用户名: 密码: 验证码:
基于高精度定位的地震勘探采集处理一体化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GPS技术在国民经济的各个方面使用越来越广,地质勘探领域较早引入了GPS技术,也是应用较广的领域,已经广泛应用于地质勘探的方方面面。目前较为常规的使用方法主要有2种:一种是利用普通手持式GPS进行精度要求较低(允许误差10m左右)环境下的定位,如野外地质考察、地质取样、大尺度的重力勘探、电法勘探、磁法勘探等。二是利用专用的差分GPS技术和设备,定位精度可以达到厘米级甚至毫米级,广泛用于要求定位精度较高的场合,如地震勘探中炮点和接收点测量、小尺度的地球物理勘探及工程勘探,大地位移测量及滑坡监测等场合。
     上述两种方法在百道/千道级别的小规模地球物理勘探领域不存在时间和成本问题,但在万道/十万道级的3D地震勘探施工中需要反复进行数十万个接收点的定位测量,时间和价格成本严重制约了3D地震勘探的发展。依靠普通手持GPS定位装置,无法完成高精度定位,遍历接收点的人工成本极高;采用实时RTK技术的差分GPS设备和全站仪,每台价格动辄数万元。这些高额的设备成本和大量的人工成本导致了目前在大规模勘探中只能对进行部分控制点的高精度GPS定位,其他点则采用目测或测量绳进行估计,测量精度达不到现代高精度勘探的要求。而且由于是先测量后布设仪器的操作规程,存在设置的测量标志(小旗)被自然和人为因素毁坏的情况。地震勘探行业一直希望在每一个测量点(检波器)上均具有GPS功能,在野外可以实时测量每一个测量点(检波器)的位置,从而提高测量点(检波器)的位置精度,提高三维地震勘探的精度。但是针对采集站上集成的普通GPS芯片,其定位精度是很低的,范围在几米到几十米之间,这远远达不到地震勘探采集站定位的需求。
     所以,若能将载波相位差分(RTK)技术应用到普通GPS接收机中,实现采集站上GPS芯片低成本高精度定位,解决3D地震勘探中的时间和成本问题,将具有现实深远意义。但是,在国际激烈竞争环境中,美国处于自身军事、国防和经济利益的考虑,这一技术对外是封锁的,国内只是代理他们的外包产品。针对上述问题,本文采用普通的价格低廉的GPS-OEMSTAR开发板,通过学习研究基于GPS星历解算原理和GPS静态相对定位中的载波相位差分原理(RTK),开发了具有自主知识产权的地震勘探专用GPS数据接收技术,GPS星历解算技术和地震勘探专用GPS差分相对定位技术,重点推导了具有自主知识产权的基于OEMSTAR开发板的地震勘探专用GPS差分定位公式,它需要将基准站和流动站的差分观测方程线性化,消除基准站和流动站与卫星及接收机有关的载波相位和钟差,并列出其相应的误差方程式和法方程式,依据最小二乘平差原理求出基线向量,通过基准站已知坐标,使普通GPS定位精度从十米级提高到厘米级,成功研制了GPS数据接收软件和GPS数据处理软件,完成了一套基于GPS—OEMSTAR开发板的地震勘探专用GPS差分定位系统,并通过实际数据的接收和处理,证明了该方案的实用性和可行性,同时依据地震勘探超多GPS有序排列等特点,实现GPS低成本高精度定位,满足地震勘探的需求。并在此基础上,提出了基于云计算的3D地震勘探专用GPS定位方法研究,该方法通过开展高速并行信息同步采集机制、实时GPS软件信号处理方法和高性能勘探定位模型三个方面的研究,解决大规模勘探专用GPS定位云中的云端的采集、存储和传输问题,研究云服务中的信息协作、处理和调度问题,建立针对大规模勘探应用的位置云模型,实现高性能的差分定位方法,完成面向大规模勘探专用GPS定位机制的研究,为未来3D地震勘探的发展提供了技术支持。在高精度定位的基础上,我们又提出了地震勘探定位、采集、处理一体化的设想,并对地震资料处理的第一步静校正做了研究,得到了一个P波和转换波都适用的基于波场延拓的静校正方法,通过模拟和实际数据的处理,证明了该方法的可行性和有效性。其中在实际数据处理的过程中,我们用基于OEMSTAR开发板的地震勘探专用GPS差分定位方法获得了检波器对应地表的高程数据,并将其应用到了静校正的延拓过程中,取得了不错的效果,这也证明了定位采集处理一体化的思路是正确的。
     本文首先总结分析了当前地震勘探在GPS定位技术中存在的时间和成本问题,指出未来3D地震勘探对定位技术的发展需要,从而引出用差分技术对普通GPS芯片实现低成本高精度定位的思想,对差分技术和国内外差分系统的建设进行概述,明确了地震勘探GPS差分定位系统的广阔前景;接着介绍分析了GPS卫星信号的组成和GPS卫星星历,总结了C/A码和P码的特点,对GPS导航电文的组成格式进行了说明,重点介绍了其中的星历参数以及每个参数所代表的具体意义,为后续星历解算技术奠定基础;然后对GPS定位存在的各方面误差进行分析,指出差分的必要性,并对差分的三种方法:位置差分、伪距差分和载波相位差分加以说明,并分析其各自优缺点,在此基础上,提出将来要建设的地震勘探GPS差分系统,突出数据链路的重要性;随后对地震勘探专用GPS差分协议RTCM电文进行说明,并对地震勘探伪距差分经常用到的电文类型18、19和地震勘探载波相位差分经常用到的电文20、21加以分析,并总结了这4种电文的相同和不同之处,依据奇偶校验法和位变换法,设计了地震勘探专用GPS差分协议编码和解码的流程;紧接着介绍OEMSTAR开发板的性能指标、技术参数、数据接口及RINEX数据格式,重点推导了基于OEMSTAR开发板的地震勘探专用GPS差分定位公式,它需要将基准站和流动站的差分观测方程线性化,消除基准站和流动站与卫星及接收机有关的载波相位和钟差,并列出其相应的误差方程式和法方程式,依据最小二乘平差原理即可求出,在此基础上,我们提出了基于云计算的3D地震勘探专用GPS定位方法研究,通过引入云计算的模型,对勘探云的云采集、云存储、云传输、云协作、云处理机制进行研究,建立面向勘探定位的云模型,实现勘探专用的GPS差分高精度定位处理方法,开展实际仿真和实验验证,研制大规模勘探专用GPS定位方法的原型系统,达到降低大规模GPS终端成本的效果;最后开发了GPS数据的接收技术,研究了GPS星历解算技术,设计了基于OEMSTAR开发板的地震勘探专用GPS差分定位算法流程,通过实际实验,从正面的相对误差及实际误差和侧面的东北天位置、东北天位置标准偏差、距离和模糊度漂移率等几个方面对算法做了详细的论证,得出了算法的精度在厘米级的结论,同时算法的稳定性也很高,完全满足了地震勘探的需求。为大规模勘探专用GPS定位方法的应用提供技术储备。在高精度定位的基础上,我们又提出了地震勘探定位、采集、处理一体化的设想,并对地震资料处理的第一步静校正做了研究,得到了一个P波和转换波都适用的基于波场延拓的静校正方法,通过模拟和实际数据的处理,证明了该方法的可行性和有效性。其中在实际数据处理的过程中,我们用基于OEMSTAR开发板的地震勘探专用GPS差分定位方法获得了检波器对应地表的高程数据,并将其应用到了静校正的延拓过程中,取得了不错的效果,这也证明了定位采集处理一体化的思路是正确的。
     本文通过对GPS低成本高精度定位的研究,共取得以下一些成果:
     (1)研发了具有自主知识产权的基于OEMSTAR开发板的地震勘探专用GPS数据接收技术、地震勘探GPS星历解算技术、地震勘探GPS差分定位技术。
     (2)推导了基于OEMSTAR开发板的地震勘探专用GPS差分定位公式,设计了地震勘探专用GPS差分电文的编码和解码流程,并通过实际实验,实现了地震勘探GPS低成本高精度定位。
     (3)开发了一套基于OEMSTAR开发板的地震勘探专用GPS数据接收软件和GPS数据处理软件。
     (4)提出了基于云计算的3D地震勘探专用GPS定位技术和未来3D地震勘探定位、采集和处理设备一体化的思想,并对地震资料处理的第一步静校正做了研究,得到了一个P波和转换波都适用的基于波场延拓的静校正方法,并用地震勘探专用GPS差分定位方法获得了检波器对应地表的高程数据,两者结合,取得了不错的处理效果。
