用户名: 密码: 验证码:
激光熔覆制备超细陶瓷复合涂层的组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光表面复合强化处理作为一种高性能表面的制备方法,是当今研究热点之一。该技术有望在机车、重大装备、航空航天及工模具等领域的核心部件的高性能制造中有起着关键作用,有着巨大的应用前景。本文以激光熔覆技术为基础,结合化学沉积技术、溶胶凝胶化学合成技术以及纳米陶瓷增强技术等,制备了高性能陶瓷复合涂层,克服了单一的传统表面强化技术和激光熔覆技术存在的缺点,优势互补,是激光表面强化技术的继承和发展。
     论文研究工作围绕下列几个方面展开:首先分别采用预置法、化学镀复合法及溶胶凝胶复合法三种粉体制备方法,将微纳米材料进行有效组装,进而采用脉冲Nd:YAG激光辐照,以在金属基体上制备强化层;建立了工艺参数优化模型,获得了高性能的超细陶瓷复合强化涂层;研究了各涂层的微观组织、硬度分布规律及磨损性能之间的关系,详细分析了陶瓷强化相的作用和涂层强化机理,并对不同方法制备涂层的特点和应用进行系统分析。主要结果如下:
     (1)在激光作用下利用预置法熔覆镍包纳米Al2O3制备了Al2O3复合陶瓷涂层,通过优化试验,可获得硬度较高、无裂纹涂层的工艺参数组合是:50%Ni+50%Al2O3,电流强度150A,扫描速度300mm/min,脉冲宽度2ms,脉冲频率30Hz。该参数下获得了厚度为0.6mm和最高硬度为672Hv0.2的强化涂层,耐磨性提高1.5倍。该方法操作方便灵活,适用于复杂部件的局部强化,如模具型腔、内壁、刀具等。
     (2)采用复合化学镀法制备了Ni-P-Al2O3复合强化镀层,利用高能脉冲激光对镀层进行强化处理,建立了基于神经网络的工艺参数预测模型,单道脉冲激光处理复合镀层的优化工艺参数为:电流强度200~240A;脉宽2.1~2.3ms;脉冲频率21~23Hz;扫描速率450mm/min。在该参数下,获得了厚度为0.2~0.3mm、硬度为840Hv0.2的强化涂层,耐磨性提高6倍。该方法涂层均匀性好,适用于要求较高的重要部件局部强化,如刀具刃口、叶片、轴颈等。
     (3)采用激光与溶胶-凝胶化学合成反应复合法,制备了钛化物(TiC/TiN/TiB2复合强化涂层,制备TiC涂层优化的工艺参数为:TiO2和C的摩尔比为1:5,预置层厚度0.2mm,电流强度250A,脉宽2.5ms,频率18Hz,激光扫描速率50mm/min。在该参数下,获得了厚度为0.3~0.4mm,硬度达1150Hv0.1的强化涂层,耐磨性提高了12.5倍。该方法制备的涂层硬度高,耐磨性能良好,方便灵活,适用于各类工具刃部的强化。
     (4)陶瓷强化相作用和涂层强化机理研究表明:由于纳米Al2O3异质相粒子的存在提高了熔体过冷度,改变了晶体生长形态,熔化表层从柱状晶向胞状晶转变,从而极大的促进了细晶组织的形成。晶粒细化和生成的A12O3、Al5FeNi、FeNi、 Fe0.64Ni0.36等高度弥散硬质相,是实现涂层强化的主要原因。而对于溶胶凝胶法,主要依靠激光与溶胶凝胶体(TiO2·2H2O+C+BN)的合成反应,获得TiC、TiB2和TiN为主要强化相的强化层。
     综上所述,三种不同的复合方法都获得了不同效果的强化涂层,分别适用于复杂部件的局部强化、各类工具刃部强化及要求较高的重要部件局部强化,为获得高性能强化涂层提供了一条新途径。通过前期在医疗器械和机械装备上的初步应用试验表明,该技术在医疗微创手术器械和工模具领域有着广泛的应用前景和巨大的应用潜力。
As a high-performance coating preparation method, the hybrid laser surface strengthening technology has become a research focus, because it shows great application prospects in manufacturing key components for locomotive, magnitude equipment, aeroplane, giant tools and molds. In this paper, the high-performance ceramic composite coatings were prepared by combining laser cladding technology, chemical deposition technology, sol-gel chemical synthesis and nano-ceramics together. The hybrid laser surface strengthening technique is expected to obtain the complementary advantages of each technology, and to avoid the shortcomings of the traditional surface strengthening technology and laser cladding technology, which is considered as the inheritance and development of the laser surface strengthening technology.
