用户名: 密码: 验证码:
转基因絮凝斜生栅藻的构建和自絮凝斜生栅藻细胞絮凝的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微藻可以用于CO2减排、污水处理和生物能源生产,对社会经济的可持续发展具有重大意义。但由于微藻细胞个体小,表面携带电荷以及培养浓度低等特点,使得微藻采收成本高居不下。理想的微藻不但应有良好的经济价值,最好还具有细胞絮凝能力,利用其细胞絮凝特性进行采收,会大大降低采收成本。
     斜生栅藻不但可以作为饲料饵料,也可用于水体修复,还可用于生物柴油生产。但目前国内外对其分子生物学和遗传学研究还很少,缺少高效遗传转化方法。本文以斜生栅藻FSP-3为实验材料,建立了高效遗传转化体系,实现了酵母絮凝基因的成功表达,并证明了酵母絮凝基因可赋予栅藻细胞絮凝的特性。此外,还研究了天然自絮凝栅藻AS-6-1的细胞自絮凝特性,探讨了细胞自絮凝机理,研究内容和结果如下:
     首先,对实验藻株进行无菌处理,这是进行微藻生理、生化以及遗传学研究的关键和前提。通过离心洗涤和稀释平板法除去藻液中的霉菌,再利用溶菌酶/SDS并结合抗生素法除藻液中的细菌,通过镜检及无菌检验,未见有细菌或霉菌存在,证明有效地去除了斜生栅藻FSP-3和AS-6-1中的杂菌,为后续研究工作提供了可靠的实验材料。在此基础上,对获得的无菌藻株进行培养条件的优化,分别考察了接种量、温度、表面光照强度及初始pH对藻细胞生长的影响。斜生栅藻FSP-3的最适培养条件为1×106cells/mL的接种量,28℃培养,6000lx的光照强度和初始pH为6.0-6.5;而斜生栅藻AS-6-1最适合生长的培养条件为:1×106cells/mL的接种量,30℃培养,6000lx的光照强度和pH为6.5的初始pH。在优化的培养条件下,斜生栅藻FSP-3和AS-6-1的生长情况均得到了明显的改善,不但生物量积累增加,而且多糖、蛋白质、总脂等胞内组分的含量也显著地提高。
     以游离斜生栅藻FSP-3细胞为受体,采用电击法将含有CaMV35S启动子、报告基因gfp、选择标记基因cat的载体pCAMBIA1302-CAT导入藻细胞中,并对电击转化的相关参数进行了优化,结果表明在质粒浓度为50μg/mL,渗透液浓度为0.2mol/L,脉冲时间为2ms,脉冲电压为2kV的条件对斜生栅藻FSP-3进行转化,转化效率高达494±48/106受体细胞,而且转化子可以稳定传代10个月,得到的转化效率和遗传稳定性是目前微藻遗传转化研究中较高水平。进而,利用荧光显微镜和流式细胞仪分别定性和定量检测报告基因gfp在转化子中的表达,证明所选用的载体元件包括启动子CaMV35S、报告基因gfp、选择标记基因cat在斜生栅藻FSP-3遗传转化体系中均有效可用。同时采用PCR, Southern blot以及RT-PCR方法对转化子进行了分析,从DNA和RNA水平上证明了载体pCAMBIA1302-CAT成功地导入斜生栅藻FSP-3细胞中,并将T-Border之间的区域随机整合到栅藻FSP-3基因组中。由此建立了斜生栅藻FSP-3高效稳定的遗传转化体系,并为外源基因的导入奠定基础。
     将含有酵母絮凝基因FLO1的表达载体pCAMBIA1302-CAT-FLOl导入斜生栅藻FSP-3细胞中,筛选得到具有絮凝性状的阳性转化子,并通过荧光显微镜和扫描电镜从细胞水平上观察到由于酵母絮凝基因FLO1的导入,引起了藻细胞絮凝的现象。利用PCR、RT-PCR对转化子进行了分析,证明了酵母絮凝基因FLO1成功导入斜生栅藻FSP-3细胞中并进行了有效地表达,从而赋予了转化子细胞絮凝的特性。通过转基因藻株与野生型藻株的生长代谢情况进行研究,发现外源基因的导入表达对栅藻细胞生长的并不显著。由此证明酵母的絮凝基因可在微藻中进行表达,并赋予微藻自絮凝性状。
     通过比较天然自絮凝斜生栅藻AS-6-1和转基因絮凝斜生栅藻FSP-3-FLO1,发现二者絮凝形态和絮凝性能存在较大差异:转基因絮凝藻FSP-3-FLO1絮凝颗粒较大,表现出良好的自沉降性能,而天然絮凝微藻AS-6-1对淡水游离藻栅藻FSP-3和小球藻CNW-11具有良好的絮凝沉降能力。另外,天然自絮凝藻AS-6-1絮凝性能具有良好的温度耐受性和pH稳定性,而且不受金属离子螯合剂EDTA和糖的影响,具体原因与其絮凝活性物质的性质有关。转基因絮凝藻FSP-3-FLO1絮凝性能表现出高温和pH的敏感性,被EDTA、蛋白酶K解絮以及被甘露糖、半乳糖抑制的现象,其原因归结为转基因栅藻FSP-3-FLO1的絮凝性状是由于表达了外源酵母絮凝蛋白而引起的,絮凝蛋白的稳定性和活性直接影响了其细胞絮凝的性状。
     研究表明天然自絮凝斜生栅藻AS-6-1的絮凝活性物质是多糖,其中中性糖、酸性糖和氨基糖的质量分数比为16:9:1,单糖组成中较高的甘露糖含量和较大的分子量等结构特征均与其絮凝活性有关。该絮凝物质对淡水藻栅藻FSP-3和小球藻CMW-11具有良好的絮凝活性,添加浓度0.6mg/L时絮凝效率可达到88%,并具有较好的热稳定性。
     本文建立的斜生栅藻的高效遗传转化方法为斜生栅藻的分子育种和利用其作为生物反应器生产蛋白等高值产品奠定了基础。絮凝微藻的构建和天然微藻的絮凝研究,为利用细胞絮凝采收微藻的应用奠定基础。
Microalgae have attracted worldwide attention for their potentials in addressing the problems of environmental pollution and energy shortage, due to their ability in CO2mitigation, degradation of nutrients in water systems, and capture energy from sunlight. However, high cost in biomass recovery is one of the bottlenecks for their applications at large scales, and engineering microalgae with flocculating phenotype for cost-effective biomass recovery by sedimentation is one of the solutions.
