用户名: 密码: 验证码:
意蜂哺育蜂与采集蜂头部mRNAs与miRNAs表达谱Solexa测序比较分析及其调控网络研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜜蜂是社会性昆虫,是公认的研究复杂社会行为进化和分子神经机制的模式生物。蜜蜂有着复杂的行为活动,成年蜜蜂一般在羽化后的2-3周从事巢内工作,其中哺育幼虫的工蜂为哺育蜂,接下来的1-3周,大多数的蜜蜂则从事巢外工作,其中采集花粉花蜜的工蜂为采集蜂,蜜蜂这种从哺育到采集的行为转变与其日龄、生理、环境、脑部结构、基因表达及调控密切相关。本研究利用新一代高通量测序技术分别检测了意大利蜜蜂(Apis mellifera ligustica)哺育蜂和采集蜂头部mRNA和miRNA的表达情况,同时比较这两者之间表达差异的基因,以寻找与蜜蜂行为转变相关的重要基因。采用生物信息学方法,分析了差异显著性表达的miRNAs和mRNAs的调控网络关系。本研究的这些结果为更好地理解蜜蜂行为转变的重要基因及其表达调控提供重要线索。主要结果如下:
     1.哺育蜂与采集蜂头部mRNAs的Solexa高通量测序比对
     为寻找哺育蜂和采集蜂头部表达差异的基因,本研究采用了数字化表达谱技术,即利用新一代高通量测序技术Solexa/Illumina平台检测哺育蜂和采集蜂头部的基因表达。结果表明,在两种蜜蜂中都得到丰富标签序列,在哺育蜂和采集蜂中分别得到3422327和4286250个序列标签;通过与GenBank内已知基因的比对,发现其中分别有173532个(哺育蜂)和426047个(采集蜂)标签序列未能匹配;在哺育蜂和采集蜂中分别检测到6875和7508个已知基因,分别占总基因数的72.47%和79.14%;比较这两组蜜蜂的基因表达情况,其中表达量最高的10个基因中都包含多种王浆主蛋白基因、葡萄糖氧化酶基因和防卫素基因;差异分析筛选发现有1434个基因的表达是差异显著的,即基因在哺育蜂和采集蜂之间的表达量之比(采集蜂/哺育蜂)大于2,且False Discovery Rate (FDR)值小于0.001,其中1337在采集蜂中上调,97个基因下调。此外,通过Gene Ontology功能显著性富集分析和Pathway显著性富集分析,发现在显著差异的基因中,有415个基因是在属于GO cellular component分类,同时还发现这些显著差异基因参与了200个Kyoto Encyclopedia of Genes and Genomes (KEGG)通路,其中包括21条信号通路,而过氧化物酶体增殖物激活受体(PPAR)信号通路是富集强度最大的。
     2.哺育蜂与采集蜂头部microRNAs的Solexa高通量测序比对
     MicroRNAs是内源性的非编码小RNA,长度大约为22个核苷酸,这些小的miRNA通常靶向一个或者多个mRNA,通过在翻译水平的抑制或者裂解靶标mRNA来调控生物体基因的表达。本实验采用第二代高通量技术Illumina测序平台检测哺育蜂和采集蜂头部sRNAs,寻找与行为转变相关的miRNAs。结果表明,哺育蜂和采集蜂头部都含有丰富的小RNAs,而且那些小RNA的长度大多集中在22个核苷酸(nt)左右。结合高通量测序和生物信息学分析,本研究发现,哺育蜂和采集蜂中有9个表达差异显著的miRNAs,即P值小于0.01,同时这些基因在哺育蜂和采集蜂间的表达量相比倍数大于或者等于2,其中部分miRNAs的目标基因与神经功能相关。本研究同时还在哺育蜂和采集蜂中发现了67个新的miRNAs。其中16个miRNAs通过茎环RT-PCR得到进一步的验证。通过荧光定量PCR验证了ame-miR-31a和ame-miR-13b的显著差异性,证明了高通量测序的可靠性及可行性。这些研究结果为了解蜜蜂中的miRNAs提供新的信息,同时为更好理解miRNAs在蜜蜂发育过程中的调控功能提供帮助。
     3.哺育蜂和采集蜂头部mRNA和miRNA调控网络分析
     通过miranda v3.3a软件预测哺育蜂和采集蜂中显著性差异表达的9个miRNAs的靶基因,发现几乎每个miRNA都对应众多的靶基因。结合差异表达mRNA与miRNA进行整合分析,通过Cytoscape2.8.2版软件构建miRNA和mRNA调控网络,结果显示miRNA的靶基因很丰富,同时有很多mRNA同时受多个miRNAs的调节。哺育蜂中4个上调的miRNAs,作用于37个下调基因和2个上调基因;下调的5个miRNAs作用的表达差异性的靶基因有55个,其中只有2个是上调基因,其余都是下调基因。利用DAVID对差异表达miRNA调控的表达上调和上调的靶基因进行GO和Pathway分析。GO分析结果显示,受miRNA的所有表达差异显著性的基因中,只有7个有GO分类,并且都属于GO分类中的cellular component,即Cytoplasm和Cytoplasmic part。Pathway分析结果显示,受miRNAs调控的表达下调的90个靶基因中,有28个属于45个pathway分类,而表达下调的靶基因,则只有2个属于两个pathway。
Honeybee (Apis mellifera), an ensocial insect, is universally acknowledged to be a good model for studying the evolution and mechanism of complex social behavior. Generally, adult honeybees take care of larvae and queen during2-3weeks after emergence, while they start to forage for honey or pollen during the following1-3weeks. In this study, the next generation sequencing technology was applied to detect the mRNAs and sRNAs of honeybee's head. Many differentially expressed genes were obtained, which could be associated with the behaviorral transition of honeybee. The regulatory network of miRNA and mRNA were also analyzed. The main results were summarized as follows:
     1. High-abundance mRNAs in Apis mellifera:comparison between nurses and foragers
     A large volume of honey bee (Aips mellifera) tag-seq was obtained to identify the differential gene expression via Solexa/Illumina Digital Gene Expression tag profiling (DGE) based on next generation sequencing. In total,3422327(nurses) and4286250(foragers) clean tags were sequenced,173532(nurses) and426047(foragers) total clean tags could not be match to the reference database, and7508and6875mapped genes were detected in foragers and nurses, showing72.47%and79.14%of total reference gene number respectively. The top ten high expression genes includes several major royal jelly proteins, glucose oxidase and defensin.1434genes were considered having significantly different expression, that is, showing an expression ratio (foragers/nurses) of more than2and FDR of less than0.001,1337genes were up-regulated in foragers, and97genes were down-regulated in foragers. Furthermore, we performed the Gene Ontology (GO) category and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis,415genes with annotation terms were linked to the GO cellular component category.200KEGG pathways were obtained, including21signaling pathways. The PPAR signaling pathway was the most highly enriched with the lowest Q-value.