     The research in this paper was carried on around the following aspects. At first, the three kinds of powder preparation methods:presetting, electroless plating and sol-gel method, were adopted to assemble micro-and nano-materials effectively on the surface of the sample, and the pulsed Nd:YAG laser was used to produce hardening coatings on the metallic substrate. Secondly, with the help of the process parameters optimization model, the ultrafine ceramic reinforced composite coatings with high performances were prepared. Thirdly, the relations between the microstructure, microhardness distribution and the wear properties were investigated, the function of ceramic phases and the strengthening mechanism of the coatings were analyzed, and the characteristics and applications of different preparation methods were discussed as well. The main results are as follows:
     (1) The Al2O3ceramic composite coatings were achieved by laser cladding preseted Ni-coated nano-Al2O3. The optimal processing parameters for crack-free coating with high hardness are under the condition of50%Ni+50%Al2O3, current intensity of150A, scanning speed of300mm/min, pulse width of2ms and pulse frequency of30Hz. With the optimal processing parameter, the coating with maximum hardness of672Hv0.2and hardening layer thickness of0.6mm can be obtained, and its wear resistance increases by1.5times with respect to that of the substrate. This method is convenient and flexible, which is suitable for local strengthening of the complex parts, such as the cavity and inner wall of mold, and tools.
     (2) The Ni-P-Al2O3electroless plating coatings were strengthened by the pulsed Nd:YAG laser. A process parameters prediction model based on neural network was established, and the optimal strengthening parameters for single track are under the conditions including current intensity of200to240A, pulse width of2.1to2.3ms, pulse frequency of21to23Hz, scanning speed of450mm/min. With the optimal processing parameters, the coating with maximum hardness of840Hv0.2and hardening layer thickness of0.2-0.3mm can be obtained, and its wear resistance increases by6times relative to that of the substrate. This method is featured with nice homogeneity and is suitable for local strengthening of the key components with high propertied requirement, such as the cutting edge of cutters, turbine blades and shaft neck.
     (3) The titanium compound (TiC/TiN/TiB2) strengthening coatings were achieved by chemical synthesis reaction via laser action and sol-gel. The optimal processing parameters are under the condition of TiO2and C molar ratio of1:5, the preseted layer thickness of0.2mm, the current intensity of250A, the pulse width of2.5ms, the pulse frequency of18Hz, and the laser scanning speed of50mm/min. With the optimal processing parameters, the coating with maximum hardness of1150Hv0.2and hardening layer thickness of0.3~0.4mm can be obtained and its wear resistance increases by12.5times from that of the substrate. This method is convenient and flexible, and can produce coatings with high hardness and wear resistance, which is suitable for the hardening of tools blade.
     (4) The research results on the function of ceramic phases and the hardening mechanism show that, due to the presence of nano-Al2O3heterogeneous phase particles, the melt supercooling degree increases, and thus changes the crystal growth morphology as a consequence. The columnar grains change to cellular dendrite in the upper layer of the coating, which greatly promotes the formation of the fine grain structures. The grain refinement and the generation of highly dispersed hard phases such as Al2O3, Al5FeNi, FeNi and Fe0.64Ni0.36are the main factor causing the coating strengthening. As to the sol-gel compound laser hardening method, it is the synthesis reactions of laser and TiO2·2H2O+C+BN sol-gel to produce the hardening coating with TiC, TiB2and TiN ceramic reinforced phases.
     In conclusion, different enhanced coatings with different functional characteristics were obtained thought the three different composite methods mentioned above. The three hybrid methods are suitable for the local hardening of complex parts, tools blade and local strengthening of the critical parts, respectively, which provides a new way to obtain high-performance strengthening coating. The preliminary application tests in the medical devices and mechanized equipment show that the technology has broad application prospects and great potential for the application in medical minimally invasive surgical instruments and the fields of tool and die.