     Scenedesmus obliquus is widely used as feed additives, which has also been considered as a potential feedstock for biodiesel production. In this thesis, the genetic manipulation platform of S. obliquus was developed, and the freely-suspended S. obliquus FSP-3was engineered with the flocculating property by expressing the gene FLO1from Saccharomyces cerevisiae for cost-effective biomass recovery. On the other hand, the flocculating property of spontaneously flocculating S. obliquus AS-6-1was studied.
     Axenation of S. obliquus FSP-3and AS-6-1was established first, which was the key for investigating their physiological, biochemical and genetic properties. Washing and series agar culture were employed to remove mould contaminations, and antibiotics combined with lysozyme/SDS treatments were used to control bacteria. As a result, pure cultures were obtained, and culture conditions were optimized. For S. obliquus FSP-3and AS-6-1, inoculation density, light intensity and initial pH were1×106cells/mL,6000lx and6.5, but temperatures were controlled at30℃and28℃, respectively. Consequently, the growth of S. obliquus FSP-3and AS-6-1was facilitated, and more intracellular components such as polysaccarides, proteins and lipids were accumulated.
     S. obliquus FSP-3was then transformed by electroporation with the plasmid pCAMBIA1302-CAT containing CaMV35S as a promoter, green fluorescent protein gene (gfp) as a reporter and chloramphenicol resistance gene (cat) as a selective marker. Parameters for the electroporation were studied, and a high transformation efficiency of494+48positive transgenic clones per106recipient cells was obtained under the conditions:50ug/mL plasmid,0.2mol/L osmotic solution,2ras pulse duration and2kV pulse voltage. The transformants were subcultured for ten months without significant degeneration. These results are leading microalgal transformation studies. Furthermore, green fluorescence signals were detected with the transformants by fluorescence microscopy and flow cytometry, indicating that the cassette was functional, and the genes between T-border were integrated into the genome of&obliquus FSP-3, which was validated by PCR, Southern blot and RT-PCR analysis. It is the first time that the efficient and stable transformation system for S. obliquus has been developed, which lays foundation for its genetic modifications.
     Furthermore, the plasmid containing FLO1was transformed into the freely-suspended S. obliquus FSP-3cells using the transformation system, and transformants with the flocculating phenotype were screened. The FLO1-specific products were observed on their cell surface by fluorescence microscopy and SEM. PCR and RT-PCR were performed to validate the expressing of FLO1. Therefore, the yeast FLO1gene was successfully expressed in S. obliquus FSP-3and endowed it with the flocculating phenotype. No significant difference was observed in growth between the transformants and their wild type strain.
     The flocculation of the transgenic S. obliquus FSP-3-FLO1was compared with that of S. obliquus AS-6-1. While large floes developed with S. obliquus FSP-3-FLO1were more suitable for biomass recovery by sedimentation, spontaneously flocculating S. obliquus AS-6-1exhibited ability to flocculate the freely-suspended S. obliquus FSP-3and C vulgaris CNW-11. Moreover, the flocculation of S. obliquus AS-6-1was thermal tolerant, and not sensitive to pH shift, EDTA and sugars, which might relate to the stability of its flocculating substances, while the flocculation of FSP-3-FLO1was sensitive to high temperature and pH shift, and inhibited by mannose and galactose, because of the expression of FLO1encoding the protein for the flocculating phenotype.
     At the end, the flocculating substance from S. obliquus AS-6-1was studied, which was identified to be polysaccharides with an average molecular weight of1.279×105Da, composing of neutral sugars, uronic acid and amino sugars at the ratio of16:9:1. Sugar analysis indicated that the monomers consist of glucose, mannose, galatose, rhamnose and fructose with the molar ratio of8:5:3:2:1. These flocculating substances exhibited ability to flocculate S. obliquus FSP-3and C. vulgaris CNW-11at a dosage of0.6mg/L. Meanwhile, the flocculating substance was thermo-stable, and more than65%of the initial flocculating activity was retained in the temperature range of20-60℃. In addition, it was not sensitive to pH shift.
     In conclusion, the transformation platform established in this work provides basis for the genetic engineering of S. obliquus. Engineering S. obliquus FSP-3with FLO1for its flocculation and study of the spontaneous flocculation of S. obliquus AS-6-1benefit their further applications at large scales, particularly for cost-effective biomass recovery.
引文
[1]Sheehan J., Dunahay T., Benemann J., et al. A look back at the US department of energy's aquatic species program:biodiesel from algae[M].The National Renewable Energy Laboratory,1998.
    [2]陈峰,姜悦.微藻生物技术[M].北京:中国轻工业出版社,1999.
    [3]范晓蕾,郭荣波,魏东芝.能源微藻与生物炼制[J].中国基础科学.2009,11(5):59-63.
    [4]Giovannoni S. J., Britschgi T. B., Moyer C. L., et al. Genetic diversity in Sargasso Sea bacterioplankton[J]. Nature.1990,345(6270):60-63.
    [5]Richmond A. Handbook of microalgal culture:biotechnology and applied phycology[M]. Oxford:Wiley-Blackwell,2004.
    [6]张桂艳,温小斌,梁芳,等.重要理化因子对小球藻生长和油脂产量的影响[J].生态学报.2011,31(8):2076-2085.
    [7]Borowitzka M. A. Commercial production of microalgae:ponds, tanks, and fermenters[J]. Progress in Industrial Microbiology.1999,35:313-321.
    [8]Miao X., Wu Q. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides[J]. Journal of Biotechnology.2004,110(1):85-93.
    [9]李元广,谭天伟,黄英明.微藻生物柴油产业化技术中的若干科学问题及其分析[J].中国基础科学.2009,11(5):64-70.
    [10]工海英,郭祀远,郑必胜,等.自养,异养和混养下小球藻的生长及生化成分[J].华南理工大学学报:自然科学版.2004,32(5):47-51.
    [11]Tan C. K., Johns M. R. Fatty acid production by heterotrophic Chlorella saccharophila[J]. Hydrobiologia.1991,215(1):13-19.
    [12]Spoehr H., Milner H. W. The chemical composition of Chlorella; effect of environmental conditions[J]. Plant Physiology.1949,24(1):120.