     2. High-abundance miRNAs in Apis mellifera:comparison between nurses and foragers
     MicroRNAs (miRNAs) are endogenous small (-22nt) non-coding RNAs regulating gene expression in animals and plants by targeting mRNAs for cleavage or translational repression. To find some differentially expressed miRNAs that may be associated with age-dependent behavioral changes in honeybees, we applied the next generation sequencing technology (Solexa) to detect small RNAs in nurses and foragers. Our results showed that both of the nurses and foragers had a complicated small RNA population, and that the length of small RNAs varied,22-nt being the predominant length. Combining deep sequencing and bioinformatics analysis, we discovered9known miRNAs were significantly different between nurses and foragers with a p-value less than0.01and the absolute value of fold-change more than1. Some of their target genes were related to neural function. Moreover,67novel miRNAs were identified in nurses and foragers, of which,16ones were confirmed by step-loop RT-PCR. Ame-miR-31a and ame-miR-13b were further validated using quantitative reverse transcription polymerase chain reaction assays. This study provides new information on the miRNA abundance of honeybees, helps us to understand the miRNA function in the regulation of honeybee development.
     3. Regulatory network analyses of miRNA and mRNA between nurses and foragers
     The targets of9differentially expressed miRNAs between nurses and foragers were predicted by using Miranda v3.3a, all of the miRNAs target a lot of mRNA. Then integrated analysis of miRNA and mRNA was done by using Cytoscape2.8.2software combining differentially expressed mRNAs, four up-regulated miRNAs in nurses target37down-regulated genes and two up-regulated genes, while five down-regulated miRNAs target55genes, only2of these genes were up-regulated, others were down-regulated genes. Their potential ontology and pathway were analyzed by using the DAVID Bioinformatics Resources. Go analyses of target mRNAs revealed that only7mRNA belonging to cellular component which include Cytoplasm and Cytoplasmic part. Pathway analyses showed that28out of90down-regulated target mRNAs belonging to45Pathway categories, while2up-regulated target mRNAs belonging to2Pathway categories.
引文
Adamo, S.A., Linn, C.E. and Hoy, R.R. The role of neurohormonal octopamine during "fight or flight" behaviour in the field cricket Gryllus bimaculatus. Journal of Experimental Biology, 1995,198(8):1691-1700.
    Adams, M.D., Celniker, S.E., Holt, R.A., et al. The genome sequence of Drosophila melanogaster. Science (Washington, D.C.),2000,287(5461):2185-2195.
    Albert, S. and J. Klaudiny, The MRJP/YELLOW protein family of Apis mellifera:Identification of new members in the EST library. Journal of Insect Physiology,2004,50(1):51-59.
    Albert, S., Bhattacharya, D., Klaudiny, J., et al. The family of major royal jelly proteins and its evolution. Journal of Molecular Evolution,1999,49(2):290-297.
    Albert, S., Klaudiny, J. MRJP9, an ancient protein of the honeybee MRJP family with non-nutritional function. Journal of Apicultural Research,2007,46(2):99-104.
    Ament, S.A., Corona, M., Pollock, H.S., et al. Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proceedings of the National Academy of Sciences of the USA,2008,105(11):4226-4231.
    Ansorge, W.J. Next-generation DNA sequencing techniques. New Biotechnology,2009,25(4): 195-203.
    Aravin, A.A., Lagos-Quintana, M., Yalcin, A., et al. The small RNA profile during Drosophila melanogaster development. Developmental Cell,2003,5(2):337-350.
    Ashburner, M., Ball, C.A., Blake, J.A., et al. Gene ontology:tool for the unification of biology. Nature Genetic,2000,25,25-29.
    Audic, S., Claverie, J.M. The Significance of Digital Gene Expression Profiles. Genome Research,1997,7(10):986-995.
    Bargiello, T.A., Jackson, F.R. and Young, M.W. Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature,1984,312(5996):752-754.
    Bartel, B., Bartel, D.P. MicroRNAs:At the Root of Plant Development? Plant Physiology,2003, 132(2):709-717.
    Behura, S.K., Whitfield, C.W. Correlated expression patterns of microRNA genes with age-dependent behavioural changes in honeybee. Insect Molecular Biology,2010, 19(4):431-439.
    Ben-Shahar, Y. The foraging gene, behavioral plasticity, and honeybee division of labor. Journal of Comparative Physiology,2005,191:987-994.
    Ben-Shahar, Y. and Robinson, G.E. Satiation differentially affects performance in a learning assay by nurse and forager honey bees. Journal of Comparative Physiology,2001, A 187(11):891-899.
    Ben-Shahar, Y., Dudek, N.L., Robinson, G.E. Phenotypic deconstruction reveals involvement of manganese transporter malvolio in honey bee division of labor. Journal of Experimental Biology,2004,207(19),3281-3288.
    Ben-Shahar, Y., Robichon, A., Sokolowski, M.B. and Robinson, G.E. Influence of gene action across different time scales on behavior. Science (Washington,D.C.),2002, 296(5568):636-639.
    Ben-Shahar, Y., Robichon, A., Sokolowski, M.B., et al. Influence of gene action across different time scales on behavior. Science,2002,296(5568):741-744.
