用户名: 密码: 验证码:
家蚕后部丝腺差异蛋白组学及microRNA表达谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为鳞翅目昆虫的典型代表,家蚕拥有其他昆虫无法替代的经济性状;而更重要的是,作为仅次于果蝇的第二大模式昆虫,它又几乎囊括了其他昆虫的所有生物性状。众多的特点不仅造就了一个可持续发展的经济产业,而且也吸引了一大批蚕桑科研领域之外的多学科人员的共同参与,使得近几年来蚕桑科研领域的蓬勃发展,取得了令人瞩目的学术成果。家蚕基因组计划的顺利完成,为进一步在后基因组时代中的研究提供了关键的理论基础和技术平台。后基因组时代的研究内容有很多,对基因组序列进行准确的注释是至关重要的任务之一,而且事实证明,生物体以一个复杂的系统,其基因的表达受到很多因子的调控,使得其表达水平与蛋白的表达水平存在一定的开差。要解决这一问题,我们不仅要依赖于对蛋白质的研究,而且也要深入探索其他调控因子的作用,比如1microRNA (miRNA)。本文就有关家蚕后部丝腺的蛋白质组和miRNA表达谱方面的工作进行了初步研究,取得的主要的研究结果如下:
     1、高温胁迫下家蚕后部丝腺差异蛋白质组分析
     我们用比较蛋白质组学和磷酸化蛋白质组学技术研究了高温胁迫下家蚕原种和杂交种后部丝腺蛋白质表达差异。结果发现,在获得的所有蛋白点中,有82.07%的蛋白点显示假性效应,6.17%显示超显性,11.76%的蛋白点为显性不足。我们用质谱鉴定了15个差异表达的蛋白点,其中,4个点包括热激蛋白和抑制素蛋白直接与热激应答有关,其余11个蛋白点在蚕丝的合成中发挥着重要作用。我们还鉴定了9个蛋白与蛋白质磷酸化有关。根据基因注释和代谢途径分析,这九个蛋白在高温胁迫后的信号转导过程中发挥着重要功能。在三个品种中大部分与丝腺合成有关的蛋白随着时间变化其表达被抑制,而与应激类相关蛋白则呈现上调趋势。而月.,与原种比较,杂交种中鉴定的大部分蛋白呈现超显性或显性不足的状态。结果表明高温刺激会影响后部丝腺中与热激和蚕丝合成相关蛋白的表达,更重要的是,在原种和杂交种中差异表达的蛋白在一定程度上揭示了杂种优势的存在
     2. miRNA识别软件的筛选
     虽然借助高通量测序可以发现大量的候选1niRNAs,但也会产生大量的真假难辨的数据从而给新miRNAs的鉴定带来很大的挑战。基于前人的研究,三种基于支持向量机的软件可以有效地去除一些假阳性的miRNAs。由于这些软件的设计大都建立在人类已矢miRNA前体的结构特征,所以有必要对人类和昆虫miRNAs前体特征进行对比,并比较它们对昆虫miRNAs的预测性能,进而挑选出最适合昆虫的软件。我们利用现有的数据库和生物信息学工具,系统地分析了人类miRNA前体和昆虫前体的特征差异以及昆虫24个不同种类之间的结构特征。结果表明,人类和昆虫miRNA前体的核苷酸组成,序列长度,核苷酸偏好和二级结构的特点是不同的。随后,借助三个现有的支持向量机的miRNA识别程序对这些已知的miRNA进行评分,以此来判断miRNA识别软件的性能高低。结果表明,2,633条昆虫前体中有2,229条被mirident分类器成功识别,比例高达84.66%,高于triplet-svm(72.50%)和(72.65%)pmirpo我们分别用软件检测每一个现有的昆虫物种,结果发现有四个物种,包括家蚕,果蝇,蜂和赤拟谷盗,获得了较低的成绩。特别是,与其他物种相比,家蚕的识别率最低,平均MFE指数也最小(0.73)。总的来说,这些结果为我们了解昆虫miRNA前体的特异性和多样性提供了线索,也为进一步开发出针对昆虫前体特征的rniRNA识别软件奠定了基础。
     3、家蚕后部丝腺1miRNAs表达谱分析
     我们用solexa技术对六个小RNA文库进行了深度测序,并用DASP方法检测到293个已知家蚕miRNAs,它们分成66个家族。从物种保守性来看,有40个家族保守在昆虫和其他物种间,剩下的26个家族只在家蚕上发现。另外,根据系统发育分析,这些miRNAs分布在14个从无脊椎动物到脊椎动物的物种上,为进一步研究动物的进化提供了系统发育标记和进化信号。同时,我们分析了不同产丝量品种之间miRNAs的表达差异,结果发现多丝量品种J1中下调表达的miRNAs远远多于裸蛹品种R1。而对两个不同发育时期的家蚕进行分析表明,丝腺细胞快速发育期比前期也同样拥有较多的下调miRNAS。两个独立实验分别印证了丝蛋白基因的表达可能受到了miRNAs的调控,从而造成丝心蛋白表达量的变化。我们随后采用mireap对未注释序列进行新miRNA的预测得到1,373条候选miRNAS。同时利用本实验筛选出的miRNA前体检测软件mirident程序,成功地从六个文库的候选miRNA中检验出414条非冗余新miRNA口432条前体序列,其中有50对miRNA/miRNA*复合体,结果大大丰富了家蚕miRNA数据库。借助生物信息学软件,我们对差异表达的miRNA进行靶标预测、GO分类和KEGG分析。我们发现,多丝量品种下调miRNAs对应的KEGG的靶基因数量明显高于上调表达的miRNAS。这些通路涉及范围较广,包括细胞凋亡,精氨酸脯氨酸代谢,氨基酸-tRNA生物合成,丙氨酸、天冬氨酸和谷氨酸代谢,氨基酸和核酸糖代谢等。通过对以丙氨酸、天冬氨酸和谷氨酸代谢通路的分析,结果表明下调miRNA对应靶基因更多地参与丙氨酸代谢途径,结茧蚕比裸蛹可能要合成更多的丙氨酸来促进丝腺细胞的发育。我们推测多丝量家蚕后部丝腺miRNAs的下调表达有利于家蚕囤积与丝蛋白合成相关的物质,储存能量,来促进蚕茧高产。
     4、家蚕后部丝腺]miRNA表达谱芯片分析
     为了更全面的验证五龄第三天家蚕后部丝腺miRNA表达谱,我们定制了一个囊括家蚕数据库,果蝇数据库,最近发表文章以及本实验预测的miRNAs的全方位探针,并最终鉴定出333条niRNAs,包含家蚕已矢miRNA213条和120条新miRNA,其中,在新miRNAs中发现有13条保守在果蝇中。我们对芯片的结果进行重复性检测以及与solexa测序相关性分析,发现芯片重复性高,与solexa相比更适合1niRNAs的定量分析。随后,我们分析了秋丰和白玉雌雄以及品种之间的差异性,结果表明无论性别还是品种,它们的miRNAs表达差异在总体水平上不显著,这可能与秋丰、白玉二者产丝性状相差很小有关。
     本论文所取得的成果为研究生物在高温胁迫条件下的抗逆性以及杂种优势及抗性机理提供理论依据,为丰富家蚕miRNAs数据库提供了资源储备,同时也为研究后部丝腺1niRNAs在五龄期间蚕丝合成过程发挥的作用提供了参考。
As a typical representative Lepidoptera insect, silkworm Bombyx mori not only has irreplaceable economic traits, but more importantly, as a second model insect only next to Drosophila, it possesses almost all the biological characteristic of other insects. Such outstanding features collectively support a sustainable economy industry, and moreover, a large number of multidisciplinary participation is also attracted. All of these have contributed lots of valuable findings to the researches on silkworm in recent years. Especially, the successful accomplishment of silkworm genome project provides us critical theoretical basis and technological platform to further study in the post-genomic era. There are many research contents in post genomic era. For instance, the accurate annotation to the genome is one of the important tasks. It has been proved that organisms are complex systems, and its gene expression is regulated by many factors. To some extent, the expression levels of mRNA do not represent the protein levels. To solve this problem and further reveal the complex mechanisms in organisms which are under physiological or pathological conditions, we should not only rely on the study of proteins, but also to explore other regulatory factors, such as microRNA (miRNA). This study focused on comparative proteomics and expression profile of miRNAs in the posterior silk glands of Bombyx mori and obtained several preliminary findings as follows:
     1. Comparative proteomic and phosphoproteomic analysis of the silkworm posterior silk gland under high temperature treatment