    [13]Meng X., Yang J., Xu X., et al. Biodiesel production from oleaginous microorganisms[J]. Renewable Energy.2009,34(1):1-5.
    [14]韩笑天,郑立,孙珊,等.海洋微藻生产生物柴油的应用前景[J].海洋科学.2008,32(8):76-81.
    [15]刘晓娟,段舜山,李爱芬.不同营养因子对微藻3种培养方式生产EPA的影响[J].食品研究与开发.2006,27(8):185-188.
    [16]Brinda B., Sarada R., Kamath B. S., et al. Accumulation of astaxanthin in flagellated cells of Haematococcus pluvialis-cultural and regulatory aspects[J]. Current Science.2004,87:1290-1294.
    [17]Yongmanitchai W., Ward O. Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions[J]. Applied and Environmental Microbiology.1991, 57(2):419-425.
    [18]Liu Z. Y., Wang G. C., Zhou B. C. Effect of iron on growth and lipid accumulation in Chlorella vulgaris[J]. Bioresource Technology.2008,99(11):4717-4722.
    [19]王永华.隐甲藻高密度发酵培养和油脂改性研究[D]:(博士学位论文).广州:华南理工大学,2002.
    [20]邓光,李夜光,胡鸿钧,等.温度、光照和PH值对锥状斯氏藻和塔玛亚历山大藻光合作用的影响及光暗周期对其生长速率和生物量的影响[J].武汉植物学研究.2004,22(2):129-135.
    [21]钱振明,邢荣莲,汤宁,等.光照和盐度对8种底栖硅藻生长及其生理生化成分的影响[J].烟台大学学报(自然科学与工程版).2008,21(1):46-52.
    [22]Sakai N., Sakamoto Y., Kishimoto N., et al. Chlorella strains from hot springs tolerant to high temperature and high CO2[J]. Energy conversion and Management.1995,36(6-9):693-696.
    [23]Miao X., Wu Q. Biodiesel production from heterotrophic microalgal oil[J]. Bioresource Technology. 2006,97(6):841-846.
    [24]Ohta S., Chang T., Aozasa O., et al. Alterations in fatty acid composition of marine red alga Porphyridium purpureum by environmental factors[J]. Botanica Marina.1993,36(2):103-108.
    [25]Richmond A. Efficient utilization of high irradiance for production of photoautotropic cell mass:a survey[J]. Journal of Applied Phycology.1996,8(4):381-387.
    [26]Delaney S., Carr N. Temporal genetic mapping in the blue-green alga Anacystis nidulans using ethyl methanesulphonate[J]. Journal of General Microbiology.1975,88(2):259-268.
    [27]Hulan H., Proudfoot F., Ackman R., et al. Omega-3 fatty acid levels and performance of broiler chickens fed redfish meal or redfish oil[J]. Canadian Journal of Animal Science.1988,68(2): 533-547.
    [28]Zhou B., Liu W., Qu W., et al. Application of Spirulina mixed feed in the breeding of Bay Scallop[J]. Bioresource Technology.1991,38(2):229-232.
    [29]李静静.可利用微藻在水产饲料行业中的应用探讨[J].湖南饲料.2011,(2):29-31.
    [30]邹宁,李艳,孙东红.几种有经济价值的微藻及其应用[J].烟台师范学院学报:自然科学版.2005,21(1):59-63.
    [31]Brown M., Jeffrey S., Volkman J., et al. Nutritional properties of microalgae for mariculture[J]. Aquaculture.1997,151(1):315-331.
    [32]刘公臣.β--胡萝卜素对肿瘤的防治作用[J].国外医学:中医中药分册.1991,13(004):7-10.
    [33]蔡心涵,何立明.螺旋藻藻蓝蛋白对癌激光疗法增敏作用的实验研究[J].中国海洋药物.1995,14(1):15-18.
    [34]梁英,麦康森.微藻EPA和DHA的研究现状及前景[J].水产学报.2000,24(3):289-296.
    [35]Huntley M. E., Redalje D. G. CO2 mitigation and renewable oil from photosynthetic microbes:a new appraisal[J]. Mitigation and adaptation strategies for global change.2007,12(4):573-608.
    [36]Watson R. T. Climate change 2001:Synthesis report:Third assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press,2002.
    [37]高树婷,张慧琴,杨礼荣,等.我国温室气体排放量估测初探[J].环境科学研究.1994,7(6):56-59.
    [38]Gupta H., Fan L.S. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas[J]. Industrial & Engineering Chemistry Research.2002,41(16): 4035-4042.
    [39]Resnik K. P., Yeh J. T., Pennline H. W. Aqua ammonia process for simultaneous removal of CO2, SO2 and NOx[J]. International Journal of Environmental Technology and Management.2004,4(1): 89-104.
    [40]Lin C. C., Liu W. T., Tan C. S. Removal of carbon dioxide by absorption in a rotating packed bed[J]. Industrial & Engineering Chemistry Research.2003,42(11):2381-2386.
    [41]王辉霞.富油斜生栅藻固定CO2的试验研究[D]:(硕士学位论文).青岛:青岛理上大学,2010.
    [42]Otsuki T. A study for the biological CO2 fixation and utilization system[J]. Science of the Total Environment.2001,277(1):21-25.
    [43]Wang B., Li Y., Wu N., et al. CO2 bio-mitigation using microalgae[J]. Applied Microbiology and Biotechnology.2008,79(5):707-718.
    [44]Oswald W. Ponds in the twenty-first centuryp[J]. Water Science & Technology.1995,31(12):1-8.
    [45]许月妮.固定化小球藻净化市政污水的初步研究[J].北方环境.2004,29(2):14-18.
    [46]Oswald W. J., Gotaas H. B. Photosynthesis in sewage treatment[J]. Transactions of the American Society of Civil Engineers.1957,122:73-105.
    [47]Asian S., Kapdan I. K. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae[J]. Ecological Engineering.2006,28(1):64-70.
    [48]莫健伟,姚兴东.海藻去除水中双偶氮染料机理及重金属离了研究[J].中国环境科学.1997,17(3):241-243.
    [49]高政权,孟春晓.微藻与水环境修复[J].环境科学与技术.2008,31(003):30-34.
    [50]Kosaric N., Velikonja J. Liquid and gaseous fuels from biotechnology:challenge and opportunities[J]. FEMS Microbiology Reviews.1995,16(2):111-142.