    Ben-Shahar, Y., Thompson, C.K., Hartz, S.M., et al.Differences in performance on a reversal learning test and division of labor in honeybee colonies. Animal Cognition,2000, 3(3):119-125.
    Benjamini, Y. and Hochberg, Y. Controlling the false discovery rate:a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B,1995,57(1): 289-300.
    Beshers, S.N. and Traniello, J.F.A. Polyethism and the adaptiveness of worker size variation in the Attine ant Trachymyr mex septentrionalis. Journal of Insect Behavior,1996,9(1):61-83.
    Beshers, S.N., Huang, Z.Y., Oono, Y., et al. Social inhibition and the regulation of temporalpolyethism in honey bees. Journal of Theoretical Biology,2001,213(3):461-479.
    Beshers, S.N., Robinson, G.E. and Mittenthal, J. The response threshold concept and division of labor.1999,.Pages 115-141 in C. Detrain, J. L. Deneubourg, and J.M. Pasteels, eds. Information processing in social insects. Birkhauser, Basel.
    Blaszczyk, J., Tropea, J.E., Bubunenko, M., et al. Crystallographic and Modeling Studies of RNase Ⅲ Suggest a Mechanism for Double-Stranded RNA Cleavage. Structure,2001, 9(12):1225-1236.
    Bloch, G. and Robinson, G. E. Socially mediated plasticity in honeybee behavioural rhythms. Nature,2001,410:1048.
    Bloch, G., Toma, D.P. and Robinson, G.E. Behavioral rhythmicity, age, division of labor and period expression in the honey bee brain. Journal of Biological Rhythms,2001,16(5): 444-456.
    Bloch, G., Wheeler, D.L. and Robinson, G.E. Endocrine influences on the organization of insect societies.2002, Pages 195-236 in D. W. Pfaff, A. P. Arnold, A.M., Etgen, S.E. Fahrbach and Rubin, R.T. eds. Hormones and behavior. Academic Press, New York.
    Boake, C.R.B., ed.1994. Quantitative genetic studies of behavioral evolution. University of Chicago Press,Chicago.
    Bonasio, R., Zhang, G., Ye, C., et al: Genomic Comparison of the Ants Camponotus floridanus and Harpegnathos saltator. Science,2010,329(5995):1068-1071.
    Briand, L., Swasdipan, N., Nespoulous, C., et al. Characterization of a chemosensory protein (ASP3c) from honeybee (Apis mellifera L.) as a brood pheromone carrier. European Journal of Biochemistry,2002,269(18):4586-4596.
    Brillet, C., Robinson, G. E., Bues, R., et al. Racial differences in division of labor in colonies of the honey bee, Apis mellifera. Ethology,2002,108(2):115-126.
    Buetow, K.H., Edmonson, M., MacDonald, R., et al. High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proceedings of the National Academy of Sciences of the USA,2001, 98(2):581-584.
    Bustin, S.A., Benes, V., Garson, J.A., et al. The MIQE Guidelines:Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clinical Chemistry,2009, 55(4):611-622.
    Capaldi, E.A., Fahrbach, S.E. and Robinson, G.E. Neuroethology of spatial learning:the birds and the bees. Annual Review of Psychology,1999,50(1):651-682.
    Capaldi, E.A., Smith, A.D., Osborne, J.L., et al. Harmonic radar reveals ontogeny of orientation flight in the honeybee. Nature,2000,403(6769):537-540.
    Caplen, N.J., Parrish, S., Imani, F., et al. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proceedings of the National Academy of Sciences of the USA,2001,98(17):9742-9747.
    Cash, A.C., Whitfield, C.W., Ismail, N., et al. Behavior and the limits of genomic plasticity: power and replicability in microarray analysis of honeybee brains. Genes, Brain and Behavior, 2005,4(4):267-271.
    Chatterjee, S., Groszhans, H. Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature,2009,461(7263):546-549.
    Chen, X., Yu, X., Cai, Y., et al. Next-generation small RNA sequencing for microRNAs profiling in the honey bee Apis mellifera. Insect Molecular Biology,2010,19(6):799-805.
    Chen, C., Ridzon, D.A., Broomer, A.J., et al. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research,33:e 179.
    Chen, X., Ba, Y., Ma, L., et al. Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases. Cell research,2008,18(10):997-1006.
    Chen, X., Yu, X., Cai, Y., et al. Next-generation small RNA sequencing for microRNAs profiling in the honey bee Apis mellifera[J]. Insect Molecular Biology,2010,19(6):799-805.
    Chen, S.L.2001. The Apicultural Science in China.Beijing:China agriculture press.146-147.
    Chen, S.L., Su, S.K. and Lin, X.Z. An introduction to high-yielding royal jelly production methods in China. Bee World,2002,83:69-77.
    Crailsheim, K., Hrassnigg, N. and Stabentheiner, A. Diurnal behavioural differences in forager and nurse honey bees (Apis mellifera carnica Pollm). Apidologie,1996,27(4):235-244.
    Crampton, N., Bonass, W.A., Kirkham, J., et al. Collision events between RNA polymerases in convergent transcription studied by atomic force microscopy. Nucleic Acids Research,2006, 34(19):5416-5425.
    Creighton, C.J., Reid, J.G. and Gunaratne, P.H. Expression profiling of microRNAs by deep sequencing. Briefings in Bioinformatics,2009,10(5):490-497.
    David, P.B. MicroRNAs:Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116(2):281-297.
    DeCerbo, J. and Carmichael, G.G. Retention and repression:fates of hyperedited RNAs in the nucleus. Current Opinion in Cell Biology,2005,17(3):302-308.
    Delcomyn, F.1998. Foundations of neurobiology. W. H.Freeman, New York.
    Dreyer, C., Krey, G., Keller, H., et al. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell,1992,68(5):879-887.
    Du, T., Zamore, P.D. Beginning to understand microRNA function. Cell Research,2007,17(8): 661-663.