GPS technology is more and more widely used in all aspects of the nationaleconomy, the field of geological exploration earlier introduction of GPS technology isalso used widely in the field, has been widely used in all aspects of geologicalexploration. The more conventional methods are mainly two kinds: one is ordinaryhandheld GPS accuracy requirements (allowable error of about10m) positioning in theenvironment, such as field geological study, geological sampling, large-scale exploration ofgravity, electricity exploration, magnetic prospecting. Second is to use the dedicateddifferential GPS technology and equipment, the positioning accuracy can reach centimeter ormillimeter widely used in the high positioning accuracy requirements of the occasion, such asseismic exploration in the gun point and receiving point measurement, small-scalegeophysical exploration and engineering exploration, earth displacement measurement andlandslide monitoring and other occasions.
     The above two methods does not exist in one hundred/one thousand small-scalelevel of the field of geophysical exploration time and cost issues, but need to berepeated in ten thousand/one hundred thousand3D seismic exploration andconstruction of hundreds of thousands of receive positioning measurement, time, andcost price has seriously hampered the development of3D seismic exploration. Rely onordinary handheld GPS positioning device, unable to complete high-precisionpositioning, high labor costs traverse the receiving point; differential GPS and totalstation, using real-time RTK technology tens of millions of each. The high cost of theequipment and a lot of labor costs has led to large-scale exploration, only part of thecontrol point precision GPS positioning, and other visual or measurement ropeestimated measurement accuracy of less than a modern high requirements of accuracyexploration. And laid measurement instrument operating procedures, there is a setmeasurement flag (flag) natural and anthropogenic factors destroyed. The seismicexploration IDM been hoping to have a GPS function on each measurement point(detector), real-time measurement of the position of a measuring point (detector) inthe field, thereby improving the positional accuracy of the measurement point(detector), to improve the dimensional the accuracy of seismic exploration. Butordinary for the acquisition of integrated GPS chip, the positioning accuracy is verylow, ranging between a few meters to tens of meters, which is far less than thedemand of seismic acquisition station location.
     So, if the carrier phase difference (RTK) technology is applied to an ordinaryGPS receiver, to achieve the acquisition station GPS chip low-cost high-precision positioning,3D seismic exploration in the time and cost issues, will have a practicaland far-reaching significance. However, in the international competitive environment,the United States is in the military, national defense and economic interests, foreigntechnology blockade, the only agent of their outsourcing products. Response to theseproblems, this paper uses ordinary low price the GPS-OEMStar development board,through study and research-based the GPS ephemeris solver principles and GPS staticrelative positioning of the carrier phase difference principle (RTK), developed withindependent intellectual property rights of earthquake exploration GPS data receivertechnology, GPS ephemeris solver technology and seismic exploration DifferentialGPS relative positioning technology, focusing derived for seismic exploration basedon OEMSTAR