    [51]Schenk P. M., Thomas-Hall S. R., Stephens E., et al. Second generation biofuels:high-efficiency microalgae for biodiesel production[J]. Bioenergy Research.2008,1(1):20-43.
    [52]Haag A. L. Algae bloom again[J]. Nature.2007,447:(7144) 520-521.
    [53]Gaffron H. Reduction of carbon dioxide with molecular hydrogen in green algae[J]. Nature.1939, 143(3614):204-205.
    [54]龙敏南,林志.螺旋藻放氢的研究[J].厦门大学学报:自然科学版.1998,37(6):921-924.
    [55]戴玲芬,林惠民.蓝细菌红萍鱼腥藻的两种固氮酶系统的放氢特点[J].水生生物学报.1994,18(4):383-385.
    [56]刘梅,张宪孔.暹罗于腥藻氢代谢的调节[J].应用与环境生物学报.1995,1(002):120-124.
    [57]Greenbaum E. Photosynthetic hydrogen and oxygen production:kinetic studies[J]. Science (New York, NY).1982,215(4530):291-293.
    [58]Maione T. E., Gibbs M. Hydrogenase-mediated activities in isolated chloroplasts of Chlamydomonas reinhardii[J]. Plant Physiology.1986,80(2):360-363.
    [59]Kessler E. Hydrogenase, photoreduction and anaerobic growth[M]. Blackwell:Oxford,1974: 454-473.
    [60]Ghirardi M. L., Zhang L., Lee J. W., et al. Microalgae:a green source of renewable H2[J]. Trends in Biotechnology.2000,18(12):506-511.
    [61]Melis A., Zhang L., Forestier M., et al. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii[J]. Plant Physiology.2000,122(1):127-136.
    [62]Melis A., Happe T. Hydrogen production. Green algae as a source of energy[J]. Plant Physiology. 2001,127(3):740-748.
    [63]Appel J., Schulz R. Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising?[J]. Journal of Photochemistry and Pphotobiology B:Biology.1998,47(1):1-11.
    [64]Das D., Veziroglu T. N. Hydrogen production by biological processes:a survey of literature[J]. International Journal of Hydrogen Energy.2001,26(1):13-28.
    [65]Tamagnini P., Axelsson R., Lindberg P., et al. Hydrogenases and hydrogen metabolism of cyanobacteria[J]. Microbiology and Molecular Biology Reviews.2002,66(1):1-20.
    [66]Vignais P. M., Billoud B., Meyer J. Classification and phylogeny of hydrogenases[J]. FEMS Microbiology Reviews.2001,25(4):455-501.
    [67]Matsumoto M., Yokouchi H., Suzuki N., et al. Saccharification of marine microalgae using marine bacteria for ethanol production[J]. Applied Biochemistry and Biotechnology.2003,105(1): 247-254.
    [68]Rubin E. M. Genomics of cellulosic biofuels[J]. Nature.2008,454(7206):841-845.
    [69]Ueda R., Hirayama S., Sugata K., et al. Process for the production of ethanol from microalgae[P]. United States,5578472.1996,11,26.
    [70]Chen P., Min M., Chen Y., et al. Review of biological and engineering aspects of algae to fuels approach[J]. International Journal of Agricultural and Biological Engineering.2010,2(4):1-30.
    [71]Chisti Y. Biodiesel from microalgae[J]. Biotechnology Advances.2007,25(3):294-306.
    [72]Borowitzka M. Fats, oils and hydrocarbons[C]//Micro-algal biotechnology. Cambridge. Cambridge University Press.1988.
    [73]Bigogno C., Khozin-Goldberg I., Boussiba S., et al. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid[J]. Phytochemistry.2002,60(5):497-503.
    [74]Oswald W. J., Golueke C. G. Biological transformation of solar energy[J]. Advances in Applied Microbiology.1960,11:223-242.
    [75]Spolaore P., Joannis-Cassan C., Duran E., et al. Commercial applications of microalgae[J]. Journal of Bioscience and Bioengineering.2006,101(2):87-96.
    [76]Hu Q., Sommerfeld M., Jarvis E., et al. Microalgal triacylglycerols as feedstocks for biofuel production:perspectives and advances[J]. The Plant Journal.2008,54(4):621-639.
    [77]游金坤,余旭亚,崔佳丽.微藻生物柴油的发展现状及趋势[J].中国油脂.2011,36(3):47-51.
    [78]Posten C., Schaub G. Microalgae and terrestrial biomass as source for fuels-a process view[J]. Journal of Biotechnology.2009,142(1):64-69.
    [79]郑洪立,张齐,马小琛,等.产生物柴油微藻培养研究进展[J].中国生物工程杂志.2009,29(3):110-116.
    [80]胡洪营,李鑫,杨佳.基于微藻细胞培养的水质深度净化与高价值生物质生产耦合技术[J].生态环境学报.2009,18(3):1122-1127.
    [81]Christenson L., Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts[J]. Biotechnology Advances.2011,29(6):686-702.
    [82]Brennan L., Owende P. Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products[J]. Renewable and Sustainable Energy Reviews.2010,14(2):557-577.
    [83]Wijffels R. H., Barbosa M. J. An outlook on microalgal biofuels[J]. Science.2010,329(5993): 796-799.
    [84]Georgianna D. R., Mayfield S. P. Exploiting diversity and synthetic biology for the production of algal biofuels[J]. Nature.2012,488(7411):329-335.
    [85]秦松.中国藻类基因工程研究:历史、现状和问题[c]//刘永定,范晓,胡征宇.中国藻类学研究.武汉.武汉出版社.2001:223-236.
    [86]王逸云.小球藻外源基因转化系统的建立及其表达植酸酶的研究[D]:(博士学位论文).大连:大连理工大学,2005.
    [87]Gruber M. Y., Glick B. R., Thompson J. E., et al. In vitro expression of a cyanobacterial plasmid[J]. Current Microbiology.1987,15(5):265-268.
    [88]Elhai J., Wolk C. P. A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers[J]. Gene.1988,68(1): 119-138.
    [89]Elhai J. Genetic techniques appropriate for the biotechnological exploitation of cyanobacteria[J]. Journal of Applied Phycology.1994,6(2):177-186.
    [90]Thiel T. Genetic analysis of cyanobacteria[J]. The Molecular Biology of Cyanobacteria.2004: 581-611.