引文
[1]J. Takadoum. Nanomaterials and Surface Engineering [M]. Chichester:John Wiley & Sons, 2010.
    [2]N.S. Lim, S. Das, S.Y. Park, M.C. Kim, and C.G Park. Fabrication and microstructural characterization of nano-structured WC/Co coatings [J]. Surface & Coatings Technology, 2010,205(2):430-435.
    [3]J.Q. Gao, L. Liu, Y.T. Wu, B. Shen, and W.B. Hu. Electroless Ni-P-SiC composite coatings with superfine particles [J]. Surface & Coatings Technology,2006,200(20-21):5836-5842.
    [4]G.S. Fox-Rabinovich, K. Yamamoto, M.H. Aguirre, D.G Cahill, S.C. Veldhuis, A. Biksa, G. Dosbaeva, and L.S. Shuster. Multi-functional nano-multilayered AlTiN/Cu PVD coating for machining of Inconel 718 superalloy [J]. Surface & Coatings Technology,2010, 204(15):2465-2471.
    [5]Z.S. Wu, YD. Shen, Y. Dong, and J.Q. Jiang. Study on the morphology of α-Al2O. precursor prepared by precipitation method [J]. Journal of Alloys and Compounds,2009,467(1-2): 600-604.
    [6]魏红菊,吴一,龙飞,邹正光.超细TiC粉体制备的研究现状及展望[J].材料导报,2008,22(1):112-123.
    [7]李爱菊,孙康宁,龚红宇,范润华.TiN, AlN/Al2O3复合陶瓷材料的研究[J].稀有金属材料与工程,2007,36(1):604-607.
    [8]J. Gang, J.P. Morniroli, and T. Grosdidier. Nanostructures in thermal spray coatings [J]. Scripta Materialia,2003,48(12):1599-1604.
    [9]徐滨士.表面工程手册[M].北京:机械工业出版社,1997.
    [10]B.H. Kear, and G Skandan. Thermal spray processing of nanoscale materials [J]. Nanostructured Materials,1997,8(6):765-769.
    [11]M. Gell. Application opportunities for nanostructured materials and coatings [J]. Materials Science Engineering:A,1995,204(1-2):246-251.
    [12]B.H. Kear, and P.R. Strutt. Chemical processing and application for nanostructured materials [J]. Nanostructure Materials,1995,6:227-236.
    [13]M. Gell. The potential for nanostruct mater in gas turbine engines [J]. Nanostructured Materials,1995,6:997-1000.
    [14]I. Ahmed, and T.L. Bergman. Thermal modeling of plasma spray deposition of nanostructured ceramics [J]. Journal of Thermal Spray Technology,1999,8(2):315-322.
    [15]Z. Wojciech, and K. Stefan. Scuffing resistance of plasma and HVOF sprayed WC12Co and Cr3C2-25(Ni20Cr) Coatings [J]. Surface & Coatings Technology,2008,202(18):4453-4457.
    [16]赵晓琴,周惠娣,陈建敏.等离子喷涂纳米和常规喂料WC-Co涂层在干摩擦和水环境中的摩擦磨损性能研究[J].摩擦学学报,2006,26(3):208-213.
    [17]H.S. Jazi. Advanced Plasma Spray Applications [M]. Rijeka:InTech,2012.
    [18]J. Karthikeyan, and C.C. Bemdt. Preparation of nanophase materials by thermal spray processing of liquid precursors [J]. Nanostructure Material,1997,(9):137-140.
    [19]E.J. Young. Low pressure plasma spray coatings. Thin Solid Film,2000,377-378:788-792.
    [20]M.J. Koczak, and K.S. Kumar. In situ process for producing a composite containing refractory material [P]:US,4808372,1989.
    [21]K.L. Choy. Chemical vapour deposition of coatings [J]. Progress in materials science,2003, 48(2):57-170.
    [22]H.K. Pulker. Optical coatings deposited by ion and plasma PVD processes [J]. Surface & Coatings Technology,1999,112(1-3):250-256.
    [23]R.G. Wellman, and J.R. Nicholls. Erosion, corrosion and erosion-corrosion of EB-PVD thermal barrier coatings [J]. Tribology International,2008,41(7):657-662.