     The proteins from the posterior silk gland of silkworm hybrids and their parents reared under high temperatures were studied by using comparative proteomic and phosphoproteomic analysis. A total of82.07%.6.17%and11.76%protein spots showed additivity. overdominance and underdominance patterns, respectively. Fifteen differentially expressed protein spots were identified by peptide mass fingerprinting. Among these, four spots, including sHSPs and prohibitin protein that were directly relevant to heat response, were identified. Eleven protein spots were found to play an important role in silk synthesis, and nine protein spots expressed phosphorylation states. According to Gene ontology (GO) and KEGG pathway analysis, these nine spots played an important role in stress-induced signal transduction. Expression of most silk synthesis-related proteins was reduced, whereas stress-responsive proteins increased with heat exposure time in three breeds. Furthermore, most proteins showed under-or overdominance in the hybrids compared to the parents. The results suggested that high temperature could alter the expression of proteins related to silk synthesis and heat response in silkworm. Moreover, differentially expressed proteins occurring in the hybrid and its parents may be the main explanation of the observed heterosis.
     2. Bioinformatics analysis and screening of miRNA prediction programs
     Although thousands of candidate novel miRNAs can be found by deep-sequencing technology, many pseudo-miRNAs might be produced and bring challenge to further miRNAs identification. Based on the previous research, three SVM-based predictions were selected due to their good performance on distinguishing real-or pseudo-miRNAs. Because all of them were developed based on the known human pre-miRNA characteristics, it sounds reasonable to compare the feature differences between humans and insects, and then select a more suitable program according to their predicting performances on insects. In the present work, we have systematically analyzed, utilizing bioinformatics tools, the featural differences between human and insect pre-miRNAs, as well as differences across24insect species. Results showed that the nucleotide composition, sequence length, nucleotides preference and secondary structure features between human and insects were different. Subsequently, with the aid of three available SVM-based prediction programs, pre-miRNA sequences were evaluated and given corresponding scores. Thus it was found that of2633sequences from the24chosen insect species.2229(84.7%) were successfully recognized by the Mirident classifier, higher than Triplet-SVM (72.5%) and PMirP (72.6%). In contrast, four species, including the domestic silkworm moth, the fruit fly. Drosophila melanogaster Meigen, the honeybee. Apis mellifera L. and the Red Flour beetle, Tribolium castaneum (Herbst). were found to be largely responsible for the poor performance of some sequence matching. Compared with other species. B. mori especially showed the worst performance with the lowest average MFE index (0.73). Collectively these results pave the way for understanding specificity and diversity of miRNA precursors in insects, and lay the foundation for the further development of more suitable algorisms for insects.
     3. miRNAs profiling in posterior silk gland of silkworm identified by solexa deep-sequencing
     In order to study the miRNAs expression profiling of silkworm posterior silk gland, we sequenced six small RNA libraries and obtained293known miRNAs. We found that all the known miRNAs were divided into65miRNA families with the exception of undefined miRNAs, in which,40families were conserved in insects, the left families were only discovered in silkworm. From phylogenetic analysis, those conserved miRNAs were widely distributed in over14species from invertebrates to vertebrates. Result showed that these conserved miRNAs might serve as potential phylogenetic markers and rapid evolutionary signaling molecules. At meantime, we analyzed different expression profiling of two strains with different silk-synthesis traits. One named J1is a strain of silkworm which can normally produce silk, the other termed R1which is the mutant of J1, lack of the ability of spinning cocoon. We found more down-regulated miRNAs in J1compared with it counterpart. We also analyzed the different expression profiles of two developmental stages, specifically,4th-instar molting to5th-instar day-2and5th-instar day-3to5th-instar day-8before spinning. Result showed that the miRNAs expression of stage2obviously declined compared to stage1. Two individual experiments confirmed that silk synthesis related genes might be regulated by miRNAs, which influenced the expression profile of silk proteins. Meanwhile, we employed mireap to predict the novel miRNAs in six libraries with the result of1.373new findings. Utilizing mirident program,432pre-miRNA sequences and414non-redundant miRNAs were successfully recognized to be novel miRNAs. Among these novel miRNAs, we found50pairs of miRNA/miRNA*duplex, which largely enriched the miRNA database. Furthermore, Utilizing RNAhybrid to predict the target genes of differentially expressed miRNAs, we found that many down-regulated miRNAs in J1or stage2were in connection with metabolism and synthesis, which further illustrated the likely function which miRNAs played in silk synthesis.