development board GPS differential positioning formula withindependent intellectual property rights, it needs to be the base station and roverdifferential observation equation linearization to eliminate the base station and roversatellite and receiver carrier phase and clock error and lists the corresponding errorequation and normal equation, obtained in accordance with the principle of leastsquares adjustment of baseline vector, known by the base station coordinates, so thatordinary GPS positioning accuracy to centimeter level from60-120, successfullydeveloped the GPS data reception software and GPS data processing software,complete set based on the the GPS-OEMStar development board the seismicexploration dedicated Differential GPS positioning system, and the receiving andprocessing of the actual data to prove the practicality and feasibility of the program,based on the the seismic exploration ultra-multi-GPS orderly arranged, low-cost,high-precision GPS positioning, to meet seismic exploration needs. On this basis, thecloud-based3D seismic exploration GPS positioning method, the synchronousacquisition of information through high-speed parallel mechanisms, real-time GPSsoftware signal processing methods and high-performance positioning model forexploration in three areas, solve the problem of large-scale exploration GPSpositioning cloud cloud collection, storage and transmission, informationcollaboration, processing and scheduling problems in the study cloud services, theestablishment of position cloud model for large-scale exploration applications,high-performance differential positioning method completed studies for large-scaleexploration GPS positioning mechanism, provided technical support for the futuredevelopment of3D seismic exploration. On the basis of high precision positioning,we asked the positioning of seismic exploration, acquisition, processing, integrationenvisaged, and the seismic data processing in the first step static correction done toobtain a P-wave and the converted wave are applicable to Based on the the wavefieldstatic correction method, simulated and real data processing, to prove the feasibilityand effectiveness of the method. In the actual data processing, we use for seismicexploration based on OEMSTAR development board differential GPS positioning method corresponding to the detector surface elevation data, and apply it to a staticcorrection continuation process, and achieved good effect, which also proved toposition the acquisition is right to deal with the idea of integration.
     This paper summarizes and analyzes the current seismic exploration in GPStechnology and cost issues, pointed out that the future of3D seismic explorationdevelopment needs of positioning technology, which leads to the idea of low-cost,high-precision positioning of ordinary GPS chip differential technology, an overviewof the construction of the differential and differential systems at home and abroad, theclear prospect of seismic exploration Differential GPS positioning system; thenintroduced to analyze the composition of the GPS satellite signal and GPS satelliteephemeris, summed up the C/A code and P code characteristics of the composition ofthe GPS navigation message format has been described, focusing on the ephemerisparameters, and wherein the specific meaning of each parameter represented by thesolver technology laid the foundation for subsequent Ephemeris; then various aspectsof GPS positioning error analysis, pointing out