    [91]Qin S., Zou L.-h., Jiang P., et al. Production of useful substances from recombinant microalgae by using genetic engineering[J]. Pharmaceutical Bioechnology.2001,8(4):230-233.
    [92]Koksharova O., Wolk C. Genetic tools for cyanobacteria[J]. Applied Microbiology and Biotechnology.2002,58(2):123-137.
    [93]Marraccini P., Bulteau S., Cassier-Chauvat C., et al. A conjugative plasmid vector for promoter analysis in several cyanobacteria of the genera Synechococcus and Synechocyslis[J]. Plant Molecular Biology.1993,23(4):905-909.
    [94]Rochaix J. D., Van Dillewijn J. Transformation of the green alga Chlamydomonas reinhardu with yeast DNA[J]. Nature.1982,296(5852):70-72.
    [95]Dunahay T. G., Jarvis E. E., Roessler P. G. Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila[J]. Journal of Phycology.1995,31 (6):1004-1012.
    [96]Cannons A. C., Iida N., Solomonson L. Expression of a cDNA clone encoding the haem-binding domain of Chlorella nitrate reductase[J]. Biochemical Journal.1991,278(Pt 1):203-209.
    [97]Chen Y., Wang Y., Sun Y., et al. Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells[J]. Current Genetics.2001,39(5):365-370.
    [98]Lapidot M., Raveh D., Sivan A., et al. Stable Chloroplast transformation of the unicellular red alga Porphyhdium species[J]. Plant Physiology.2002,129(1):7-12.
    [99]耿德贵,王义琴.GUS基因在杜氏盐藻细胞中的瞬间表达[J].高技术通讯.2002,12(002):35-39.
    [100]吕玉民,谢华,牛向丽,等.用基因枪法将bar基因导入杜氏盐藻及转基因藻株的检测[J].郑州大学学报:医学版.2004,39(1):31-35.
    [101]Tan C., Qin S., Zhang Q., et al. Establishment of a micro-particle bombardment transformation system for Dunaliella salina[J]. Journal of Microbiology.2005,43(4):361.
    [102]Kindle K. L. High-frequency nuclear transformation of Chlamydomonas reinhardtii[J]. Proceedings of the National Academy of Sciences.1990,87(3):1228-1232.
    [103]Feng S., Xue L., Liu H., et al. Improvement of efficiency of genetic transformation for Dunaliella salina by glass beads method[J]. Molecular Biology Reports.2009,36(6):1433-1439.
    [104]Te M. R., Miller D. J. Genetic transformation of dinoflagellates(Amphidinium and Symbiodinium): expression of GUS in microalgae using heterologous promoter constructs[J]. The Plant Journal. 1998,13(3):427-435.
    [105]Hirata R., Takahashi M., Saga N., et al. Transient gene expression system established in Porphyra yezoensis is widely applicable in Bangiophycean algae[J]. Marine Biotechnology.2011,13(5): 1038-1047.
    [106]Cheney D., Kurtzman A. Progress in protoplast fusion and gene transfer in red algae[C]//Abstracts ⅩⅣth International Seaweed Symposium.1992.
    [107]Qin S., Sun G.-Q., Jiang P., et al. Review of genetic engineering of Laminaria japonica (Laminariales, Phaeophyta) in China[J]. Hydrobiologia.1999,398:469-472.
    [108]Jiang P., Qin S., Tseng C. Expression of the lacZ reporter gene in sporophytes of the seaweed Laminaria japonica (Phaeophyceae) by gametophyte-targeted transformation[J]. Plant Cell Reports. 2003,21(12):1211-1216.
    [109]Neuhaus G., Neuhaus-Url G., De Groot E. J., et al. High yield and stable transformation of the unicellular green alga Acetabularia by microinjection of SV40 DNA and pSV2neo[J]. The EMBO Journal.1986,5(7):1437.
    [110]Brown L. E., Sprecher S., Keller L. Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation[J]. Molecular and Cellular Biology.1991,11(4):2328-2332.
    [111]Sun Y., Yang Z., Gao X., et al. Expression of foreign genes in Dunaliella by electroporation[J]. Molecular Biotechnology.2005,30(3):185-192.
    [112]Wang C., Wang Y., Su Q., et al. Transient expression of the GUS gene in a unicellular marine green alga, Chlorella sp. MACC/C95, via electroporation[J]. Biotechnology and Bioprocess Engineering. 2007,12(2):180-183.
    [113]Geng D.-G., Han Y., Wang Y.Q., et al. Construction of a system for the stable expression of foreign genes in Dunaliella salina[J]. Acta Botanica Sinica.2004,46(3):342-345.
    [114]Niu Y., Zhang M., Xie W., et al. A new inducible expression system in a transformed green alga, Chlorella vulgaris[J]. Genetics and Molecular Research.2011,10:3427-3434.
    [115]Kilian O., Benemann C. S., Niyogi K. K., et al. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp[J]. Proceedings of the National Academy of Sciences.2011, 108(52):21265-21269.
    [116]Falciatore A., Casotti R., Leblanc C., et al. Transformation of nonselectable reporter genes in marine diatoms[J]. Marine Biotechnology.1999,1(3):239-251.
    [117]Teng C., Qin S., Liu J., et al. Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis[J]. Journal of Applied Phycology.2002,14(6):497-500.
    [118]Mizukami Y., Hado M., Kito H., et al. Reporter gene introduction and transient expression in protoplasts of Porphyra yezoensis[J]. Journal of Applied Phycology.2004,16(1):23-29.
    [119]王高歌,臧晓南.螺旋藻对六种抗生素的敏感性研究[J].高技术通讯.2001,11(007):6-13.
    [120]曹军平,费志清,刘必谦,等.金藻基因上程选择标记的研究[J].海洋科学.2001,25(7):6-8.
    [121]Zaslavskaia L., Lippmeier J., Shih C., et al. Trophic conversion of an obligate photoautotrophic organism through metabolic engineering[J]. Science.2001,292(5524):2073-2075.
    [122]Dunahay T. G., Jarvis E. E., Dais S. S., et al. Manipulation of microalgal lipid production using genetic engineering[J]. Applied Biochemistry and Biotechnology.1996,57(1):223-231.
    [123]王逸云,王长海.无菌条件下的小球藻培养条件优化[J].烟台大学学报:自然科学与工程版.2006,19(2):125-129.
    [124]Potvin G., Zhang Z. Strategies for high-level recombinant protein expression in transgenic microalgae:areview[J]. Biotechnology Advances.2010,28(6):910-918.