     4. Identification of miRNAs in5th-3day of PSG by microarray
     With the aid of microarray.333mature miRNAs were confirmed, and in which,213miRNAs were known miRNAs, and the left, including13conserved in Drosophila, were novel. We also analyzed their different expression profiling between genders and breeds. Results showed that there were no significant differences in genders and in breeds. There were28differentially expressed miRNAs in male and female of Q. Twenty of them were up-regulated in female silkworms, while only8of them were up-regulated in male. On the other hand, sixteen differentially expressed miRNAs were identified in two genders of B, in which, seven were up-regualted in female, while the left in male. Meantime, we also compared the differences between two breeds and observed that4miRNAs up-regulated in Q, contrary to8up-regulated in B. Nevertheless, the newly identified miRNAs largely enrich the repertoire of silkworm miRNAs. Moreover, comparative analysis of known and novel miRNAs indicated that the expression level of miRNAs might be the key reason to interpret different yields of cocoon.
     All of the results shed light to further illustration of stress response and heteosis occurring in organisms under high tempreture stress. The newly identified miRNAs provided first hand data for extending the miRNA database, and more important, these findings might pave the way for elucidating likely function of miRNAs in the silk production of posterior silk gland at final moth of silkworm.
引文
Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T.2007. Downregulation of microRNAs-143 and-145 in B-cell malignancies. Cancer science 98: 1914-20
    ALLAWI HT, DAHLBERG JE, OLSON S, LUND E, OLSON M, et al.2004. Quantitation of microRNAs using a modified Invader assay. RNA 10:1153-61
    Altenbach SB.2012. New insights into the effects of high temperature, drought and post-anthesis fertilizer on wheat grain development. Journal of Cereal Science
    Ambros V.2004. The functions of animal microRNAs. Nature 431:350-5
    Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, et al.2003. A uniform system for microRNA annotation. RNA 9:277-9
    Aukerman MJ, Sakai H.2003. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell Online 15:2730-41
    Bachi A, Bonaldi T.2008. Quantitative proteomics as a new piece of the systems biology puzzle. Journal of proteomics 71:357-67
    Bar M, Wyman SK, Fritz BR, Qi J, Garg KS,et al.2008. MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells 26:2496-505
    Bartel DP.2004. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell 116:281-97
    Bartel PL, Fields S.1997. The yeast two-hybrid system. Oxford University Press, USA.
    Baskerville S, Bartel DP.2005. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241-47
    Bendall SC, Hughes C, Stewart MH, Doble B, Bhatia M,Lajoie GA.2008. Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Molecular& Cellular Proteomics 7:1587-97
    Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S. et al.2005. Identification of hundreds of conserved and nonconserved human microRNAs. Nature genetics 37:766-70
    Beretta L, Dubois M,Sobel A, Bensaude O.1995. Stathmin is a major substrate for MAP-kinase activated during heat-shock and chemical stress in HeLa cells. Eur. J. Biochem 227:388-95
    Berezikov E, Guryev V, van de Belt J, Wienholds E. Plasterk RHA,Cuppen E. 2005. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120:21-24
    Blair JA, Rauh D, Kung C, Yun CH, Fan QW, et al.2007. Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. Nature chemical biology 3:229-38
    Bodenmiller B, Malmstrom J, Gerrits B, Campbell D. Lam H, et al.2007. PhosphoPep—a phosphoproteome resource for systems biology research in Drosophila Kc167 cells. Molecular systems biology 3
    Bonenfant D, Towbin H, Coulot M, Schindler P, Mueller DR, Van Oostrum J. 2007. Analysis of dynamic changes in post-translational modifications of human histones during cell cycle by mass spectrometry. Molecular & Cellular Proteomics 6:1917-32
    Bouchal P, Roumeliotis T, Hrstka R, Nenutil R, Vojtesek B, Garbis SD.2008. Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis. Journal of proteome research 8:362-73
    Brennecke J. Hipfner DR, Stark A, Russell RB. Cohen SM.2003. bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila. Cell 113:25-36
    Bushati N, Cohen SM.2007. microRNA functions. Annual review of cell and developmental biology 23:175-205
    Cai Y. Yu X. Zhou Q, Yu C., Hu H. et al.2010. Novel microRNAs in silkworm (Bombyx mori). Functional & integrative genomics 10:405-15
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, et al.2002. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q 14 in chronic lymphocytic leukemia. Proc Nail Acad Sci USA 99:15524-9
    Calin GA, Liu CG, Sevignani C., Ferracin M, Felli N, et al.2004. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. P Natl Acad Sci USA 101:11755-60
    Cao J, Tong C, Wu X., Lv J, Yang Z. Jin Y.2008. Identification of conserved microRNAs in Bombyx mori (silkworm) and regulation of fibroin L chain production by microRNAs in heterologous system. Insect biochemistiy and molecular biology 38:1066-71
    Chaerkady R, Harsha H, Nalli A, Gucek M, Vivekanandan P. et al.2008. A quantitative proteomic approach for identification of potential biomarkers in hepatocellular carcinoma. Journal of proteome research 7:4289-98
    Chang CC, Lin CJ.2011. L1BSVM:a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2:27
    Chang S, Johnston RJ, Fr(?)kjaer-Jensen C, Lockery S, Hobert O.2004. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature 430:785-89
    Chang TC, Wentzel EA, Kent OA, Ramachandran K. Mullendore M, et al. 2007. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745-52
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, et al.2005. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic acids research 33: e179-e79
    Chen CZ, Li L, Lodish HF, Bartel DP.2004. MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83-86
