颜佳新,刘本培,张海清.滇西昌宁-孟连带内石炭纪-二叠纪鲕粒灰岩的古地理意义[J].古地理学报,1999,1(3):13-18.
    [338]杨明生,张虎才,雷国良,等.洛川黄土剖面末次冰期间冰段弱古土壤(L1SS1)分子化石及其古植被与古环境[J].第四纪研究,2006,26(6):976-984.
    [339]杨平,陈晔等.柴达木盆地自然伽玛曲线在古气候及沉积环境研究中的应用[J].古地理学报,2003,5(1):95-102
    [340]余素玉,何镜宇,杨慕华.河北唐山地区中寒武统张夏组鲡粒灰岩的岩石学研究[J].地球科学-武汉地质学院学报,1987,12(3):301-310
    [341]叶淑芬,魏魁生.松辽盆地白垩系的密集段及海水进侵的新证[J].地球科学—中国地质大学学报,1996,21(3):267-271.
    [342]杨卫东,陈南生,倪师军,等.白垩纪红层碳酸岩和恐龙蛋壳碳氧同位素组成及环境意义[J].科学通报,1993,38(23):2161-2163
    [343]袁选俊.湖盆砂体类型及其沉积特征与含油性[A].见中国石油勘探与生产分公司主编.岩性地层油气藏勘探理论与实践[C].北京:石油工业出版社,2005:72~127
    [344]尹秀珍.松辽盆地中部晚白垩世早期古湖泊生产研究[D].中国地质大学,2008.
    [345]闫云君,梁彦龄.草型湖泊与藻型湖泊大型底栖动物生产力的比较[J].湖泊科学,2004,16(1):81-84.
    [346] Zhao Xixi.白垩纪中期地球磁场与全球地质现象.地学前缘,2005.12(2):199-216.
    [347]赵履.静水条件下人工合成鲡石及蓟县震旦亚界中的鲡状岩[J].沉积学和有机地球化学学术会议论文选集,科学出版社,1984;(2):81-86.
    [348]张立平,黄第藩,廖志勤.伽马蜡烷-水体分层的地球化学标志[J].沉积学报,1999,17(1):136-140.
    [349]张林晔.湖相烃源岩研究进展[J].石油实验地质,2008,30(6):591-595.
    [350]郑荣才.四川盆地下侏罗统大安寨段高分辨率层序地层学[J].沉积学报,1998,16(2):42-49.
    [351]郑淑慈,等.稳定同位素地球化学分析[M].北京大学出版社,1986,12-106.
    [352]张水昌,张宝民,边立曾等.中国海相烃源岩发育控制因素[J].地学前缘,2005,12(3):39-48.
    [353]张文正,杨华,解丽琴等.湖底热水活动及其对优质烃源岩发育的影响—以鄂尔多斯盆地长7烃源岩为例[J].石油勘探与开发,2010,37(4):424-429.
    [354]张秀莲.鲕粒在成岩作用中的次生变化及其意义[J].大庆石油地质与开发,1984,3(4):470-477.
    [355]朱筱敏,康安,王贵文.陆相坳陷型和断陷型湖盆层序地层样式探讨[J].沉积学报,2003,21(2):283-287.
    [356]郑永飞,徐宝龙,周根陶.矿物稳定同位素地球化学研究[J].地学前缘,2000,7(2):299-310.
    [357]张永刚,蔡进功,许卫平,等.泥质烃源岩中有机质富集机制[J].北京:石油工业出版社,2007.
    [358]张立平,王东坡.松辽盆地白垩纪古气候特征及其变化机制[J].岩相古地理,1994,14(1):11-16.
    [359]邹艳荣,彭平安,宋之光,等.白垩纪缺氧事件期间分子有机碳同位素偏移的二种不同机制[J].地质学报,2008,82(1):31-37.
    [360]张智,刘亚丽,段秀举.湖泊底泥磷释放影响因素显著性试验分析[J].植物资源与环境学报,2006,15(2):16-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700