    Dubnau, J., Grady, L., Kitamoto, T., et al. Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature,2001, 41(6836):476-480.
    Dunlap, J.C. Molecular bases for circadian clocks. Cell,1999,96:271-290.
    Durst, C., Eichmuller, S. and Menzel, R. Development and experience lead to increased volume of sub-compartments of t he honeybee mushroom body. Behavioral and Neural Biology,1994, 62(3):259-263.
    Ebert, P.R., Rowland, J.E. and Toma, D.P. Isolation of seven unique biogenic amine receptor clones from the honey bee by library scanning. Insect Molecular Biology,1998,7(2): 151-162.
    Elekonich, M.M., Schulz, D.J., Bloch, G., et al. Juvenile hormone levels in honey bee (Apis mellifera L.) foragers:foraging experience and diurnal variation. Journal of Insect Physiology, 2001,47(10):1119-1125.
    Enright A.J., John, B., Gaul, U., et al. MicroRNA targets in Drosophila. Genome Biology,2003, 5(1):R1.
    Fahrbach, S.E. and Robinson, G.E. Behavioral development in the honey bee:toward the study of learning under natural conditions. Learning & Memory,1995,2(2):199-224.
    Fahrbach, S.E., Giray, T. and Robinson, G.E. Volume changes in the mushroom bodies of adult honey bee queens. Neurobiology of Learning and Memory,1995,63 (2):181-191.
    Farris, S.M., Robinson, G.E. and Fahrbach, S.E. Experience-and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee.Journal of Neuroscience,2001,21(16):6395-6404.
    Fiala, A., Mueller, U. and Menzel, R. Reversible downregulation of protein kinase A during olfactory learning using antisense technique impairs long-term memory formation in the honeybee, Apis mellifera. Journal of Neuroscience,1999,19(22):10125-10134.
    Giray, T., Guzman-Novoa, E., Aron, C., et al. Genetic variation in temporal polyethism and colony defensiveness i n the honey bee, Apis mellifera. Behavioral Ecology,2000 a,11(1): 44-55.
    Giray, T., Guzman-Novoa, E., Huang, Z.Y., et al. Physiological correlates of genotypic variation in rate of honey bee behavioral development. Behavioral Ecology and Sociobiology,1999, 47(1):17-28.
    Giray, T. and Robinson, G.E. Common endocrine and genetic regulation of behavioral development in drone and worker honey bees and the evolution of division of labor. Proceedings of the National Academy of Sciences of the USA,1996,93(21):11718-11722.
    Gisselmann, G., Wetzel, C.H., Warnstedt, M., et al. Functional characterization of Ih-channel splice variants from Apis mellifera. FEBS Letters 2004,575(1-3):99-104.
    Gould, S.J.1977. Ontogeny and phylogeny. Belknap, Cambridge, Mass.
    Graham, LA., Besser, K., Blumer, S., et al. The Genetic Map of Artemisia annua L. Identifies Loci affecting Yield of the Antimalarial Drug Artemisinin. Science,2010,327(5963): 328-331.
    Greenspan, R.J. The flexible genome. Nature Reviews Genetics,2001,2(5):383-387.
    Grozinger, C.M., Sharabash, N.M., Whitfield, C.W., et al. Pheromone-mediated gene expression in the honey bee brain. Proceedings of the National Academy of Sciences of the United States of America,2003,100 (2):14519-14525.
    Guzman-Novoa, E., Page, Jr.R.E. and Gary, N.E. Behavioral and life-history components of division of labor in honey bees (Apis mellifera L.). Behavioral Ecology and Sociobiology, 1994,34(6):409-417.
    Hanriot, L., Keime, C., Gay, N. A combination of LongSAGE with Solexa sequencing is well suited to explore the depth and the complexity of transcriptome. BMC Genomics,2008,9(1): 418.
    Harris, J.R. and Woodring, J. Effects of stress, age, season and source colony on levels of octopamine, dopamine and serotonin i n t he honey bee (Apis mellifera L.) brain. Journal of Insect Physiology,1992,38(1):29-35.
    Harrison, J. Caste-specific changes in honeybee flight capacity. Physiological Zoology,1986, 59(1):175-187.
    Hashimoto, M., Kanda, M.,Ikeno, K. et al. Oral administration of royal jelly facilitates mRNA expression of glial cell line-derived neurotrophic factor and neurofilament H in the hippocampus of the adult mouse brain. Bioscience, Biotechnology, and Biochemistry,2005, 69(4):800-805.
    Haydak, M.H. Honey bee nutrition. Annual Review. Entomology,1970,15,143-156.
    Herranz, R., Diaz-Castillo, C., Nguyen, T.P., et al. Expression patterns of the whole Troponin C gene repertoire during Drosophila development. Gene Expression Patterns 2004, 4(2):183-190.
    Herranz, R., Mateos, J., Marco, R. Diversification and Independent Evolution of Troponin C Genes in Insects. Journal of Molecular Evolution,2005,60(1):31-44.
    Hillier, L.W., Marth, G.T., Quinlan A.R., et al. Whole-genome sequencing and variant discovery in C. elegans. Nature,2008,5(2):183-188.
    Hogenesch, J.B., Ching, K.A., Batalov, S., et al. A comparison of the Celera and Ensembl predicted gene sets reveals little overlap in novel genes.Cell,2001,106(4):413-415.
    Hori, S., Kaneko, K., Saito, T.H., et al. Expression of two microRNAs, ame-mir-276 and-1000, in the adult honeybee (Apis mellifera) brain. Apidologie,2011,42:89-102.
    Huang, Z.Y. and Robinson, G.E. Colony behavioral integration in honey bees:worker-worker interactions mediate plasticity in hormonally regulated division of labor. Proceedings of the National Academy of Sciences of the USA,1992,89(24):11726-11729.
    Huang, Z.Y. and Robinson, G.E. Regulation of division of labor in honey bees via colony age demography. Behavioral Ecology and Sociobiology,1996,39(3):147-158.