    Chen J, Lin HJ, Pan GT, Zhang ZM, Zhang B, et al.2010. [Identification of known microRNAs in root and leaf of maize by deep sequencing]. Yi Chuan 32: 1175-86
    Chen R, Brentnall TA, Pan S, Cooke K, Moyes KW, et al.2007. Quantitative proteomics analysis reveals that proteins differentially expressed in chronic pancreatitis are also frequently involved in pancreatic cancer. Molecular & Cellular Proteomics 6:1331-42
    Chen X.2004. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science Signalling 303:2022
    Chen X, Li Q, Wang J, Guo X, Jiang X, et al.2009. Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biol 10:R78
    Consortium ISG.2008. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38:1036-45
    de la Fuente van Bentem S, Hirt H.2007. Using phosphoproteomics to reveal signalling dynamics in plants. Trends in plant science 12:404-11
    Dong QH, Han J, Yu HP, Wang C, Zhao MZ, et al.2012. Computational Identification of MicroRNAs in Strawberry Expressed Sequence Tags and Validation of Their Precise Sequences by miR-RACE. Journal of Heredity 103: 268-77
    Du T, Zamore PD.2005. microPrimer:the biogenesis and function of microRNA. Development 132:4645-52
    Enright AJ, John B, Gaul U. Tuschl T. Sander C, Marks DS.2004. MicroRNA targets in Drosophila. Genome Biology 5:1-1
    Esquela-Kerscher A. Slack FJ.2006. Oncomirs—microRNAs with a role in cancer. Nature Reviews Cancer 6:259-69
    Fang S, Lee HJ, Wark AW, Robert M.2006. Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. Journal of the American Chemical Society 128: 14044-46
    Ficarro SB. Parikh JR, Blank NC. Marto JA.2008. Niobium (V) oxide (Nb2O5):application to phosphoproteomics. Analytical chemistry 80:4606-13
    Freier SM, Kierzek R, Jaeger JA. Sugimoto N, Caruthers MH, et al.1986. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci US A 83:9373-7
    Gebauer F, Hentze MW.2004. Molecular mechanisms of translational control. Nature Reviews Molecular Cell Biology 5:827-35
    Gesellchen V, Boutros M.2004. Managing the genome:microRNAs in Drosophila. Differentiation 72:74-80
    Gevaert K, Impens F, Ghesquiere B, Van Damme P, Lambrechts A, Vandekerckhove J.2008. Stable isotopic labeling in proteomics. Proteomics 8: 4873-85
    Gingras AC, Gstaiger M, Raught B, Aebersold R.2007. Analysis of protein complexes using mass spectrometry. Nature Reviews Molecular Cell Biology 8: 645-54
    Glazov EA, Cottee PA, Barris WC, Moore RJ, Dalrymple BP, Tizard ML. 2008. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Research 18:957-64
    Goldsmith MR, Shimada T, Abe H.2005. THE GENETICS AND GENOMICS OF THE SILKWORM, BOMBYX MORI*. Annu. Rev. Entomol.50: 71-100
    Grad Y, Aach J, Hayes GD, Reinhart BJ, Church GM, et al.2003. Computational and Experimental Identification of< i> C. elegans microRNAs. Molecular cell 11:1253-63
    Griffiths-Jones S.2004a. The microRNA registry. Nucleic acids research 32: D109-D11
    Griffiths-Jones S.2004b. The microRNA Registry. Nucleic Acids Res 32: D109-11
    Gruhler A, Olsen JV, Mohammed S, Mortensen P. Fa;rgeman NJ, et al.2005. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Molecular& Cellular Proteomics 4:310-27
    Grundhoff A, Sullivan CS, Ganem D.2006. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12:733-50
    Grzelak K.1995. Control of expression of silk protein genes. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology 110: 671-81
    Guha U, Chaerkady R, Marimuthu A, Patterson AS, Kashyap MK. et al.2008. Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS. Proceedings of the National Academy of Sciences 105:14112-17
    Gygi SP, Rochon Y, Franza BR, Aebersold R.1999. Correlation between protein and mRNA abundance in yeast. Molecular and cellular biology 19:1720-30
    Gygil SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R.1999. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature biotechnology 17:994-99
    Hagglund P, Bunkenborg J, Maeda K, Svensson B.2008. Identification of thioredoxin disulfide targets using a quantitative proteomics approach based on isotope-coded affinity tags. Journal of proteome research 7:5270-76
    He P, Nie Z, Chen J, Lv Z, Sheng Q, et al.2008. Identification and characteristics of microRNAs from Bombyx mori. BMC Genomics 9:248
    Hightower L.1991. Heat shock, stress proteins, chapcroncs, and proteotoxicity. Cell 66:191-97
    Ho J, Kong JWF, Choong LY, Loh MCS, Toy W, et al.2008. Novel breast cancer metastasis-associated proteins. Journal of proteome research 8:583-94
    Hofacker IL.2003. Vienna RNA secondary structure server. Nucleic acids research 31:3429-31
    Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P. 1994. Fast folding and comparison of RNA secondary structures. Monatshefte fur Chemie/Chemical Monthly 125:167-88
    Huang PJ, Liu YC, Lee CC, Lin WC, Gan RR, et al.2010a. DSAP: deep-sequencing small RNA analysis pipeline. Nucleic Acids Res 38:W385-91
    Huang Y, Zou Q, Tang SM, Wang LG, Shen XJ.2010b. Computational identification and characteristics of novel microRNAs from the silkworm (Bombyx mori L.). Molecular Biology Reports 37:3171-76
    Iliuk A, Galan J, Tao WA.2009. Playing tag with quantitative proteomics. Analytical and bioanalytical chemistry 393:503-13
    Inoue S, Kanda T, Imamura M, Quan GX, Kojima K, et al.2005. A fibroin secretion-deficient silkworm mutant, Nd-sD, provides an efficient system for producing recombinant proteins. Insect biochemistry and molecular biology 35: 51-59
    Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S.2000. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. Journal of Biological Chemistry 215:40517-28
    Jagadeeswaran G, Zheng Y, Sumathipala N, Jiang H, Arrese EL, et al.2010. Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development. BMC Genomics 11:52
    Jenkins LMM, Mazur SJ, Rossi M, Gaidarenko O, Xu Y, Appella E.2008. Quantitative proteomics analysis of the effects of ionizing radiation in wild type and p53K317R knock-in mouse thymocytes. Molecular & Cellular Proteomics 7: 716-27
    Jiang P, Wu H, Wang W, Ma W. Sun X, Lu Z.2007. MiPred:classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic acids research 35:W339-W44