    [125]Ho S. H., Chen C. Y., Yeh K. L., et al. Characterization of photosynthetic carbon dioxide fixation ability of indigenous Scenedesmus obliquus isolates[J]. Biochemical Engineering Journal.2010, 53(1):57-62.
    [126]Xin L., Hong-ying H., Jia Y. Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent[J]. New Biotechnology. 2010,27(1):59-63.
    [127]De Morais M. G., Costa J. A. V. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor[J]. Journal of Biotechnology. 2007,129(3):439-445.
    [128]Ho S. H., Chen W. M., Chang J. S. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production[J]. Bioresource Technology.2010,101(22):8725-8730.
    [129]Mandal S., Mallick N. Microalga Scenedesmus obliquus as a potential source for biodiesel production[J]. Applied Microbiology and Biotechnology.2009,84(2):281-291.
    [130]Tang D., Han W., Li P., et al. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels[J]. Bioresource Technology.2011, 102(3):3071-3076.
    [131]Gouveia L., Oliveira A. C. Microalgae as a raw material for biofuels production[J]. Journal of Industrial Microbiology & Biotechnology.2009,36(2):269-274.
    [132]TL S., A R., R M., et al. Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry[J]. Applied Biochemistry and Biotechnology.2009,159(2):568-578.
    [133]Miranda J., Passarinho P. C., Gouveia L. Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production[J]. Bioresource Technology.2012,104:342-348.
    [134]Choi J. A., Hwang J. H., Dempsey B. A., et al. Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent[J]. Energy & Environmental Science.2011,4(9):3513-3520.
    [135]Yang Z., Guo R., Xu X., et al. Fermentative hydrogen production from lipid-extracted microalgal biomass residues[J]. Applied Energy.2011,88(10):3468-3472.
    [136]Greenwell H., Laurens L., Shields R., et al. Placing microalgae on the biofuels priority list:a review of the technological challenges[J]. Journal of the Royal Society Interface.2010,7(46):703-726.
    [137]Cheng Y. L., Juang Y. C., Liao G. Y., et al. Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation[J]. Bioresource Technology.2011,102(1):82-87.
    [138]Sukenik A., Bilanovic D., Shelef G. Flocculation of microalgae in brackish and sea waters[J]. Biomass.1988,15(3):187-199.
    [139]Vandamme D., Foubert I., Muylaert K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production[J]. Trends in Biotechnology.2013.
    [140]Schlesinger A., Eisenstadt D., Bar-Gil A., et al. Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production[J]. Biotechnology Advances.2012,30(5):1023-1030.
    [141]Papazi A., Makridis P., Divanach P. Harvesting Chlorella minutissima using cell coagulants[J]. Journal of Applied Phycology.2010,22(3):349-355.
    [142]Banerjee C., Gupta P., Mishra S., et al. Study of polyacrylamide grafted starch based algal flocculation towards applications in algal biomass harvesting[J]. International Journal of Biological Macromolecules.2012,51(4):456-461.
    [143]Zheng H., Gao Z., Yin J., et al. Harvesting of microalgae by flocculation with poly (y-glutamic acid)[J]. Bioresource Technology.2012,112:212-220.
    [144]Duan J., Gregory J. Coagulation by hydrolysing metal salts[J]. Advances in Colloid and Interface Science.2003,100:475-502.
    [145]Chen F., Liu Z., Li D., et al. Using ammonia for algae harvesting and as nutrient in subsequent cultures[J]. Bioresource Technology.2012,121:298-303.
    [146]Vandamme D., Foubert I., Fraeye I., et al. Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications[J]. Bioresource Technology.2011,105: 114-119.
    [147]Morales J., De La Noiie J., Picard G. Harvesting marine microalgae species by chitosan flocculation[J]. Aquacultural Engineering.1985,4(4):257-270.
    [148]Beach E. S., Eckelman M. J., Cui Z., et al. Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae Neochloris oleoabundans[J]. Bioresource Technology.2012,121:445-449.
    [149]Folkman Y., Wachs A. M. Removal of algae from stabilization pond effluents by lime treatment[J]. Water research.1973,7(3):419-435.
    [150]Semerjian L., Ayoub G. High-pH-magnesium coagulation-flocculation in wastewater treatment[J]. Advances in Environmental Research.2003,7(2):389-403.
    [151]Poelman E., De Pauw N., Jeurissen B. Potential of electrolytic flocculation for recovery of micro-algae[J]. Resources, Conservation and Recycling.1997,19(1):1-10.
    [152]Uduman N., Bourniquel V., Danquah M. K.., et al. A parametric study of electrocoagulation as a recovery process of marine microalgae for biodiesel production[J]. Chemical Engineering Journal. 2011,174(1):249-257.
    [153]Mouedhen G., Feki M., Wery M. P., et al. Behavior of aluminum electrodes in electrocoagulation process[J]. Journal of Hazardous Materials.2008,150(1):124.
    [154]Wang H.. Laughinghouse H. D., Anderson M. A., et al. Novel bacterial isolate from Permian groundwater, capable of aggregating potential biofuel-producing microalga Ncmnochloropsis oceanica 1MET1 [J]. Applied and Environmental Microbiology.2012,78(5):1445-1453.
    [155]Lee A. K., Lewis D. M., Ashman P. J. Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel[J]. Journal of Applied Phycology. 2009,21(5):559-567.
    [156]Zhou W., Cheng Y., Li Y., et al. Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment[J]. Applied Biochemistry and Biotechnology.2012:1-15.
    [157]Butterfield C. Studies of sewage purification:Ⅱ. A zooglea-forming bacterium isolated from activated sludge[J]. Public Health Reports (1896-1970).1935:671-684.
    [158]Suh H.-H., Kwon G.-S., Lee C.-H., et al. Characterization of bioflocculant produced by Bacillus sp. DP-152[J]. Journal of Fermentation and Bioengineering.1997,84(2):108-112.
    [159]Tong Z., Zhe L., Huai-lan Z. Microbial flocculant and its application in environmental protection[J]. Journal of Environmental Sciences.1999,11:1-12.
    [160]Oh H.-M., Lee S. J., Park M.-H., et al. Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49[J]. Biotechnology Letters.2001,23(15):1229-1234.