the need for differential anddifferential of three methods: position differential, the pseudorange differential andcarrier phase points to illustrate and analyze their respective advantages anddisadvantages, on this basis, proposed to build in the future seismic exploration GPSdifferential system, highlighting the importance of the data link; followed byinstructions on the the seismic exploration GPS differential protocol RTCM message,and seismic exploration pseudorange differential frequently used message types18,19and seismic exploration carrier phase difference frequently used message20,21tobe analyzed and summarized the four messages similarities and differences, accordingto the parity law and bit transformation method, designed for seismic exploration ofGPS differential Agreement encoding and decoding process; followed by introductionOEMSTAR development board performance indicators, technical parameters, datainterface and RINEX data format, mainly derived for seismic exploration based onOEMSTAR development board GPS differential positioning formula, it needs to bethe base and rover differential observation equation linearization, the elimination ofthe base station and rover satellite and receiver carrier phase and clock difference andlists the corresponding error equation and normal equation, based on the principle ofleast squares adjustment can be calculated on this basis, we propose a cloud-based3Dseismic exploration GPS positioning method, through the introduction of cloudcomputing model, the acquisition of exploration cloud cloud cloud storage, cloudtransmission, cloud collaboration, cloud processing mechanism research,exploration-oriented positioning cloud model, exploration dedicated Differential GPShigh-precision positioning approach, to carry out the actual simulation andexperimental verification, the development of large-scale exploration GPS positioningmethod prototype system, to reduce the cost of large-scale GPS terminal effect; finally developed a GPS data receiver technology, the study of the GPS ephemeris solvertechnology, designed for seismic exploration based on OEMSTAR development boardGPS differential positioning algorithm flow through the actual experiment, northeastof days from a positive relative error and the actual error and the side position, northeast ofdays position standard deviation, distance and fuzzy The drift rate of the algorithm to do adetailed feasibility studies, the accuracy of the algorithm in centimeter conclusion, while thestability of the algorithm is also very high, to fully meet the demand for seismic exploration.Provide technical reserves for large-scale exploration of the application of a dedicated GPSpositioning method. On the basis of high precision positioning, we asked the positioning ofseismic exploration, acquisition, processing, integration envisaged, and the seismic dataprocessing in the first step static correction done to obtain a P-wave and the converted waveare applicable to Based on the the wavefield static correction method, simulated and realdata processing, to prove the feasibility and effectiveness of the method. In the actual dataprocessing, we use for seismic exploration based on OEMSTAR development boarddifferential GPS positioning method corresponding to the detector surface elevation data,and apply it to a static correction continuation process, and achieved good effect, which alsoproved to position the acquisition is right to deal with the idea of integration.