    Jones-Rhoades MW, Bartel DP.2004. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular cell 14: 787-99
    Jonstrup SP, Koch J. Kjems J.2006. A microRNA detection system based on padlock probes and rolling circle amplification. RNA 12:1747-52
    Kalume D, Molina H, Pandey A.2003. Tackling the phosphoproteome:tools and strategies. Current opinion in chemical biology 7:64-69
    Kamiie K, Taira H. Kobayashi K, Yamashita T, Kidou S, Ejiri S.1999. Expression of elongation factor 1β'in Escherichia coli and its interaction with elongation factor la from silk gland. Bioscience, biotechnology, and biochemistry 63:666-71
    Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, et al.2004. A combined computational-experimental approach predicts human microRNA targets. Gene Dev 18:1165-78
    Kluiver J, Haralambieva E, de Jong D, Blokzijl T, Jacobs S. et al.2005. Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes, Chromosomes and Cancer 45:147-53
    Kozomara A, Griffiths-Jones S.2011. miRBase:integrating microRNA annotation and deep-sequencing data. Nucleic acids research 39:D152-D57
    Kruger M, Moser M, Ussar S, Thievessen I, Luber CA, et al.2008. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353-64
    Krek A, Grun D, Poy MN, Wolf R, Rosenberg L. et al.2005a. Combinatorial microRNA target predictions. Nature genetics 37:495-500
    Krek A. Grun D, Poy MN, Wolf R, Rosenberg L, et al.2005b. Combinatorial microRNA target predictions. Nat Genet 37:495-500
    Kubota K, Ohashi A, Imachi H, Harada H.2006. Improved in situ hybridization efficiency with locked-nucleic-acid-incorporated DNA probes. Appl Environ Microb 72:5311-17
    Lai EC, Tomancak P, Williams RW. Rubin GM.2003. Computational identification of Drosophila microRNA genes. Genome Biol 4:R42
    Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, et al.2005. A cellular microRNA mediates antiviral defense in human cells. Science 308:557-60
    Lee RC, Feinbaum RL, Ambros V.1993a. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-54
    Lee RC, Feinbaum RL, Ambros V.1993b. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-54
    Lee Y. Ahn C. Han J, Choi H. Kim J, et al.2003. The nuclear RNaseⅢ Drosha initiates microRNA processing. Nature 425:415-9
    Lee Y, Kim M. Han J, Yeom KH, Lee S, et al.2004. MicroRNA genes are transcribed by RNA polymerase Ⅱ. The EMBO journal 23:4051-60
    Leichert LI. Gehrke F. Gudiseva HV, Blackwell T, Ilbert M, et al.2008. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proceedings of the National Academy of Sciences 105:8197-202
    Lewis BP. Burge CB, Bartel DP.2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15-20
    Lewis BP. Shih I, Jones-Rhoades MW. Bartel DP, Burge CB.2003. Prediction of mammalian microRNA targets. Cell 115:787-98
    Li J. Yang H. Lan T, Wei H. Zhang H. et al.2011. Expression Profiling and Regulation of Genes Related to Silkworm Posterior Silk Gland Development and Fibroin Synthesis. Journal of proteome research 10:3551-64
    Li L, Xu J, Yang D, Tan X, Wang H.2010a. Computational approaches for microRNA studies:a review. Mammalian genome 21:1-12
    Li M, Xia Y, Gu Y, Zhang K, Lang Q, et al.2010b. MicroRNAome of porcine pre-and postnatal development. PLoS One 5:e11541
    Li X, Wu X, Yue W, Liu J, Li G, Miao Y.2006. Proteomic Analysis of the Silkworm (Bombyx m ori L.) Hemolymph during Developmental Stage. Journal of proteome research 5:2809-14
    Lian C, Sun B, Niu S, Yang R, Liu B, et al.2012. A comparative profile of the microRNA transcriptome in immature and mature porcine testes using Solexa deep sequencing. FEBS J
    Liang C, Zhang X, Zou J, Xu D, Su F, Ye N.2010. Identification of miRNA from Porphyra yezoensis by high-throughput sequencing and bioinformatics analysis. PLoS One 5:e10698
    Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP.2003a. Vertebrate microRNA genes. Science 299:1540-40
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, et al.2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769-73
    Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, et al.2003b. The microRNAs of Caenorhabditis elegans. Gene Dev 17:991
    Liu S, Gao S, Zhang D, Yin J. Xiang Z, Xia Q.2010a. MicroRNAs show diverse and dynamic expression patterns in multiple tissues of Bombyx mori. BMC Genomics 11:85
    Liu S, Li D, Li Q, Zhao P, Xiang Z, Xia Q.2010b. MicroRNAs of Bombyx mori identified by Solexa sequencing. BMC Genomics 11:148
    Liu S, Zhang L, Li Q, Zhao P, Duan J, et al.2009a. MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori). BMC Genomics 10: 455
    Liu X, He S, Skogerbo G, Gong F, Chen R.2012. Integrated Sequence-Structure Motifs Suffice to Identify microRNA Precursors. PLoS One 7: e32797
    Liu X, Luo G, Bai X, Wang XJ.2009b. Bioinformatic analysis of microRNA biogenesis and function related proteins in eleven animal genomes. J Genet Genomics 36:591-601
    Lodygin D, Tarasov V, Epanchintsev A. Berking C. Knyazeva T. et al.2008. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7:2591-600
    Lu H, Yang Y, Allister EM, Wijesekara N. Wheeler MB.2008a. The Identification of Potential Factors Associated with the Development of Type 2 Diabetes A Quantitative Proteomics Approach. Molecular & Cellular Proteomics 7: 1434-51
    Lu H, Zong C, Wang Y, Young G W, Deng N. et al.2008b. Revealing the Dynamics of the 20 S Proteasome Phosphoproteome A Combined CID and Electron Transfer Dissociation Approach. Molecular & Cellular Proteomics 7: 2073-89
    Marklund U, Brattsand G, Osterman O, Ohlsson P, Gullberg M.1993. Multiple signal transduction pathways induce phosphorylation of serines 16,25, and 38 of oncoprotein 18 in T lymphocytes. Journal of Biological Chemistry 268: 25671-80
    Martin B, Brenneman R, Becker KG, Gucek M, Cole RN, Maudsley S.2008. iTRAQ analysis of complex proteome alterations in 3xTgAD Alzheimer's mice: understanding the interface between physiology and disease. PLoS One 3:e2750
    Mathews DH, Sabina J, Zuker M, Turner DH.1999. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology 288:911-40
    McManus MT.2003,13:253-58. Elsevier.