    [161]Kim D. G., La H.J., Ahn C. Y., et al. Harvest of Scenedesmus sp. with bioflocculant and reuse of culture medium for subsequent high-density cultures[J]. Bioresource Technology.2011,102(3): 3163-3168.
    [162]Wan C., Zhao X., Guo S., et al. Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation[J]. Bioresource Technology.2012.
    [163]Van Den Hende S., Vervaeren H., Desmet S., et al. Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment[J]. New Biotechnology.2011,29(1):23-31.
    [164]Salim S., Bosnia R., Vermue M. H., et al. Harvesting of microalgae by bio-flocculation[J]. Journal of Applied Phycology.2011,23(5):849-855.
    [165]Eldridge R., Hill D., Gladman B. A comparative study of the coagulation behaviour of marine microalgae[J]. Journal of Applied Phycology.2012,24(6):1667-1679.
    [166]Taylor R. L., Rand J. D., Caldwell G. S. Treatment with algae extracts promotes flocculation, and enhances growth and neutral lipid content in Nannochloropsis oculata-a candidate for biofuel production[J]. Marine Biotechnology.2012,14(6):774-781.
    [167]Nakamura J. Conditions for production of microbial cell flocculant by Aspergillus sojae AJ7002[J]. Agricultural and Biological Chemistry.1976,40:1341-1347.
    [168]Lavoie A., De la Noue J. Harvesting of Scenedesmus obliquus in wastewaters:Auto-or bioflocculation?[J]. Biotechnology and Bioengineering.2004,30(7):852-859.
    [169]Salehizadeh H., Vossoughi M., Alemzadeh I. Some investigations on bioflocculant producing bacteria[J]. Biochemical Engineering Journal.2000,5(1):39-44.
    [170]Salehizadeh H., Shojaosadati S. Extracellular biopolymeric flocculants:recent trends and biotechnological importance[J]. Biotechnology Advances.2001,19(5):371-385.
    [171]Tago Y., Aida K. Exocellular niucopolysaccharide closely related to bacterial floe formation[J]. Applied and Environmental Microbiology.1977,34(3):308-314.
    [172]李伟伟.深海适冷菌Pseudoalteromonas sp. SM9913胞外多糖的絮凝和吸附性能研究[D]:(硕士学位论文).济南:山东大学,2008.
    [173]Prasertsan P., Dermlim W., Doelle H., et al. Screening, characterization and flocculating property of carbohydrate polymer from newly isolated Enterobacter cloacae WD7[J]. Carbohydrate Polymers. 2006,66(3):289-297.
    [174]Kumar C. G., Joo H. S., Choi J. W., et al. Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450[J]. Enzyme and Microbial Technology. 2004,34(7):673-681.
    [175]Takeda M., Kurane R., Koizumi J. I., et al. A protein bioflocculant produced by Rhodococcus erythropolis[3]. Agricultural and Biological Chemistry.1991,55(10):2663-2664.
    [176]Watanabe M, Sasaki K., Nakashimada Y., et al. Growth and flocculation of a marine photosynthetic bacterium Rhodovulum sp[J]. Applied Microbiology and Biotechnology.1998,50(6): 682-691.
    [177]Kurane R., Hatamochi K., Kakuno T., et al. Purification and characterization of lipid bioflocculant produced by Rhodococcus erythropolis[3]. Bioscience, Biotechnology, and Biochemistry.1994, 58(11):1977-1982.
    [178]刘紫鹃,徐桂云,刘志培.絮凝剂BP25的化学组成及结构研究[J].微生物学报.2001,41(3):348-352.
    [179]胡筱敏,邓述波,牛力东,等.一株芽孢杆菌所产絮凝剂的研究[J].环境科学研究.2001,14(1):36-40.
    [180]Teunissen A. W., Van Den Berg J. A., Steensma H. Y. Physical localization of the flocculation gene FLO1 on chromosome I of Saccharomyces cerevisiae[J]. Yeast.2004,9(1):1-10.
    [181]Smukalla S., Caldara M., Pochet N., et al. FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast[J]. Cell.2008,135(4):726-737.
    [182]Stratford M. Yeast flocculation:a new perspective[J]. Advances in Microbial Physiology.1992, 33(1):71.
    [183]Domingues L., Vicente A. A., Lima N., et al. Applications of yeast flocculation in biotechnological processes[J]. Biotechnology and Bioprocess Engineering.2000,5(4):288-305.
    [184]Jin Y.-L., Alex Speers R. Flocculation of Saccharomyces cerevisiae[J]. Food Research International. 1998,31(6-7):421-440.
    [185]Bidard F., Bony M., Blondin B., et al. The Saccharomyces cerevisiae FLO1 flocculation gene encodes for a cell surface protein[J]. Yeast.2004,11(9):809-822.
    [186]Bony M., Thines-Sempoux D., Barre P., et al. Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flolp[J]. Journal of Bacteriology.1997,179(15): 4929-4936.
    [187]Singh R., Bhari R., Kaur H. P. Characteristics of yeast lectins and their role in cell-cell interactions[J]. Biotechnology Advances.2011,29(6):726-731.
    [188]Verstrepen K. J., Klis F. M. Flocculation, adhesion and biofilm formation in yeasts[J]. Molecular Microbiology.2006,60(1):5-15.
    [189]Verstrepen K. J., Reynolds T. B., Fink G. R. Origins of variation in the fungal cell surface[J]. Nature Reviews Microbiology.2004,2(7):533-540.
    [190]Dranginis A. M., Rauceo J. M., Coronado J. E., et al. A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions[J]. Microbiology and Molecular Biology Reviews. 2007,71(2):282-294.
    [191]Verstrepen K. J., Jansen A., Lewitter F., et al. Intragenic tandem repeats generate functional variability[J]. Nature Genetics.2005,37(9):986-990.
    [192]Fernandes P., Mofadas-Ferreira P., Sousa M. Flocculation of Kluyveromyces marxianus is induced by a temperature upshift[J]. Yeast.1993,9(8):859-866.
    [193]Ge X., Zhang L., Bai F. Impacts of temperature, pH, divalent cations, sugars and ethanol on the flocculating of SPSC01[J]. Enzyme and Microbial Technology.2006,39(4):783-787.
    [194]Verstrepen K., Derdelinckx G., Verachtert H., et al. Yeast flocculation:what brewers should know[J]. Applied Microbiology and Biotechnology.2003,61(3):197-205.