    Huang, Z.Y. and Robinson, G.E.1999. Social control of division of labor in honey bee colonies. Pages 165-187 in C. Detrain, J. L. Deneubourg, and J. M. Pasteels, eds. Information processing in social insects. Birkhauser, Basel.
    Huang, Z.Y, Plettner, E. and Robinson, G.E. Effects of social environment and worker mandibular glands on endocrine-mediated behavioral development in honey bees. Journal of Comparative Physiology,1998, A 183(2):143-152.
    Huber, R. Amines and motivated behaviors:a simpler systems approach to complex behavioral phenomena. Journal of Comparative Physiology A:Neuroethology, Sensory, Neural, and Behavioral Physiology,2005,191(3):231-239.
    Hunt, G.J., Guzman-Novoa, E., Fondrk, M.K., et al. Quantitative trait loci for honey bee stinging behavior and body size. Genetics,1998,148(3):1203-1213.
    Imamura, T., Yamamoto, S., Ohgane, J., et al. Non-coding RNA directed DNA demethylation of Sphkl CpG island. Biochemical and Biophysical Research Communications,2004,322(2): 593-600.
    Issemann, I. and Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature,1990,347(6294):645-650.
    Jassim, O., Huang Z.Y. and Robinson, G.E. Juvenile hormone profiles of worker honey bees during normal and accelerated behavioral development. Journal of Insect Physiology,2000, 46(3):243-249.
    Jeanne, R.L. The evolution of the organization of work in social insects. Monitore Zoologico Italiano,1986,20:119-133.
    Jin, P., Zarnescu, D.C., Ceman, S., et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nature Neuroscience,2004,7(2): 113-117.
    Kamikouchi, A., Morioka, M., Kubo, T. Identification of Honeybee Antennal Proteins/Genes Expressed in a Sex-and/or Caste Selective Manner. Zoological Science,2004,21(1):53-62.
    Kanopka, R.J. and Benzer, S. Clock mutants of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA,1971,68(9):2112-2116.
    Katayama, S., Tomaru, Y., Kasukawa, T., et al. Antisense transcription in the mammalian transcriptome. Science,2005,309(5740):1564-1566.
    Kanehisa, M. and Goto, S. KEGG:Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research,2000,28:27-30.
    Kawahara, Y., Zinshteyn, B., Sethupathy, P., et al. Redirection of Silencing Targets by Adenosine-to-Inosine Editing of miRNAs. Science,2007,315(5815):1137-1140.
    Klaudiny, J., Albert, S., Bachanova, K., et al. Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera. Insect Biochemistry and Molecular Biology,2005,35(1):11-22.
    Klaudiny, J., Hanes, J., Kulifajova, J., et al. Molecular cloning of two cDNA from the heads of the nurse honey bee (Apis mellifera L.) for coding related proteins of royal jelly. Journal of Apicultural Research,1994,33(2),105-111.
    Knecht, D., Kaatz, H.H. Patterns of larval food production by hypopharyngeal glands in adult worker honey bees. Apidologie,1990,21(5):457-468.
    Kravitz, E.A. Serotonin and aggression:insights gained from a lobster model system and speculations on the role of amine neurons in a complex behavior. Journal of Comparative Physiology,2000, A 186(3):221-238.
    Krieger, M.J. and Ross, K.G. Identification of a major gene regulating complex social behavior. Science (Washington, D.C.),2002,295(5553):328-332.
    Kubo, T., Sasaki, M., Nakamura, J., et al. Change in the expression of hypopharyngeal-glands proteins of the worker honeybees (Apis mellifera L.) with the age and/or role. Journal of Biochemistry,1996,119(2):291-295.
    Kucharski, R. and Maleszka, R. Evaluation of differential gene expression during behavioral development in the honeybee using microarrays and northern blots. Genome Biology,2002, 3(2):research0007.1-0007.9.
    Kucharski, R., Maleszka, R. Hayward, D.C., et al.A royal jelly protein is expressed in a subset of Kenyon cells in the mushroom bodies of the honey bee brain. Naturwissenschaften,1998, 85(7):343-346.
    Lagos-Quintana, M., Rauhut, R., Lendeckel, W., et al. Identification of novel genes coding for small expressed RNAs. Science,2001,294(5543):853-858.
    Lai, E.C., Tam, B., Rubin, G.M. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes and Development,2005,19(9): 1067-1080.
    Lai, E.C., Tomancak, P., Williams, R.W., et al. Computational identification of Drosophila microRNA genes. Genome Biology,2003,4(7):R42.
    Lander, E.S., Linton, L.M., Birren, B., et al. Initial sequencing and analysis of the human genome. Nature,2001,409(6822):860-921.
    Landgraf, P., Rusu, M., Sheridan, R., et al. A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing.Cell,2007,129(7):1401-1414.
    Lapidot, M., Pilpel, Y. Genome-wide natural antisense transcription:coupling its regulation to its different regulatory mechanisms. EMBO Reports,2006,7(12):1216-1222.
    Lau, N.C., Lim, L.P., Weinstein, E.G., et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science,2001,294(5543):858-862.
    Leaman, D., Chen, P.Y., Fak, J., et al. Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell,2005,121(7):1097-1108.
    Le Conte, Y., Areski, M. and Robinson, G.E. Primer effects of a brood pheromone on honey bee behavioral development. Proceedings of the Royal Society of London B:Biological Sciences, 2001,268(1463):163-168.
    Lee, R.C., Feinbaum, R.L., Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75(5),843-854.
    Lee, Y., Ahn, C., Han, J., et al. The nuclear RNase III Drosha initiates microRNA processing. Nature,2003,425(6956):415-419.
    Lee, Y., Jeon, K., Lee, J.T., et al. MicroRNA maturation:stepwise processing and subcellular localization. EMBO Journal,2002,21(7):4663-4670.
    Lensky, Y, Rakover, Y. Separate protein body compartments of the workers honeybee (Apis mellifera L.). Comparative Biochemistry and Physiology,1983,75(4):607-615.