     In this paper, through the study of low-cost high-precision positioning GPS,obtain the following results:
     (1) Developed GPS data receiving based on OEMSTAR development boardtechnology with independent intellectual property rights, the GPS ephemerissolver technology, GPS RTK differential technique.
     (2) Derive the RTK Differential positioning based on OEMSTAR development boardformula, the design of the the RTCM message encoding and decoding processes, and bythe actual experiment, the GPS low-cost high-precision positioning.
     (3) Developed a based on OEMSTAR development board GPS data receiversoftware and GPS data processing software.
     (4) Put forward the idea of cloud-based3D seismic exploration GPS technology andthe future positioning of3D seismic exploration, acquisition and processingequipment integration, and the first step in seismic data processing staticcorrection, a P-wave andconverted waves are applicable based on the thewavefield static correction method, and obtained with the seismic explorationGPS differential positioning method corresponding to the detector surfaceelevation data, a combination of both, achieved good treatment effect.
引文
[1]徐绍铨,张华海,杨志强,等. GPS测量原理及应用[M].武汉:武汉大学出版社,2008.
    [2]刘基余. GPS卫星导航定位原理与方法[M].北京:科学出版社,2003.
    [3]王惠南. GPS导航原理与应用[M].北京:科学出版社,2003.
    [4]孟庆森,赵成. GPS RTK在地质工程测量中的应用[J].吉林地质,2007,26(2):84-86.
    [5]关忠义. GPS技术在石油地震勘探中的应用[J].科技创新导报,2009,24(3):49-51.
    [6]李玲.浅谈GPS、RTK测量技术的应用[J].西部探矿工程,2010,22(1):159-160.
    [7]张廷柏. GPS新技术在石油地震勘探测量中的应用[J].科技咨询,2012,33(8):30-31.
    [8] DENNIS F. The next generation land seismic system[J]. The Leading edge,2008,27(7):878-881.
    [9]李征航,黄劲松. GPS测量与数据处理[M].武汉:武汉大学出版社,2005.
    [10]文继超.基于OEM板的差分GPS定位系统的研究与实现[D].长沙:中南大学,2011.
    [11]隋心,徐爱功.取消SA后GPS在城市车辆定位导航中性能分析[J].辽宁工程技术大学学报,2005,24(3):71-73.
    [12]李保杰. GPS与传统测量技术在地质勘查中应用比较[J].地理空间信息,2011,9(3),56-57.
    [13]张军华,臧胜涛,单联瑜.高性能计算的发展现状及趋势[J].石油地球物理勘探,2010,45(6):918-924.
    [14] LEDVINA B M, PSIAKI M L. A12-channel real-time GPS L1softwarereceiver [J]. ION GNSS,2003,59(9):767–782.
    [15] PANY T B, EISSFELLER G, HEIN S W. APC based software GNSS receivercompletely developed in Europe[J]. ION GNSS,2004,60(6):235-239.
    [16] NAVTECH GPS. Nordnav-R30package nordnav technologies[DB/OL].2004,http://www.navtechgps.com/pdf/r30.pdf.
    [17] CHARKHANDEH. Performance Testing of a Real-Time Software-Based GPSReceiver for x86Processors[J], ION GNSS,2006,62(9):335-339.