    [24]M. Movchan, and Y. Rudoy. Composition, structure and properties of gradient thermal barrier coatings produced by EB-PVD [J]. Materials and Design,1998, (19):253-258.
    [25]B.A. Movchan. EB-PVD technology in the gas turbine industry:Present and future [J]. Journal of Material,1996,48(11):40-45.
    [26]S. Komarneni, S. Sakka, P.P. Phule, and R.M. Laine. Sol-gel Synthesis and Processing [M]. Wiley-American Ceramic Society,1998.
    [27]田晓,贾清,崔玉友,杨锐.复合溶胶凝胶法制备TiAl合金表面防护涂层[J].中国有色金属学报,2010,20(S1):264-268.
    [28]M. Masanta, P. Ganesh, R. Kaul, and A.R. Choudhury. Microstructure and mechanical properties of TiB2-TiC-Al2O3-SiC composite coatings developed by combined SHS, sol-gel and laser technology [J]. Surface & Coatings Technology,2010,204(21-22):3471-3480.
    [29]G. Lallemand, A. Loredo, and B. Martin. Influence of laser cladding on the surface hardness of small-diameter metallic wire substrates [J]. Materials Science and Engineering,2000, 277(1-2):192-197.
    [30]YJ. Li, Z.D. Zou, X. Holly, T. Feng, and X.H. Wang. A study on microstructure in the brazing interface of WC-TiC-Co hard alloys [J]. International Journal of Refractory Metals& Hard Materials,2002,20(3):169-173.
    [31]R.M. Jasim, R.D. Rawlings, and D.R.F West. Metal ceramic functionally gradient material produced by laser processing [J]. Journal of Material Science,1993,128(10):2820-2826.
    [32]C.I. John. Laser Processing of Engineering Materials:Principles, Procedure and Industrial Application [M]. Butterworth-Heinemann,2005.
    [33]D. Bauerle. Laser Processing and Chemistry [M]. Berlin:Springer,2000.
    [34]D.S. Gnanamuthu. High temperature coatings by surface melting [P]:US,3952180, 1976-04-01.
    [35]关振中.激光加工工艺手册[M].北京:中国计量出版社,1998.
    [36]赵洪运,杨贤群,舒凤远,徐春华.激光熔覆层形貌预测对比分析[J].焊接学报,2009,30(1):51-59.
    [37]鲁燕,孔凡志,姚建华,陈智君,楼程华.半导体激光熔覆TiC/H13涂层的抗回火性能[J].应用激光,2010,30(6):451-455.
    [38]骆芳,陈智君,楼程华,柴国钟.塑料模具钢表面激光熔覆陶瓷复合涂层的性能研究[J].兵工学报,2010,31(7):933-938.
    [39]H.M. Wang, and G. Duan. Microstructure and wear resistance of a laser clad reinforce CrjSi silicide composite coating [J]. Materials Science and Engineering:A,2002,336:117-123.
    [40]P.P. Shukla, and J. Lawrence. Examination of temperature distribution and the thermal effects on Si3N4 engineering ceramics during fiber laser surface treatment [J]. Optics and Lasers in Engineering,2011,49:998-1011.
    [41]H.D. Kurland, J. Grabow, and F.A. Muller. Preparation of ceramic nanospheres by CO2 laser vaporization [J]. Journal of the European Ceramic Society,2011,31:2559-2568.
    [42]R. Anandkumar, A. Almeida, and R. Vilar. Influence of powder particle injection velocity on the microstructure of Al-12Si/SiCp coatings produced by laser cladding [J]. Surface & Coatings Technology,2009,204:285-290.
    [43]M.D. Silva, K. Partes, and T. Seefeld. Comparison of coaxial and off-axis nozzle configurations in one step process laser cladding on aluminum substrate [J]. Journal of Materials Processing Technology,2012,212(11):2514-2519.
    [44]I. Shishkovsky, and I. Smurov. Titanium base functional graded coating via 3D laser cladding [J]. Materials Letters,2012,73:32-35.
    [45]W.W. Chen, W. Gao, and Y.D. He. A novel electroless plating of Ni-P-TiO2 nano-composite coatings [J]. Surface & Coatings Technology,2010,204(15):2493-2498.