    Leoncini, I., Conte, L.Y., Costagliola, G., et al. Regulation of behavioral maturation by a primer pheromone produced by adult worker honey bees. Proceedings of the National Academy of Sciences of the United States of America,2004,101(50):17559-17564.
    Lewis, B.P., Burge, C.B., Bartel, D.P. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. Cell,2005,120(1):15-20.
    Li, Y., Luo, H.M., Sun, C., et al. EST analysis reveals putative genes involved in glycyrrhizin biosynthesis. BMC Genomics,2010,11(1):268.
    Lim, L.P., Glasner, M.E., Yekta, S., et al. Vertebrate microRNA genes[J]. Science,2003, 299(5612):1540.
    Livak, K.J. and Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-△△Ct Method.Methods,2001,25(4):402-408.
    Lund, E., Guttinger, S., Calado, A., et al. Nuclear export of microRNA precursors. Science,2004, 303(5654),95-98.
    Mardis, E.R. Next-generation DNA sequencing methods. Annual review of genomics and human genetics,2008,9:387-402.
    Margulies, M., Egholm, M., Altman, W.E., et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature,2005,437(7057):376-380.
    Matsui, A., Ishida, J., Morosawa, T., et al. Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a Tiling array. Plant and Cell Physiology,2008,49(8):1135-1149.
    Maxam, A.M., Gilbert, W. A new method for sequencing DNA. Proceedings of the National Academy of Sciences of the United States of America,1977,74 (2):560-564.
    Menzel, R. Searching for the Memory Trace in a Mini-Brain, the Honeybee. Learning & Memory,2001,8(2):53-62.
    Menzel, R. and Mueller, U. Learning and memory in honeybees:from behavior to neural substrates. Annual Review of Neuroscience,1996,19:379-404.
    Mercer, A.R. and Menzel,R. The effects of biogenic amines on conditioned and unconditioned responses to olfactory stimuli in the honeybee Apis mellifera. Journal of Comparative Physiology,1982, A 145(3):36-368.
    Mercer, A.R., Mobbs, P.G., Davenport, A.P. et al. Biogenic amines in the brain of the honey bee, Apis mellifera. Cell Tissue Res,1983,234:655-677.
    Michener, CD.2000. The bees of the world. John Hopkins University Press, Baltimore.
    Moore, D., Angel, J.E., Cheeseman, I.M., et al. Time keeping in the honey bee colony: integration of circadian rhythms and division of labor. Behavioral Ecology and Sociobiology, 1998,43(3):147-160.
    Moore, D., Rankin, M.A. Circadian locomotor rhythms in individual honeybees, Apis mellifera. Physiological Entomology,1985,10:191-197.
    Muller U. Prolonged Activation of cAMP-Dependent Protein Kinase during Conditioning Induces Long-Term Memory in Honeybees. Neuron 2000,27(1):159-168.
    Nakahara, K., Kim, K., Sciulli, C., et al. Targets of microRNA regulation in the Drosophila oocyte proteome. Proceedings of the National Academy of Sciences of the United States of America,2005,102(34):12023-12028.
    Naug, D. and Gadagkar, R. Flexible division of labor mediated by social interactions in an insect colony:a simulation model. Journal of Theoretical Biology,1999,197(1):123-133.
    Nijhout, H.F.1994. Insect hormones. Princeton University Press, Princeton, N.J.
    Numata, K., Okada, Y., Saito, R., et al. Comparative analysis of cis-encoded antisense RNAs in eukaryotes. Gene,2007,392(1-2):134-141.
    Ohashi, K., Natori, S., Kubo, T. Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age-dependent role change of the worker honeybee (Apis mellifera L.). European Journal of Biochemistry,1999,265(1):127-133.
    Omholt, S.W., Hagen, A., Elmholdt, O., et al. A laboratory hive for frequent collection of honeybee eggs. Apidologie,1995a,26(4):297-304.
    Omholt, S.W., Rishovd, S., Hagen, A., et al. Successful production of chimerical honeybee larvae. Journal of Experimental Zoology,1995b,272(5):410-412.
    Osborne, K.A., Robichon, A., Burgess, E., et al. Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science (Washington, D.C.),1997, 277(5327):834-836.
    Oster, G.F., Wilson, E.O.1978. Caste and ecology in the social insects. Princeton University Press, Princeton, N.J.
    Page, R.E. and Robinson, G.E. The genetics of division of labour in honey bee colonies. Advances in Insect Physiology,1991,23:117-171.
    Page, R.E., Jr., Fondrk, M.K., Hunt, G.J., et al. Genetic dissection of honeybee (Apis mellifera L.) foraging behavior. Journal of Heredity,2000,91(6):474-479.
    Pankiw, T., Huang, Z.Y., Robinson, G.E., et al. Queen mandibular pheromone influences worker honey bee (Apis mellifera) foraging ontogeny and juvenile hormone titers. Journal of Insect Physiology,1998,44(7-8):685-692.
    Pankiw, T., Waddington, K.D. and Page, Jr. R.E. Modulation of sucrose response thresholds in honey bees (Apis mellifera L.):influence of genotype, feeding, and foraging experience. Journal of Comparative Physiology,2001, A 187(4):293-301.
    Park, J.M., Kunieda, T., Kubo, T. The Activity of Mblk-1, a Mushroom Body-selective Transcription Factor from the Honeybee, Is Modulated by the Ras/MAPK Pathway. Journal of Biological Chemistry,2003,278(20):18689-18694.
    Passera, L., Roncin, E., Kaufmann, B. et al. Increased soldier production i n ant colonies exposed to intraspecific competition. Nature,1996,379(6566):630-631.
    Patel, N.G., Haydak, M.H., Gochnauer, T.A. Electrophoretic components of the proteins in honey-bee larval food. Nature,1960,186,633-634.
    Pfaff, D.W. Drive:neurobiological and molecular mechanisms of sexual motivation. Cambridge, Massachusetts 02142:the MIT press,1999:1-273.
    Ramachandran, V., Chen, X. Degradation of microRNAs by a Family of Exoribonucleases in Arabidopsis. Science,2008,321(5895):1490-1492.