    [18] GREGORY W, HECKLER, JAMES L. SIMD correlator library for GNSSsoftware eceivers[J]. GPS Solutions,2006,10(4):269-276.
    [19] THOMAS H. A GPU based real-time GPS software receiver[J]. GPS Solutions,2010,14(2):207-216.
    [20] CAILUN W, The optimized method and algorithms in the PC-Based GNSSsoftware receiver design[J]. ION GNSS,2009,65(9):159-163.
    [21] RIEDL, BERNHARD, Efficient GNSS signal acquisition with massive parallelalgorithms using open CL on GPU[J]. ION GNSS,2010,66(9):133-136.
    [22]牛国鹏.单频软件GPS接收机设计与实现研究[D].北京:中国科学院空间科学与应用研究中心,2006.
    [23]徐敏.实时GPS软件接收机研究与实现[D].上海:上海交通大学,2007.
    [24] DENG J P, CHEN R Z, WANG J Y. An enhanced bit-wise parallel algorithmfor real-time GPS software receiver[J]. GPS Solutions,2010,14(2),133-139.
    [25] JIN T, QIN H L, ZHU J J, et al. Real-time GPS software correlator design[C].ChinaCom2007,2007.
    [26]徐周. GPS差分定位技术及实现方法的研究[D].郑州:解放军信息工程大学,2006.
    [27] FORTES L P. Optimising the use of GPS multi-reference stations for kinematicpositioning[D]. Canada: The Uinversity of Calgary,2002.
    [28]袁翠.差分GPS算法及仿真研究[D].大连:大连海事大学,2007.
    [29]吴北平. GPS网络RTK定位原理与数学模型研究[D].北京:中国地质大学,2003.
    [30] HATCH R, SHARPE T, GALYEAN P. A global high-accuracy differential GPSsystem[C], Anaheim: Proc of the institute of navigation national technicalmeeting,2003.
    [31]张勇. GPS事后差分定位数据处理理论与应用研究[D].淮南:安徽理工大学,2009.
    [32]张锋.基于多参考站网络的VRS算法研究与实现[D].郑州:解放军信息工程大学,2007.
    [33]朱国辉,张大鹏,戴刚,等. DGPS列车车站安全监测系统软件设计[J].电子测量技术,2007,30(1):56-58.
    [34]徐克宝,王军成.自学习式GPS车辆自主导航仪的研究[J].仪器仪表学报,2007,28(2):317-321.
    [35]许捍卫,何江,杨艳飞.星站差分GPS在水下地形测量中的应用[J].水利水电科技进展,2008,28(2):76-79.
    [36] RTCM Special Committee NO.104. RTCM recommended standards fordifferential GNSS[S]. Radio technical commission for maritime services,1998.
    [37]龚真春,宋执环,李平,等.一种低成本的差分GPS定位系统的设计与实验[J].计算机测量与控制,2005,13(1):86-88.
    [38]张涵.低成本差分GPS系统的设计与验证[J].计算机工程与设计,2007,28(8):1879-1881.
    [39]杨春. GPS卫星导航信号仿真研究[D].合肥:国防科技大学,2006.
    [40]刘基余. GPS卫星导航定位原理与方法[M].北京:科学出版社,2003.
    [41] NEVIO B, GIOVANNI C. Algorithms for communications systems and theirapplications[M]. A Wiley interscience publication,2002.
    [42]袁运斌.基于GPS的电离层监测及延迟改正理论与方法的研究[D].北京:中国科学院,2002.
    [43]寇艳红. GPS原理与应用[M].北京:电子工业出版社.
    [44]邱志和. GPS新民用信号L2C及其应用[J].卫星导航,2004,12(4):1-18.
    [45]周忠谟,易杰军,周琪. GPS卫星测量原理与应用[M].北京:测绘出版社,1997.
    [46]郑威,王解光. GPS卫星预报星历的解码及卫星预报[J].工程勘察,2000,25(3):51-54.
    [47] Han S. Quality control issues relating to instaneous ambiguity resolution forreal-time GPS kinematic position[J]. Journal of Geodesy,1997,71(6):351-361.