    [46]N. Patel, R. Fernandes, and N. Bazzanella. Co-P-B catalyst thin films prepared by electroless and pulsed laser deposition for hydrogen generation by hydrolysis of alkaline sodium borohydride:A comparison [J]. Thin Solid Films,2010,518(17):4779-4785.
    [47]J. Ahn, H.Y. Kim, H.C. Koo, and J.J. Kim. Characterization and Cu electroless plating of laser-drilled through-wafer via-holes in GaN/Al2O3 [J].Thin Solid Films,2009:3841-3843.
    [48]P.B. Shrivastvaa, C. Harteveldb, and C.A. Boose. Laser-induced prenucleation of alumina for electroless plating [J]. Applied Surface Science,1991,51(3-4):165-169.
    [49]S.D. Nicholas, M. Kenneth, and E.M. Suzanne. Laser-enhanced electroless plating of silver seed layers for selective electroless copper deposition [J]. Journal of Laser Applications,2008, 20(4):218-223.
    [50]Y. Adraider, S.N.B. Hodgson, and M.C. Sharp. Structure characterisation and mechanical properties of crystalline alumina coatings on stainless steel fabricated via sol-gel technology and fibre laser processing [J]. Journal of the European Ceramic Society,2012,32(16): 4229-4240.
    [51]Y. Adraider, YX. Pang, F. Nabhani, S.N. Hodgson, and Z.Y Zhang. Laser-induced deposition of sol-gel alumina coating on stainless steel under wet condition [J]. Surface & Coatings Technology,2011,205 (23-24):5345-5349.
    [52]N.M. Ferreira, F.M. Costa, and R.N. Nogueira. Lithium niobate bulk crystallization promoted by CO2 laser radiation [J]. Applied Surface Science,2012,258(23):9457-9460.
    [53]A.J. Lopez, A. Urena, and J. Rams. Wear improvement of sol-gel silica coatings on A380/SiCp aluminium composite substrate by diode laser sintering [J]. Materials& Design, 2011,32(7):3865-3875.
    [54]T. Nagase, H. Kominami, and Y. Nakanishi. Improvement of green cathodoluminescence of zinc oxide stacked films prepared by high-power excimer laser irradiation of sol-gel-derived precursors [J]. Thin Solid Films,2010,14(3):3875-3878.
    [55]A.R. Choudhury, T. Ezz, S. Chatterjee, and L. Li. Microstrucrure and tribological behaviour of nano-structured metal matrix composite boride coatings synthesized by combined laser and sol-gel technology [J]. Surface & Coatings Technology,2008,202 (13):2817-2829.
    [56]A. Emamian, M. Alimardani, and A. Khajepour. Correlation between temperature distribution and in situ formed microstructure of Fe-TiC deposited on carbon steel using laser cladding [J]. Applied Surface Science,2012,258(22):9025-9031.
    [57]T. Kuhnle, and K. Partes. In-Situ Formation of Titanium Boride and Titanium Carbide by Selective Laser Melting [J]. Physics Procedia,2012,39:432-438.
    [58]M.F. Montemor, A.M. Simoes, and M.J. Cannezim. Characterization of rare-earth conversion films formed on the AZ31 magaaesium alloy and its relation with corrosion protection [J]. Applied Surface Science,2007,253(16):6922-6931.
    [59]J. Zhang, H.J. Su, and K. Song. Microstrucrure, growth mechanism and mechanical property of Al2O3-based eutectic ceramic in situ composites [J]. Journal of the European Ceramic Society 2011,31 (7):1191-1198.
    [60]R. Banerjee, P.C. Collins, and A. Gene. Direct laser deposition of in situ Ti-6Al-4V-TiB composites [J]. Materials Science and Engineering,2003,358 (1-2):343-349.
    [61]M. Li, J. Huang, Y.Y. Zhu, and Z.G. Li. Effect of heat input on the microstructure of in-situ synthesized TiN-TiB Ti based composite coating by laser cladding [J].Surface & Coatings Technology,2012,206 (19-20):4021-4026.
    [62]S. Yang, N. Chen, W.J. Liu, and M.L. Zhong. In situ formation of MoSi2/SiC composite coating on pure Al by laser cladding [J]. Materials Letters,2003,57 (22-23):3412-3416.