    Reinhart, B.J., Slack, F.J., Basson, M., et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature,2000,403(6772):901-906.
    Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., et al. MicroRNAs in plants. Genes & Development,2002,16(13):1616-1626.
    Reppert, S.M., Tsai, T., Roca, A.L., et al. Cloning of a structural and functional homolog of the circadian clock gene period from the giant silkmoth Antheraea pernyi. Neuron,1994, 13(5):1167-1176.
    Rhoades, M.W., Reinhart, B.J., Lim, L.P., et al. Prediction of Plant MicroRNA Targets. Cell, 2002,110(4):513-520.
    Rhoades, M.W., Reinhart, B.J., Lim, L.P., et al. Prediction of Plant MicroRNA Targets. Cell, 2002,110(4):513-520.
    Robinson, G.E. Genomics and integrative analyses of division of labor in honeybee colonies. The American naturalist,2002,160:S160-S172.
    Robinson, G.E. Alarm pheromone perception in the honey bee:evidence for division of labor based on hormonally modulated response thresholds. Journal of Comparative Physiology, 1987,A160(5):613-619.
    Robinson, G.E. From society to genes with the honey bee.American Scientist,1998,86:456-462.
    Robinson, G.E. The regulation of division of labor in insect societies. Annual Review of Entomology,1992,37(1):637-665.
    Robinson, G.E., Fahrbach, S.E. and Winston, M.L. Insect societies and the molecular biology of social behavior. Bioessays,1997,19(12):1099-1108.
    Robinson, G.E., Grozinger, C.M., Whitfield, C.W. Sociogenomics:Social life in molecular terms. Nature Reviews Genetics,2005,6(4):257-270.
    Robinson, G.E., Page, R.E., Strambi, C., et al. Hormonal and genetic control of behavioral integration in honey bee colonies. Science (Washington, D.C.),1989,246(4926):109-112.
    Robinson, K.O., Ferguson, H.J., Cobey, S., et al. Sperm-mediated transformation of the honey bee, Apis mellifera. Insect Molecular Biology,2001,9(6):625-634.
    Rothenbuhler, W.C.1967. Genetic and evolutionary considerations of social behavior of honeybees and some related insects. Pages:61-106 in Hirsch, J. ed. Behavior genetic analysis. McGraw-Hill, New York.
    Sanger, F., Nicklen S., Coulson, A.R. DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America,1977,74 (12):5463-5467.
    Sawata, M., Yoshino, D., Takeuchi, H., et al. Identification and punctate nuclear localization of a novel noncoding RNA, Ks-1, from the honeybee brain. RNA,2002,8(6):772-785.
    Schena, M. Genome analysis with gene expression microarrays. Bioessays,1996, 18(5):427-431.
    Schmitzova, J., Klaudiny, J., Albert, S., et al. A family of major royal jelly proteins of the honeybee Apis mellifera L. Cellular and Molecular Life Sciences,1998,54(9):1020-1030.
    Schulz, D.J. and Robinson, G.E. Octopamine influences division of labor in honey bee colonies. Journal of Comparative Physiology,2001, A 187(1):53-61.
    Schulz, D.J., and Robinson, G.E. Biogenic amines and division of labor in honey bees: age-related changes in the mushroom bodies and behaviorally related changes in the antennal lobes. Journal of Comparative Physiology,1999, A 184(5):481-488.
    Schulz, D.J., Huang, Z.Y. and Robinson, GE. Effects of colony food shor tage on behavioral development in honey bees. Behavioral Ecology and Socio-biology,1998,42(5):295-303.
    Schulz, D.J., Sullivan, J.P. and Robinson, G. E. Juvenile hormone and octopamine in the regulation of division of labor in honey bee colonies. Hormones and Behavior,2002,42(2): 222-231.
    Seeley, T.D.1995. The wisdom of the hive. Har vard Uni-versity Press, Cambridge, Mass.
    Sempere, L.F., Sokol, N.S., Dubrovsky, E.B., et al. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. Developmental Biology,2003,259(1):9-18.
    Shapira, M., Thompson, C.K. Soreq, H., et al. Changes in neuronal acetylcholinesterase gene expression and division of labor in honey bee colonies. Journal of Molecular Neuroscience, 2001,17(1):1-12.
    Shendure, J. and Ji, H. Next-generation DNA sequencing. Nature Biotechnology,2008,26(10): 1135-1145.
    Sigg, D., Thompson, C.M. and Mercer, A.R. Activity-dependent changes to the brain and behavior of the honey bee, Apis mellifera (L.). Journal of Neuroscience,1997, 15(18):7148-7156.
    Slack, F.J., Basson, M., Liu, Z., et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Molecular Cell, 2000,5(4):659-669.
    Sober, E. and Wilson, D.S.1999. Unto others:the evolution and psychology of un-selfish behavior. Harvard University Press, Cambridge, Mass.
    Stark, A., Brennecke, J., Russell, R.B., et al. Identification of Drosophila microRNA targets. PLoS Biology,2003,1(3):E60.
    Sullivan, J.P., Jassim, O., Fahrbach, S.E. et al. Juvenile hormone paces behavioral development in the adult worker honey bee. Hormones and Behavior,2000,37(1):1-14.
    Sun, C., Li, Y., Wu, Q., et al. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics,2010,11(1):262.
    Szittya, G., Moxon, S., Santos, D.M. et al. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC genomic,2008,9(1):593.
    Tadano, H., Yamazaki, Y., Takeuchi, H., et al. Age-and division-of-labour-dependent differential expression of a novel non-coding RNA, Nb-1, in the brain of worker honeybees, Apis mellifera L. Insect Molecular Biology,2009,18(6):715-726.
    Thany, S.H., Crozatier, M., Raymond-Delpech, V., et al. Apisa2, Apisa7-1 and Apisa7-2:three new neuronal nicotinic acetylcholine receptor α-subunits in the honeybee brain. Gene,2005, 344(0):125-132.