    [48]朱志宇,刘维亭,张冰.差分GPS载波相位整周模糊度快速解算算法[J].测绘科学,2005,30(3):54-57.
    [49]陈树新. GPS整周模糊度动态确定的算法及性能研究[D].西安:西北工业大学,2002.
    [50]王晓华,郭敏. GPS卫星定位误差分析[J].全球定位系统,2005,20(1):43-47.
    [51]张文山. GPS测量分析与控制[J].测绘与空间地理信息,2008,31(3):110-111.
    [52] THOMAS H. Massachusettes institute of technology[J]. Modern Navigation,2003,38(5):145-159.
    [53]吕代和. GPS测量的几种误差及相应处理方法[J].贵州科学,2007,2(3):194-197.
    [54]周立. GPS广播星历误差影响诊断与预测模型研究[J].测绘科学,2005,30(4):37-42.
    [55]李晓东.消弱卫星星历误差对定位精度影响的方法探讨[J].淮海工学院学报,2009,18(12):52-55.
    [56]兰孝奇. GPS广播星历轨道误差试验研究[J].江苏地质,2004,28(3):174-177.
    [57]余鹏. GPS定位中卫星坐标计算的切比雪夫多项式拟合法[J].气象科技,2004,32(3):198-200.
    [58]孙正明,高井祥,王坚. GPS广播星历误差及对单点定位的影响[J].测绘工程,2007,16(6):16-18.
    [59]黄张裕,赵义春,秦滔.电离层折射误差的多频改正方法及精度分析[J].海洋测绘,2010,30(2):7-10.
    [60]章红平.基于地基GPS的中国区域电离层监测与延迟改正研究[D].上海:中国科学院上海天文台,2006.
    [61]范胜军.顾及地磁场影响的电离层高阶项改正算法研究[D].武汉:武汉大学,2005.
    [62]何玉晶. GPS电离层延迟改正及其扰动监测的分析研究[D].郑州:解放军信息工程大学,2006.
    [63] JOHN A K. Eye on the lonosphere corection methods for GPS lonosphericrange delay[J]. GPS Solutions,2001,5(2):91-92.
    [64] MAHMOUD L G. Development of an lonosphere monitoring technique usingGPS measurements for high latitude GPS users[D]. Canada: The University ofCalgary,2003.
    [65]董锐.基于神经网络的函数逼近方法研究[D].长春:东北师范大学,2011.
    [66]袁林果,黄发,丁晓利,等. GPS载波相位测量中的信号多路径效应影响研究[J].测绘学报,2004,33(3):210-215.
    [67] BRAASCH M S. Perfomance comparison of multipath mitigating receiverarchitectures[J]. IEEE Aerospace conference proceedings,2001,31(3):309-315.
    [68] WANG X Q. The effects of multipath errors on GPS surveying[J]. CrustalDeformation and Earthquake,2000,20(1):56-59.
    [69] RAYJK, CANNON M E, FENTEN P C. Mitigation of static carrier-phasemultipath effects using multiple closely spaced antennas[J]. Journal of theinstitute of navigation,1999,46(3):193-201.
    [70] GUO J J, SHANG R B, LI Y L. The study of multipath effects to GPSpositing[J]. Geotechnical Investigation surceying,1995,12(2):46-49.
    [71] ZHDANOV A, ZHOU D M, VEIT S V, et al. Evolution of multipath errorreduction with signal processing[J]. GPS Solutions,2002,5(3):19-28.
    [72]张强,印青. GPS接收机误差来源及性能分析[J].河南科技,2007,11(6):18-19.
    [73]许龙霞,李孝辉.基于接收机钟差的GPS完好性自主检测算法[J].宇航学报,2011,32(3):537-542.
    [74]宋成,王飞雪,庄钊文.基于遗忘因子最小二乘的GPS接收机钟差预测算法研究[J].2008,33(2),41-44.
    [75] LIU X L, TIBERUSC, JONGKD. Modelling of differential single differencereceiver clock bias for precise postioning[J]. GPS Solutions,2004,7(4):209-221.
