用户名: 密码: 验证码:
扫描探针显微镜在多孔材料制备、纳米光刻以及高密度光存储中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扫描探针显微镜技术(Scanning probe microscopy, SPM)的出现,使对表面形貌特征的研究深入到了原子尺度。这项技术已经广泛应用在材料表面成像、表面特性分析、纳米医学、纳米测量以及生命科学等方面。SPM不仅可以作为测量分析工具,在对器件进行纳米加工、刻蚀等方面同样拥有广阔的应用前景。本论文分为五章,内容如下:
     一、介绍了扫描探针显微镜的种类以及各自的工作原理和工作模式,概述了扫描探针显微镜在有机薄膜、纳米光刻以及近场光存储中的应用。
     二、主要从压电陶瓷扫描头自身的非线性、反馈系统参数的设定以及针尖与样品间相互作用三个面,分析了原子力显微镜扫描成像过程中产生假象的原因,总结了辨别和消除假象的几种方法。
     三、提出一种利用盐溶液对云母上的硬脂酸Langmuir-Blodgett(LB)单分子膜进行浸泡来制备多孔薄膜材料的新方法,并对多孔薄膜的形成机理进行了分析。利用原子力显微镜对不同实验参数下制备的多孔硬脂酸单分子膜进行表征,系统地研究了各参数对多孔薄膜孔径尺寸以及孔径总覆盖面积百分比的影响。实验中采用较低的盐溶液浓度,使溶质很难在云母基底表面结晶,因此整个多孔薄膜表面不会残留杂质,避免了模板法制备多孔材料时,由于模板材料去除不彻底而引入杂质的情况。
     四、基于表面等离子体共振增强原理,提出两种利用扫描近场光学显微镜(SNOM)中无孔针尖来实现近场光存储的方案(背面照射、侧面照射)。以xilinx9572芯片为核心控制器,自制了纳秒级单脉冲信号发生器,满足了对光源进行纳秒级调制的要求。在背面照射方案中,成功利用膜片钳系统将液相外延法生长的GaAs金字塔形探针尖与原子力接触模式的探针悬臂相结合,解决了GaAs针尖与记录介质间近场距离控制的问题。在侧面照射的方案中,通过时域有限差分法(FDTD)分析了聚焦光斑尺寸以及入射角度对针尖增强效果的影响,讨论了实验中亟待解决的问题。
     五、针对平头针尖力学反馈效果不佳的情况,将蝴蝶结孔与牛眼结构在SNOM针尖的三维模型中结合,利用FDTD的方法对该模型进行了数值模拟,分析了该模型的增强机理。针对光刻中常用的365nm波长,通过公式推导出了该波长入射光产生表面等离子共振时牛眼结构的周期参数,在此基础上,讨论了模型中各参数对探针尖端场增强因子的影响,优化了结构参数,并提出了新的改进方案。
Scanning probe microscopy (SPM) provides measurement of surface morphology on atomic scale. It has been widely applied to surface science, nanomedicine, nanomeasurement, life science and so on. Further, SPM has also been applied successfully to nanofabri cation and nanolithography. This paper is divided into five chapters:
     1. The principle and working modes of various SPMs have been explained and its applications to nanolithography and near-field optical storage have been introduced.
     2. AFM images are often subject to some artifacts arise from scanner nonlinearities, parameters of feedback loop and the interaction between probe and sample. The methods of identifying and eliminating the artifacts have been represented.
     3. A new method of preparing porous monolayer film by immersing stearic acid Langmuir-Blodgett monolayer into salt solution has been proposed. The formation mechanism of the porous structure has been analyzed. The morphology images of porous films prepared with different experiment parameters (immersion time, concentration of the salt solution, cationic valence in salt solution, surface pressure of the SA LB film) are characterized by atomic force microscope (AFM). The influence factors on diameter and coverage percentage of the pores on porous film have been systematically studied. With lower concentration of the salt solution, the solute cannot crystallize on mica surface, which avoids the step of removing template materials in all template methods.
     4. Based on the surface plasmon polariton (SPP) effects, utilizing near-field optical microscope (SNOM) tips, two recording methods of near-field optical storage have been proposed (back and lateral illumination). As the light source requires an external trigger signal to work, we have designed a nanosecond scale single trigger signal generator based on the xilinx9572chip. The GaAs pyramidal tip produced by liquid phase epitaxial method has been successfully integrated with AFM cantilever of contact mode for back illumination, which achieves the nano-scale control of GaAs tip and phase-change material. In the method of lateral illumination, the influences of incident angle and the focal spot size on enhancement factor have been researched with finite-difference time domain (FDTD) method. Meanwhile, the urgent issues in the experiment have been discussed.