    [63]耿刚.粉体球化剂的开发与应用[硕士学位论文],大连:大连交通大学,2009:1-47.
    [64]姚建华.强激光作用下纳米复合涂层的组织性能与应用研究[博士学位论文],杭州:浙江工业大学,2005.
    [65]欧忠文,刘维民,徐滨士,马世宁,丁培道.材料表面摩擦学设计新方法-纳米结构耐磨涂层的组装[J].功能材料,2002,33(1):19-21.
    [66]欧忠文,徐滨士,马世宁,乔玉林,张伟.纳米材料在表面工程中应用的研究进展[J].中国表面工程,2000,(2):5-9.
    [67]欧忠文,徐滨士,马世宁.纳米表面工程中的纳米结构涂层组装[J].机械工程学报,2002,38(6):5-9.
    [68]姚建华,张伟.激光熔覆制备纳米碳化物涂层组织和性能[J].应用激光,2005,25(5):293-295.
    [69]A. Yakovlev, P. Bertrand, and I. Smurov. Laser cladding of wear resistant metal matrix composite coatings [J]. Thin solid films,2004,453-454:133-138.
    [70]F. Lusquinos, R. Comesana, and A. Riveiro. Fibre laser micro-cladding of Co-based alloys on stainless steel [J]. Surface & Coatings Technology,2009,203(14):1933-1940.
    [71]M. Masanta, P. Ganesh, and R. Kaul. Development of a hard nano-structured multi-component ceramic coating by laser cladding [J]. Materials Science and Engineering:A, 2009,508(1-2):134-140.
    [72]牛薪,晁明举,王文丽,袁斌,梁二军.原位生成NbC颗粒增强镍基激光熔覆层[J].中国激光,2006,33(7):987-992.
    [73]陈岁元,董江,陈军,梁京,刘常升.结晶器铜合金表面激光原位制备纳米颗粒增强钻基梯度涂层[J].中国激光,2011,38(7):0703006.
    [74]A. Emamian, S.F. Corbin, and A. Khajepour. Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe-TiC composite coatings [J]. Surface & Coatings Technology,2010,205(7):2007-2015.
    [75]H. Gleiter. Nanocrystalline materials [J]. Progress in Materials Science,1989,33(4):223-315.
    [76]赵冠琳.激光熔覆原位反应生成TiC-VC增强铁基熔覆层的研究[硕士学位论文],济南:山东大学,2008.
    [77]S.M.A Shibli, B. Jabeera, and R.I. Anupama. Development of ZnO incorporated composite Ni-ZnO-P alloy coating [J]. Surface & Coatings Technology,2006,200 (12-13):3903-3906.
    [78]Y. Sun, Z.G. Zhang, and J.M. Li. Wear resistance of electroless Ni-P-nano SiC composite coating [J]. Transactions of the Chinese Society of Agricultural Engineering,2007,23 (12): 105-107.
    [79]J.Q. Gao, Y.T. Wu, and L. Liu. Crystallization behavior of nanometer-sized A12O3 composite coatings prepared by electroless deposition [J].Materials Letters,2005,59:391-394.
    [80]S. Alirezaei, S.M. Monirvaghefi, and M. Salehi. Effect of alumina content on surface morphology and hardness of Ni-P-Al2O3(α) electroless composite coatings [J]. Surface & Coatings Technology,2004,184(2-3):170-175.
    [81]K. Parker. The effect of nickel salts on electroless nickel [J]. Plating & Surface Finishing, 1996,38(1):70-71.
    [82]F. Delaunois, and P. Lienard. Heat treatments for electroless nickel-boron plating on aluminium alloys [J]. Surface & Coatings Technology,2002,160:239-248.
    [83]班春燕,张禄廷,陈立佳,何玉林,张洪安.含复合络合剂的化学镀Ni-P合金工艺[J].表面技术,1999,28(3):9-12.
    [84]蔡晓兰,黄鑫,贺子凯.化学镀镍磷合金镀速的研究[J].电镀与涂饰,2001,20(6):39-41.
    [85]王孝熔,顾慰中.化学镀镍磷合金工艺研究fJ].电镀与涂饰,1999,18(6):43-46.