    McNulty DE, Annan RS.2008. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Molecular & Cellular Proteomics 7: 971-80
    Melchinger A, COORS J, Pandey S, Gerdes J.1999. The genetics and exploitation of heterosis in crops. The genetics and Exploitation of Heterosis in Crops
    Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL et al.2006. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203-17
    Mita K, Kasahara M, Sasaki S. Nagayasu Y, Yamada T, et al.2004. The genome sequence of silkworm. Bombyx mori. Dna Research 11:27-35
    Mori K, Tanaka K, Kikuchi Y, Waga M, Waga S. Mizuno S.1995. Production of a Chimeric Fibroin Light-chain Polypeptide in a Fibroin Secretion-deficient Naked Pupa Mutant of the Silkworm< i> Bombyx mori. Journal of Molecular Biology 251:217-28
    Morimoto R.1993. Cells in stress:transcriptional activation of heat shock genes. Science 259:1409-10
    Moxon S, Jing R. Szittya G, Schwach F. Pilcher RLR, et al.2008. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Research 18:1602-09
    Nam JW. Shin KR. Han J, Lee Y. Kim VN, Zhang BT.2005. Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic acids research 33:3570-81
    Neely LA, Patel S. Garver J, Gallo M. Hackett M. et al.2005. A single-molecule method for the quantitation of microRNA gene expression. Nature methods 3:41-46
    Noller H.1991. Ribosomal RNA and translation. Annual Review of Biochemistry 60:191-227
    O'Farrell PH.1975. High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry 250:4007-21
    Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H. et al.2002. Stable isotope labeling by amino acids in cell culture. SILAC. as a simple and accurate approach to expression proteomics. Molecular & Cellular Proteomics 1: 376-86
    Ong SE, Kratchmarova I, Mann M.2003. Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). Journal of proteome research 2:173-81
    Ouellet DL, Plante I, Landry P, Barat C, Janelle ME, et al.2008. Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element. Nucleic acids research 36:2353-65
    Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, et al.2003. Control of leaf morphogenesis by microRNAs. Nature 425:257-63
    Pandey A, Mann M.2000. Proteomics to study genes and genomes. Nature 405:837-46
    Pasquinelli AE, Hunter S, Bracht J.2005. MicroRNAs:a developing story. Current opinion in genetics & development 15:200-05
    Pattnaik P.2005. Surface plasmon resonance. Applied biochemistry and biotechnology 126:79-92
    Peschek J, Braun N, Franzmann T, Georgalis Y, Haslbeck M, et al.2009. The eye lens chaperone A-crystallin forms defined globular assemblies. Proceedings of the National Academy of Sciences 106:13272
    Phanstiel D, Unwin R, McAlister GC, Coon JJ.2009. Peptide quantification using 8-pIex isobaric tags and electron transfer dissociation tandem mass spectrometry. Analytical chemistry 81:1693-98
    Qibin L, Jiang W.2008. MIREAP:MicroRNA Discovery By Deep Sequencing.
    Raggiaschi R, Gotta S, Terstappen GC.2005. Phosphoproteome analysis. Bioscience Rep 25:33-44
    Raveendran M, Jagadish KSV, Craufurd PQ, Bennett J.2012. Proteomic Response of Rice Floral Organs and Lemma-palea to High Temperature Stress. Gene, Genomes and Genomics 6:22-25
    Rehmsmeier M. Steffen P. Hochsmann M, Giegerich R.2004. Fast and effective prediction of microRNA/target duplexes. RNA 10:1507-17
    Reinders J, Sickmann A.2005. State-of-the-art in phosphoproteomics. Proteomics 5:4052-61
    Reinhart BJ, Slack FJ. Basson M. Pasquinelli AE. Bettinger JC. et al.2000a. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901-06
    Reinhart BJ, Slack FJ, Basson M. Pasquinelli AE, Bettinger JC, et al.2000b. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901-6
    Remacha M, Jimenez-Diaz A. Santos C, Briones E. Zambrano R, et al.1995. Proteins P1, P2, and P0, components of the eukaryotic ribosome stalk. New structural and functional aspects. Biochemistry and Cell Biology 73:959-68
    Rich B, Steitz J.1987. Human acidic ribosomal phosphoproteins P0, P1, and P2:analysis of cDNA clones, in vitro synthesis, and assembly. Molecular and cellular biology 7:4065-74
    Seffens W, Digby D.1999. mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic acids research 27:1578-84
    Seitz H, Zamore PD.2006. Rethinking the microprocessor. Cell 125:827-9
    Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. 2004. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13
    Shenouda SK, Alahari SK.2009. MicroRNA function in cancer:oncogene or a tumor suppressor? Cancer Metastasis Rev 28:369-78
    Shi Y, Jin Y.2009. MicroRNA in cell differentiation and development. Sci China C Life Sci 52:205-11
    Shiio Y. Aebersold R.2006. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nature protocols 1:139-45
    Shilova V, Garbuz D, Evgen'ev M. Zatsepina O.2006. Small heat shock proteins and adaptation of various Drosophila species to hyperthermia. Molecular Biology 40:235-39
    Shimizu T. Nakagaki M, Nishi Y, Kobayashi Y, Hachimori A, Uchiumi T. 2002. Interaction among silkworm ribosomal proteins PI. P2 and P0 required for functional protein binding to the GTPase-associated domain of 28S rRNA. Nucleic acids research 30:2620-27
    Sitia R, Neuberger M, Alberini C, Bet P, Fra A, et al.1990. Developmental regulation of IgM secretion:the role of the carboxy-terminal cysteine. Cell 60:781
    Smith JC, Lambert JP, Elisma F, Figeys D.2007. Proteomics in 2005/2006: developments, applications and challenges. Analytical Chemistry-Columbus 79: 4325-44
    Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S.2008,18: 89-102. Elsevier.