    [76] SHEN Y Z, XU G C. Simplified equivalent representation of GPS observationequations[J]. GPS Solutions,2008,12(2):99-108.
    [77]初东,王刚. GPS天线相位中心偏差的数学模型[J].测绘工程,2000,9(4):55-57.
    [78]陈逸群,刘大杰. GPS接收机天线相位中心偏差的一种检定与计算方法[J].测绘通报,2000,19(12):15-16.
    [79]王爱兵.广域差分GPS用户端算法研究[D].郑州:解放军信息工程大学,2007.
    [80]姜萍,柯熙政.基于北斗差分信息的GPS广域差分定位技术[J].西安理工大学学报,2007,23(1):79-82.
    [81]张旭. GPS载波相位定位算法研究与仿真[D].哈尔滨:哈尔滨工程大学,2007.
    [82]陈石磊. GPS载波相位定位技术的研究[D].西安,西安电子科技大学,2008.
    [83]王广运,郭秉义,李洪涛.差分GPS定位技术于应用[M].北京:电子工业出版社,1996.
    [84]刘智敏,林文介,唐卫明. GPS差分协议RTCM电文分析与应用[J].桂林工学院学报,2004,24(2),188-191.
    [85] RTCM Special Committee NO.104. RTCM recommended standards fordifferential GNSS[S]. Radio technical commission for maritime services,1994.
    [86] Werner G. The receiver independent exchange format version3.00[M]. Canada:Astronomical Institute university of Bern,2006.
    [87] ANDREAS B. DGPS Data Formats2.0[S].2002, http://www.geopp.de.
    [88]李征航.全球定位系统(GPS)技术新进展[J].武测科技,1996,16(1):41-48.
    [89] RTCM Special Committee NO.104. RTCM recommended standards fordifferential GNSS[S]. Radio technical commission for maritime services,2003.
    [90]张九宴. GPS差分协议及基准站算法研究[D].武汉:武汉大学,2003.
    [91]李良,张小超,赵化平. GPS差分RTCM数据实时编码解码算法及实现[J].计算机工程与应用,2006,18(11):209-211.
    [92]李思超,叶甜春,徐建华. DGPS RTCM数据格式简介及其编码算法实现[J].电子测量技术,2008,31(12):11-14.
    [93]谷守周,秘金钟,党亚民.新一代RINEX标准格式及其应用[J].全球定位系统,2009,13(2):52-56.
    [94] GURTNER W. The receiver independent exchange format version3.00[M].Canada: Astronomical Institute university of Bern,2002.
    [95]张妮,王标标.基于Matlab读取标准RINEX格式的GPS星历数据[J].电子设计工程,2010,18(8):23-25.
    [96]金天,刘杨,秦红磊.一种基于通用图形处理器的卫星导航系统比特压缩跟踪方法:中国,201010623914.5[P].2010-09-15.
    [97] JIN T, ZhANG H. Statistical approach to weak signal detection and estimationby doffing chaotic oscillator[J]. Science China,2011,54(11):2324-2337.
    [98] LIU Y, JIN T. A new threshold setting method of GNSS signal acquisitionunder Near-Far Situation[J]. IEICE Transactions,2011,94-B(7):2082-2091.
    [99]秦红磊,陈万通,丛丽. GPS单频单历元定姿算法性能分析与改进方法[J].解放军理工大学学报,2011,22(5):34-38.
    [100] JIN T, LU J, SHENG X Z. A prototype of large scale E-collaborationplatform[J]. LNCS,2004,30(3):335-343.
    [101]黄丽卿,吴广华,陈强,等. GPS输出数据的采集与处理[J].集美大学学报,2002,7(4):314-316.
    [102]王勇.基于VC++的GPS数据接收与参数提取方法[J].中国科技论文在线,2010,20(3):32-35.
    [103]冯晅,张先武,刘财,等.带有多道相关的抛物线Radon变换法分离P-P、P-SV波[J].地球物理学报,2011,54(2):304-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700