    [86]N.K Dirjal. The role of electroless plating bath constituents in the catalytic oxidation of the hypophosphiteion [J]. Plating& Surface Finishing,1998,85(4):74-78.
    [87]关凯书,史岩,张美华等.稳定剂对镍磷化学镀层表面形貌及耐蚀性能的影响[J].机械工程材料,1999,23(5):8-10.
    [88]P.S. Kumar. Effect of Phosphorus content on the relative Proportions of Crystalline and Amorphous Phases in Electroless Ni-P Deposits [J]. Journal of Materials Science Letters, 1994,13:671-647.
    [89]W. Riedel化学镀镍[M].罗守福,译.上海:上海交通大学出版社,1996.
    [90]周啸,尚慧兰,杜文义.基体表面状况及表面活性剂浓度对Ni-P-PTFE化学镀层结构的影响[J].材料保护,2000,33(6),1-3.
    [91]M. Barletta, and A. Gisario. An application of neural network solutions to laser assisted paint stripping process of hybrid epoxy-polyester coatings on aluminum substrates [J]. Surface& Coatings Technology,2006,200:6678-6689.
    [92]A. Godavarty, A. Agarwal, and N.B. Dahotre. Neural networks in studies on oxidation behavior of laser surface engineered composite boride coatings [J]. Applied Surface Science, 2000,161:131-138.
    [93]Z.S. Chong, M. Mohzani, J.F. Chin, and H.P.Y. Manurung.Approach to prediction of laser cutting quality by employing fuzzy expert system [J].Expert Systems with Applications,2011, 38:7558-7568.
    [94]王秀凤,吕晓东,陈光南,胡世光.人工神经网络技术在板料激光弯曲中的应用[J].激光技术,2005,29(3):244-247.
    [95]唐霞辉,秦应雄,钟如涛,周金鑫,李正佳.基于神经网络的粉末冶金材料激光焊接工艺优化[J].激光技术,2006,30(5):471-475.
    [96]钟鸣,付戈雁.基于人工神经网络的激光涂层多冲疲劳性能预测模型的研究[J].机械设计与制造,2006(12):36-38.
    [97]刘曙光,郑崇勋,刘明远.前馈神经网络中的反向传播算法及其改进:进展与展望[J].计算机科学,1996,23(1):76-79.
    [98]董长虹Matlab神经网络与应用[M].北京:国防工业出版社,2007:72-75.
    [99]薛艳敏,刘宏昭.用正交试验法选择BP网络参数研究机器人运动学逆解[J].应用科学学报,2008.26(2):216-220.
    [100]石振东,刘国庆.实验数据处理与曲线拟合技术[M].哈尔滨:哈尔滨船舶工程学院出版社,1991:64.
    [101]Z. Guo, K.G. Keong, and W. Sha. Crystallisation and phase transformation behaviour of electroless nickel phosphorus platings during continuous heating [J]. Journal of Alloys and Compounds,2003,358(1-2):112-119.
    [102]K.G. Keong, W. Sha, and S. Malinov. Crystallisation kinetics and phase transformation behaviour of electroless nickel-phosphorus deposits with high phosphorus content [J]. Journal of Alloys and Compounds,2002,334(1-2):192-199.
    [103]闫涛,梁志杰,谭俊,张平.激光强化电刷镀Ni镀层试验研究[J].中国表面工程,2006,19(2):40-42.
    [104]顿爱欢,姚建华,孔凡志,张伟.激光处理Ni-P-Al2O3纳米化学镀复合镀层的微观组织[J].中国激光,2008,35(10):1609-1613.
    [105]胡壮麟,孙文儒,郭守仁,卢德忠.微量元素磷在铁镍基变形高温合金中的应用[J].中国有色金属学报,2001,11(6):947-959.
    [106]孟晓娜,孙文儒,郭守仁,卢德忠,李娜.磷对Ni3Al凝固组织的影响[J].金属学报,2004,40(6):613-615.
    [107]顿爱欢.激光强化Ni-P-Al2O3纳米化学复合镀层的组织与性能研究[硕士学位论文],杭州:浙江工业大学,2008.
    [108]高彩桥.金属的摩擦磨损与热处理[M].机械工业出版社,1988.