    [195]Stratford M., Assinder S. Yeast flocculation:Flol and NewFlo phenotypes and receptor structure[J]. Yeast.1991,7(6):559-574.
    [196]Stratford M. Yeast flocculation:calcium specificity[J]. Yeast.1989,5(6):487-496.
    [197]Kuriyama H., Umeda I., Kobayashi H. Role of cations in the flocculation of Saccharomyces cerevisiae and discrimination of the corresponding proteins[J]. Canadian Journal of Microbiology. 1991,37(5):397-403.
    [198]Liao W., Liu Y., Chen S. Studying pellet formation of a filamentous fungus Rhizopus oryzae to enhance organic acid production[C]//Applied Biochemistry and Biotecnology. Springer.2007: 689-701.
    [199]Soares E. V., Seynaeve J. Induction of flocculation of brewer's yeast strains of Saccharomyces cerevisiae by changing the calcium concentration and pH of culture medium[J]. Biotechnology Letters.2000,22(23):1827-1832.
    [200]Bauer F. F., Govender P., Bester M. C. Yeast flocculation and its biotechnological relevance[J]. Applied Microbiology and Biotechnology.2010,88(1):31-39.
    [201]Zhao X., Bai F. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production[J]. Journal of Biotechnology.2009,144(1):23-30.
    [202]Zhang J., Hu B. A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets[J]. Bioresource Technology.2012,114:529-535.
    [203]甘旭华,唐欣昀,刘广金,等.螺旋藻的纯化[J].微生物学通报.2005,32(002):1-4.
    [204]林伟,刘秀云.海洋微藻除菌及降菌与自然带菌微藻生长特点比较[J].海洋与湖沼.2000,31(6):647-652.
    [205]Munoz R., Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants:a review[J]. Water Research.2006,40(15):2799-2815.
    [206]汪本凡,赵良侠,叶霁,等.微藻无菌化技术的研究进展[J].微生物学通报.2007,34(2):363-366.
    [207]唐颖,王长海,李克锦,等.杜氏盐藻无菌纯化研究[J].大连理工大学报.2011,(6):871-876.
    [208]李克锦,唐颖,王长海.盐藻的无菌培养及其抗生素标记的选择[J].烟台大学学报:自然科学与工程版.2009,22(2):117-121.
    [209]唐霞,何丽媛,刘瞳,等.斜生栅藻的无菌化培养及其在原油降解中的应用研究[J].环境工程学报.2010,(005):1079-1083.
    [210]Kodama M, Sakamoto S, Koike K Symbiosis of bacteria in Alexandrium tamarense [G]//Yasumoto T., Oshima Y.,Fukuyo Y. Harmful and toxic algal blooms:proceedings of the Seventh International Conference on Toxic Phytoplankton. Sendai:International Oceanographic Commission of UNESCO,1996:351-354.
    [211]Su J., Yang X., Zheng T., et al. An efficient method to obtain axenic cultures of Alexandrium tamarense -a PSP-producing dinoflagellate[J]. Journal of Microbiological Methods.2007,69(3): 425-430.
    [212]Joseph S., David W分子克隆实验指南[M].第三版.北京:科学出版社,2002.
    [213]刘润国.产氢扁藻的培养优化[D]:(硕士学位论文).大连:中国科学院大连化物所,2004.
    [214]Chaplin M., Kennedy J. Carbohydrate analysis:a practical approach[M]. New York:Oxford University Press,1984.
    [215]Lowry O. H., Rosebrough N. J., Farr A. L., et al. Protein measurement with the Folin phenol reagent[J]. The Journal of Biological Chemistry.1951,193(1):265-275.
    [216]Bligh E., Dyer W. J. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology.1959,37(8):911-917.
    [217]Sambrook J., Russell D. W. Molecular cloning:a laboratory manual[M]. New York:Cold Spring Harbor Laboratory Press,2001.
    [218]陈颖,刘根齐.3种小球藻DNA提取方法的比较[J].植物生理学通讯.2001,37(003):242-244.
    [219]Nishi T., Yoshizato K., Yamashiro S., et al. High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation[J]. Cancer Research.1996,56(5): 1050-1055.
    [220]秦玉静,金建玲.影响酿酒酵母电击转化率的条件[J].山东大学学报:自然科学版.1999,34(002):236-240.
    [221]Anila N., Chandrashekar A., Ravishankar G., et al. Establishment of Agrobacterium tumefaciens-meddited genetic transformation in Dunaliella bardawil[J]. European Journal of Phycology.2011,46(1):36-44.
    [222]Griffiths M. J., Harrison S. T. Lipid productivity as a key characteristic for choosing algal species for biodiesel production[J]. Journal of Applied Phycology.2009,21(5):493-507.
    [223]贺雷雨.絮凝酵母SPSC01絮凝基因的分离及功能研究[D]:(博士学位论文).大连:大连理工大学,2012.
    [224]Tredici M. R. Photobiology of microalgae mass cultures:understanding the tools for the next green revolution[J]. Biofuels.2010,1(1):143-162.
    [225]Uduman N., Qi Y., Danquah M. K., et al. Dewatering of microalgal cultures:A major bottleneck to algae-based fuels[J]. Journal of Renewable and Sustainable Energy.2010,2(1):012701.
    [226]Harun R., Singh M., Forde G. M., et al. Bioprocess engineering of microalgae to produce a variety of consumer products[J]. Renewable and Sustainable Energy Reviews.2010,14(3):1037-1047.
    [227]Elkady M., Farag S., Zaki S., et al. Bacillus mojavensis strain 32A, a bioflocculant-producing bacterium isolated from an Egyptian salt production pond[J]. Bioresource Technology.2011, 102(17):8143-8151.
    [228]Fattom A., Shilo M. Phormidium J-1 bioflocculant:production and activity[J]. Archives of Microbiology.1984,139(4):421-426.
    [229]徐锡莲.盐藻胞外多糖的分离与结构研究[D]:(硕士学位论文).杭州:浙江大学,2007.
    [230]李亚清.海洋微藻多糖的提取分离纯化和结构特征研究[D]:(硕士学位论文).大连:大连理工大学,2004.
    [231]孙利芹.紫球藻多糖的制备及其生物活性研究[D]:(博士学位论文).大连:大连理工大学,2009.
    [232]王薇.产絮菌合成生物絮凝剂特性及絮凝成分解析[D]:(博士学位论文).哈尔滨:哈尔滨工业大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700