    The Honey Bee Genome Sequencing Consortium. Insights into social insects from the genome of the honey bee Apis mellifera. Nature,2006,443(7114),931-949.
    Thompson, G.J., Kucharski, R., Maleszka, R., et al. Towards amolecular definition of worker sterility:differential gene expression and reproductive plasticity in honey bees. Insect Molecular Biology,2006,15(5):637-644.
    Toma, D.P., Moore, D., Bloch, G., et al. Changes in period expression in the brain and division of labor in honey bee colonies. Proceedings of the National Academy of Sciences of the USA, 2000,97(12):6914-6919.
    't Hoen, P.A.C., Ariyurek, Y., Thygesen, H.H., et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Research,2008,36(21), e 141.
    Van Orsouw, N.J., Hogers, R.C.J., Janssen, A., et al. Complexity reduction of polymorphic sequences (CRoPSTM):a novel approach for large-scale polymorphism discovery in complex genomes. PLOS One,2007,2(11):e1172.
    Vanden, H.J.P. The PPAR resource page [J]. Biochim Biophys Acta,2007,1771(8):1082-1112.
    Venter, J.C., Adams, M.D., Meyers, E.W., et al. The sequence of the human genome. Science (Washington, D.C.),2001,291(5507):1304-1351.
    Visscher, P.K. A quantitative study of worker reproduction in honey bee colonies. Behavioral Ecology and Sociobiology,1989,25(4):247-254.
    Wagener-Hulme, C., Kuehn, J.C. Schulz, D.J., et al. Biogenic amines and division of labor in honey bee colonies. Journal of Comparative Physiology,1999, A 184(5):471-479.
    Wahli, W., Braissant, O., Desvergne, B. Peroxisome proliferator activated receptors: transcriptional regulators of adipogenesis, lipid metabolism and more. Chemistry and Biology, 1995,2(5):261-266.
    Weaver, D.B., Anzola, J.M., Evans, J.D., et al. Computational and transcriptional evidence for microRNAs in the honey bee genome. Genome Biology,2007,8(6):R97.
    West-Eberhard, M.J. The evolution of social behavior by kin selection. Quarterly Review of Biology,1975,50:1-33.
    West-Eberhard, M.J. Wasp societies as microcosms for the study of development and evolution. 1996, Pages 290-317 in Turillazzi, S. andWest-Eberhard, M.J. eds. Natural history and evolution of paper-wasps. Oxford University Press, Oxford.
    Wheeler, D.A., Kyriacou, C.P., Greenacre, M.L., et al. Molecular transfer of a species-specific behavior from Drosophila simulans to Drosophila melanogaster. Science (Washing-ton, D.C.), 1991,251(4997):1082-1085.
    White, J.W., Jr Subers, M.H., Schepartz, A.I. The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide, and its origin in a honey glucose oxidase system. Biochemical et Biophysical Acta,1963,73,57-70.
    Whitfield, C.W., Cziko, A.M., Robinson, G.E. Gene expression profiles in the brain predict behavior in individual honey bees. Science,2003,302(5643):296-299.
    Whitfield, C.W., Soares, B., Robertson, H.M., et al. Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee. Genome Research,2002, 12(4):555-566.
    Wienholds, E., Plasterk, R.H. MicroRNA function in animal development. FEBS Letters,2005, 579(26):5911-5922.
    Wightman, B., Burglin, T.R., Gatto, J., et al. Negative regulatory sequences in the lin-14 3'-untranslatedregion are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes & Development,1991,5(10):1813-1824.
    Wightman, B., Ha, I., and Ruvkun, G. Post transcriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell,1993,75(5),855-862.
    Wilson, E.O.1975. Sociobiology:the new synthesis. Belk-nap, Cambridge, Mass.
    Winkler, J., Thal, L.J., Gage, F.H., et al. Cholinergic strategies for Alzheimer's disease. Journal of Molecular Medicine,1998,76(8):555-567.
    Winston, M.L.1987. The biology of the honey bee. Harvard University Press, Cambridge, Mass.
    Winston, M.L. and Katz, S.J. Foraging differences between cross-fostered honeybee workers (Apis mellifera) of European and Africanized races. Behavioral Ecology and Sociobiology, 1982,10(2):125-129.
    Withers, G.S., Fahrbach, S.E. and Robinson, G.E. Selective neuroanatomical plasticity and division of labour in the honey bee (Apis mellifera). Nature,1993,364(6434):238-240.
    Wu, L., Zhang, Q., Zhou, H., et al. Rice MicroRNA Effector Complexes and Targets. The Plant Cell Online,2009,21(11):3421-3435.
    Yao, J., Wang, Y., Wang, W. et al. Solexa sequencing analysis of Chicken pre-adipoctye mciroRNAs. Bioscience, Biotechnology, and Biochemistry,2011,75(1):54-61.
    Yelin, R., Dahary, D., Sorek, R., et al. Widespread occurrence of antisense transcription in the human genome. Nature biotechnology,2003,21(4):379-386
    Yi, R., Qin, Y., Macara, I.G., et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & Development,2003,17(24):3011-3016.
    Young, L.J., Nilsen, R., Waymire, K.G., et al. Increased affiliative response to vasopressin in mice expressing the Vla receptor from a monogamous vole. Nature,1999, 400(6746):766-768.
    Zehring, W.A., Wheeler, D.A., Reddy, P., et al. P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell,1984, 39(2):369-376.
    Zeng, Y., Yi, R., Cullen, B.R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proceedings of the National Academy of Sciences,2003, 100(17):9779-9784.
    Zhang, B., Stellwag, E.J., Pan, X. Large-scale genome analysis reveals unique features of microRNAs. Gene,2009,443(1-2):100-109.
    Zhang, G.J., Guo, G.W., Hu, X.D., et al. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Research,2010,20(5):646-654.
    Zheng, X., Zhu, J., Kapoor, A., et al. Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO Journal,2007,26(6):1691-1701.
    Zilberman, D., Cao X. and Jacobsen S.E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science,2003,299(5607):716-719.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700