    [109]王瑞侠,许根水.纳米Ti02的制备研究[J].池州师专学报,2006,20(5):61-64.
    [110]周武艺,唐绍裘.DBS包覆钛盐水解制备纳米Ti02的研究[J].硅酸盐学报,2003,31(9):858-861.
    [111]王志义,周成凤.锐钛矿型纳米Ti02粉体的纯净制备[J].材料导报,2009,23(4):88-90.
    [112]吴晓琳.醇盐水解法制备铝酸镧粉体的研究[硕士学位论文].大连:大连交通大学,2007.
    [113]祖庸,李晓娥.超细二氧化钛的合成技术进展[J].西北大学学报(自然科学版),1995,25(4):319-323.
    [114]B. Samuneva, V. Kozhukharov, and C. Trapalis. Sol-gel processing of titanium-containing thin coatings [J]. Journal of Materials Science,1993, (28):2353-2356.
    [115]邢光建,姚望,陈光华.表面活性剂控制金属醇盐水解制备纳米Ti02粉体[J].北京工业大学学报,2004,30(3):354-357.
    [116]G.A. Swift, and R. Koc. Formation studies of carbon coater TiO2 [J]. Journal of Materials Science,1999,34(13):3083-3093.
    [117]H. Preiss, L.M. Berge, and D. Schultze. Studies on the carbothermal preparation of titanium carbide from different gel precursors [J]. Journal of the European Ceramic Society,1999, 19(2):195-206.
    [118]方民宪,陈厚生.碳热还原法制取Ti(C/N)的热力学原理[J].粉末冶金材料科学与工程,2006,11(6):329-336.
    [119]M. Alexandre, T. Daniel, and L. Pierre. Role of some technological parameter during carburizing titanium dioxide [J]. Journal of the European Ceramic Society,2000, (20):15-22.
    [120]A. Agarwal, and N.B. Dahotre. Synthesis of boride coating on steel using high energy density process:comparative study of evolution of microstructure [J]. Materials Characterization,1999,42(1):31-44.
    [121]董和泉,王坤,任忠鸣.Ti-BN二元相图的计算及BN与液钛界面反应的研究[J].中国稀土学报,2008,26(8):10-16.
    [122]Z. Fan, H.J. Niu, and A.P. Miodownik. Microstructure and mechanical properties of in situ Ti/TiB MMCs produced by a blended elemental powder metallurgy method [J]. Key Engineering Materials,1997,127-131:423-430.
    [123]A.P. Sannino, and H.J. Rack. Dry sliding wear of discontinuously reinforced aluminum composites:review and discussion [J]. Wear,1995,189:1-19.
    [124]B.S. Li, J.H. Ouyang, and J.J. Guo. Wear mechanism of XDTM ZL201-TiB2 in situ composite [J]. Journal of Materials Science,1998,33(8):2195-2202.
    [125]A.T. Alpas, and J. Zhang. Effect of Microstructure (Particulate Size and Volume Fraction) and Counterface Material on The Sliding Wear Resistance of Particulate-Reinforced Aluminum Matrix Composites [J]. Metallurgical and Materials Transactions A,1994,25(5): 969-983.
    [126]T. Sato, Y. Hosokawa, and S. Ito. Plasma carbonitriding of cemented carbide substrate as an effective pretreatment process for diamond CVD [J]. Surface & Coatings Technology,1999, 112(1-3):189-193.
    [127]F. Qin, Y.K. Chou, and D. Nolen. Coating thickness effects on diamond coated cutting tools [J]. Surface & Coatings Technology,2009,204 (6-7):1056-1060.
    [128]D. Paraschiv, D. Bardac, and D. Cretu. PVD coating of cutting tools surfaces [J]. Metalurgia International,2010,15(4):5-10.
    [129]S.L. Ma, D.Y. Ma, and Y. Guo. Synthesis and characterization of super hard, self-lubricating Ti-Si-C-N nanocomposite coatings [J]. Acta Materialia,2007,55(18): 6350-6355.
    [130]黄拿灿,胡社军,吴起白,曾鹏,谢光荣.离子注入工模具材料表面改性及其展望[J].材料热处理学报,2002,(1):61-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700