    Stromer T, Fischer E, Richter K, Haslbeck M. Buchner J.2004. Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation:the N-terminal domail is important for oligomer assembly and the binding of unfolding proteins. J Biol Chem 279:11222-8
    Studholme DJ.2012. Deep sequencing of small RNAs in plants:applied bioinformatics. Briefings in functional genomics 11:71-85
    Sun W, Van Montagu M, Verbruggen N.2002. Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 1577:1-9
    Sweet SMM, Bailey CM, Cunningham DL, Heath JK, Cooper HJ.2009. Large scale localization of protein phosphorylation by use of electron capture dissociation mass spectrometry. Molecular & Cellular Proteomics 8:904-12
    Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, et al.2004. Reduced expression of the let-7 microRN As in human lung cancers in association with shortened postoperative survival. Cancer research 64:3753-56
    TAKEI F, KIMURA K, MIZUNO S, YAMAMOTO T, SHIMURA K.1984. Genetic analysis of the Nd-s mutation in the silkworm, Bombyx mori. Idengaku Zasshi 59:307-13
    Tan HT, Tan S, Lin Q, Lim TK, Hew CL, Chung MCM.2008. Quantitative and temporal proteome analysis of butyrate-treated colorectal cancer cells. Molecular & Cellular Proteomics 7:1174-85
    Tang F, Hajkova P, Barton SC, O'Carroll D, Lee C, et al.2006.220-plex microRNA expression profile of a single cell. Nature protocols 1:1154-59
    Thingholm TE, Jensen ON, Robinson PJ, Larsen MR.2008. SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Molecular & Cellular Proteomics 7:661-71
    Tong C, Jin Y, Zhang Y.2006. Computational prediction of microRNA genes in silkworm genome. Journal of Zhejiang University-Science B 7:806-16
    Triboulet R, Mari B, Lin YL, Chable-Bessia C, Bennasser Y, et al.2007. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315:1579-82
    Uchiumi T. Honma S, Nomura T, Dabbs ER. Hachimori A.2002. Translation elongation by a hybrid ribosome in which proteins at the GTPase center of the Escherichia coli ribosome are replaced with rat counterparts. Journal of Biological Chemistry 277:3857-62
    Uchiumi T, Kominami R.1997. Binding of Mammalian Ribosomal Protein Complex P0. P1. P2 and Protein L12 to the GTPase-associated Domain of 28 S Ribosomal RNA and Effect on the Accessibility to Anti-28 S RNA Autoantibody. Journal of Biological Chemistry 272:3302-08
    Uchiumi T, Wahba A, Traut R.1987. Topography and stoichiometry of acidic proteins in large ribosomal subunits from Artemia salina as determined by crosslinking. P Natl Acad Sci USA 84:5580-84
    Unver T, Namuth-Covert DM, Budak H.2009. Review of current methodological approaches for characterizing MicroRNAs in plants. International journal of plant genomics 2009:Special section p1
    Van Aken O, Whelan J, Van Breusegem F.2010. Prohibitins:mitochondrial partners in development and stress response. Trends in plant science 15:275-82
    Van Hoof D, Pinkse MWH, Ward-Van Oostwaard D, Mummery CL,Heck A JR, Krijgsveld J.2007. An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics. Nature methods 4: 677-78
    Van Montfort R, Slingsby C,Vierling E.2001. Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv Protein Chem 59:105-56
    Vaughn CP, Crockett DK, Lim MS,Elenitoba-Johnson KSJ.2006. Analytical characteristics of cleavable isotope-coded affinity tag-LC-tandem mass spectrometry for quantitative proteomic studies. The Journal of molecular diagnostics:JMD 8:513
    Vermeulen M, Mulder KW, Denissov S, Pijnappel W, van Schaik F, et al. 2007. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine4.Cell 131:58-69
    Wang H, Buckley K, Yang X, Buchmann R, Bisaro D.2005a. Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. Journal of virology 79:7410-18
    Wang H, Hao L, Shung C, Sunter G, Bisaro D.2003. Adenosine kinase is inactivated by geminivirus AL2 and L2 proteins. The Plant Cell Online 15:3020-32
    Wang L, Ma H, Song L, Shu Y, Gu W.2012. Comparative proteomics analysis reveals the mechanism of pre-harvest seed deterioration of soybean under high temperature and humidity stress. Journal of proteomics
    Wang QL, Li ZH.2007. The functions of microRNAs in plants. Front Bioscience 12:3975-82
    Wang X. Zhang J, Li F, Gu J, He T, et al.2005b. MicroRNA identification based on sequence and structure alignment. Bioinformatics 21:3610-14
    Wang Y, Stricker HM, Gou D, Liu L.2007. MicroRNA:past and present. Front Bioscience 12:C2329
    Washburn MP, Wolters D, Yates Ⅲ JR.2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature biotechnology 19:242-47
    Wei Y, Chen S, Yang P, Ma Z, Kang L.2009. Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust. Genome Biology 10:R6
    Wightman B, Ha I, Ruvkun G.1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans.Cell 75:855-62
    Williamson V, Kim A. Xie B, McMichael GO, Gao Y, Vladimirov V.2012. Detecting miRNAs in deep-sequencing data:a software performance comparison and evaluation. Briefings in Bioinformatics
    Wisniewski JR. Zougman A. Kruger S, Ziolkowski P, Pudelko M. et al.2008. Constitutive and dynamic phosphorylation and acetylation sites on NUCKS. a hypermodified nuclear protein, studied by quantitative proteomics. Proteins. Structure, Function, and Bioinformatics 73:710-18
    Wool I, Chan Y, Gluck A, Suzuki K.1991. The primary structure of rat ribosomal proteins P0, PI, and P2 and a proposal for a uniform nomenclature for mammalian and yeast ribosomal proteins. Biochimie 73:861-70
    Wu HY, Tseng VSM, Liao PC.2007. Mining phosphopeptide signals in liquid chromatography-mass spectrometry data for protein phosphorylation analysis. Journal of proteome research 6:1812-21
    Wu S, Storey K.2005. Up-regulation of acidic ribosomal phosphoprotein P0 in response to freezing or anoxia in the freeze tolerant wood frog. Rana sylvatica. Cryobiology 50:71-82
    Xia Q, Cheng D, Duan J, Wang G, Cheng T, et al.2007. Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biology 8:R162
    Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, et al.2009. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 326:433-36
    Xia Q, Zhou Z, Lu C, Cheng D, Dai F, et al.2004. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306:1937-40
    Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, et al.2008. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature immunology 9:405-14
    Xie SS, Li XY, Liu T, Cao JH, Zhong Q, Zhao SH.2011. Discovery of porcine microRNAs in multiple tissues by a Solexa deep sequencing approach. PLoS One 6:e16235
    Xu P, Vernooy SY, Guo M, Hay BA.2003. The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism. Current Biology 13:790-95
    Xue C, Li F, He T, Liu GP. Li Y, Zhang X.2005a. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC bioinformatics 6:310
    Xue C, Li F, He T, Liu GP, Li Y, Zhang X.2005b. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6:310
    Y HY, M YX, J LW.2008. Computational approaches to microRNA discovery. Hereditas (Beijing) 30:687-96
    Yang B, Lin H, Xiao J, Lu Y, Luo X, et al.2007. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature medicine 13:486-91
    Yang Y, Chen J, Liu Q, Ben C, Todd CD, et al.2012. Comparative Proteomic Analysis of the Thermotolerant Plant Portulaca oleracea Acclimation to Combined High Temperature and Humidity Stress. Journal of proteome research 11:3605-23
    Ye X, Luke B, Andresson T, Blonder J.2009.180 stable isotope labeling in MS-based proteomics. Briefings in functional genomics & proteomics 8:136-44
    Zhang B. Pan X, Cox S, Cobb G, Anderson T.2006. Evidence that miRNAs are different from other RNAs. Cellular and molecular life sciences 63:246-54
    Zhang Y, Chao T, Li R, Liu W, Chen Y, et al.2009a. MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med (Berl) 87:43-51
    Zhang Y, Zhou X, Ge X, Jiang J, Li M. et al.2009b. Insect-specific microRNA involved in the development of the silkworm Bombyx mori. PLoS One 4:e4677
    Zhao D, Wang Y, Luo D, Shi X, Wang L, et al.2010a. PMirP:A pre-microRNA prediction method based on structure-sequence hybrid features. Artificial Intelligence in Medicine 49:127-32
    Zhao D, Wang Y, Luo D, Shi X, Wang L, et al.2010b. PMirP:A pre-microRNA prediction method based on structure-sequence hybrid features. Artificial Intelligence in Medicine 49:127-32
    Zhou H, Ye M, Dong J, Han G, Jiang X, et al.2008a. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. Journal of proteome research 7:3957-67
    Zhou Z, Yang H, Chen M, Lou C, Zhang Y, et al.2008b. Comparative proteomic analysis between the domesticated silkworm (Bombyx mori) reared on fresh mulberry leaves and on artificial diet. Journal ofproteome research 7: 5103-11
    Zhou ZH, Yang HJ, Chen M, Lou CF, Zhang YZ, et al.2008c. Comparative proteomic analysis between the domesticated silkworm (Bombyx mori) reared on fresh mulberry leaves and on artificial diet. JProteome Res 7:5103-11
    Zhu H, Snyder M.2003. Protein chip technology. Current opinion in chemical biology 7:55-63
    Zuker M.2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids research 31:3406-15
    蔡克亚,陈克平,刘晓勇,姚勤,李军.2008.家蚕抗BmNPV品系与感性品系血淋巴液蛋白质组的差异分析.生物工程学报24:285-90
    华刚,张坚,戴玉锦.1992.家蚕几种组织中谷丙转氨酶活力的测定.蚕业科学18:205-07
    惠俊爱,惠俊美.2002.模式生物及其研究进展.生物学通报37:4-6
    李瑞,戴玉锦,朱江,张裕清.1984.蜕皮激素对家蚕后部丝腺谷氨酸-丙酮酸转氨酶活力的影响.昆虫学报27:1-1
    鲁华云,叶键,李建营,钟伯雄.2006.家蚕不同品种后部丝腺蛋白质双向电泳图谱比较.蚕业科学32:114-17
    沈飞英,钟伯雄,楼程富,洪波,蒋振东,et al.2006.家蚕5龄幼虫不同时期中部丝腺细胞蛋白质双向电泳分析.蚕业科学32:25-35
    吴卫成,叶键,鲁华云,李建营,陈金娥,et al.2006.家蚕五龄第1天与第4大后部丝腺蛋白质双向电泳图谱比较.中国农业科学39:1495-500
    许廷森,戴祝英,庄大桓,项美华,邹柏祥,林浩.1979.保幼激素类似物对家蚕氨基酸代谢一些酶的影响.蚕业科学5
    许廷森,王二力.1964.蚕氨基酸代谢之研究Ⅲ.丝腺体L-天门冬氨酸及Q-酮戊二酸形成丙氢酸之机制.Acta Bioch Bioph Sin 3:008
    颜新培,钟伯雄,徐孟奎,郭定国,姚国华.2003.家蚕五龄后部丝腺蛋白质构成与茧层量的关系.蚕业科学29:344-48
    颜新培,钟伯雄,徐孟奎,郭定国,姚国华.2004.家蚕五龄后部丝腺蛋白质构成与茧层量的关系..蚕业科学29:344-48
    颜新培,钟伯雄,徐孟奎,梁建设,沈飞英.2005.家蚕催青前期胚胎蛋白质双向电泳图谱分析.昆虫学报48:295-300
    姚慧鹏,郭爱芹,何芳青,鲁兴萌,吴小锋.2008.家蚕幼虫5龄期中肠蛋白质组学.生物工程学报24:89-94
    叶键,钟伯雄,林健荣,颜海燕,梁建设,et al.2005.家蚕温敏性品种胚胎发育的蛋白质表达谱变化.蚕丝科学31:362-65
    钟伯雄.2001.五龄家蚕若干组织器官蛋白质数据库构建.遗传学报28:217-24
    钟伯雄,陈金娥,颜新培,徐孟奎,梁建设.2005.家蚕催青后期胚胎蛋白质双向电泳图谱分析.昆虫学报48:637-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700