     5. Considering the poor feedback of crew-cut probe, the bowtie aperture surrounded by bull's eye structure has been integrated on thhree-dimensional SNOM tip model. This model has been investigated using FDTD method. Based on the common working wavelength of photolithography (365nm), the period of the bull's eye structure for SPP resonant effect are achieved with corresponding equations. The enhancement mechanism of the model has been represented according to the numerical simulation results. Meanwhile, the influences of structure parameters on enhancement factor have been analyzed and optimized. Further, we proposed a new improved method.
引文
[1]Binnig G,Rohrer H. Scanning tunneling microscope:US,4343993 [P].1982,08,10.
    [2]BinnigG, Rohrer H, Gerber C, et al. Surface studies by scanning tunneling microscopy [J]. Physical review letters,1982,49:57-61
    [3]Binnig G, Rohrer H. Scanning tunneling microscopy [J]. Surface Science,1983,126: 236-244
    [4]Fock V A. Fundamentals of quantum mechanics [J]. Mir Publishers, Moscow,1983. Translation from the 2-nd edition.,1978,1:
    [5]Morita S. Roadmap of scanning probe microscopy [M]. Springer Verlag,2007.
    [6]Oliva A, Romero G, Pena J, et al. Electrochemical preparation of tungsten tips for a scanning tunneling microscope [J]. Review of scientific instruments,1996,67:1917-1921
    [7]Kerfriden S, Nahle A, Campbell S A, et al. Short Communication The electrochemical etching of tungsten STM tips [J]. Electrochimica acta,1998,43:1939-1944
    [8]Mironov V. Fundamentals of scanning probe microscopy [J]. Moscow:Technosfera,2004, 144
    [9]Binnig G, Quate C F, Gerber C. Atomic force microscope [J]. Physical review letters, 1986,56:930-933
    [10]Saint Jean M, Hudlet S, Guthmann C, et al. Van der Waals and capacitive forces in atomic force microscopies [J]. Journal of applied physics,1999,86:5245-5248
    [II]Ton-That C, Shard A, Bradley R. Thickness of spin-cast polymer thin films determined by angle-resolved XPS and AFM tip-scratch methods [J]. Langmuir,2000,16:2281-2284
    [12]Kato Z, Sakairi M, Takahashi H. Nanopatterning on aluminum surfaces with AFM probe [J]. Surface and Coatings Technology,2003,169:195-198
    [13]Morita S, Wiesendanger R, Meyer E. Noncontact atomic force microscopy [M]. Springer Verlag,2002.
    [14]Uchihashi T, Ishida T, Komiyama M, et al. High-resolution imaging of organic monolayers using noncontact AFM [J]. Applied surface science,2000,157:244-250
    [15]Yokoyama K, Ochi T, Yoshimoto A, et al. Atomic Resolution Imaging on Si (100) 2X1 and Si (100) 2X 1:II Surfaces with Noncontact Atomic Force Microscopy [J]. Japanese Journal of Applied Physics,2000,39:113
    [16]Cappella B,Dietler G. Force-distance curves by atomic force microscopy [J]. Surface science reports,1999,34:1-104
    [17]Cappella B, Kaliappan S, Sturm H. Using AFM force-distance curves to study the glass-to-rubber transition of amorphous polymers and their elastic-plastic properties as a function of temperature [J]. Macromolecules,2005,38:1874-1881
    [18]Kaliappan S K, Cappella B. Temperature dependent elastic-plastic behaviour of polystyrene studied using AFM force-distance curves [J]. Polymer,2005,46:11416-11423
    [19]Boland T, Ratner B. Direct measurement of hydrogen bonding in DNA nucleotide bases by atomic force microscopy [J]. Proceedings of the National Academy of Sciences,1995,92: 5297-5301
    [20]Weisenhorn A, Hansma P, Albrecht T, et al. Forces in atomic force microscopy in air and water [J]. Applied Physics Letters,1989,54:2651-2653
    [21]Pohl D, Denk W, Lanz M. Optical stethoscopy:Image recording with resolution λ/20 [J]. Applied Physics Letters,1984,44:651-653
    [22]Durig U, Pohl D, Rohner F. Near-field optical-scanning microscopy [J]. Journal of applied physics,1986,59:3318-3327
    [23]Lewis A, Isaacson M, Harootunian A, et al. Development of a 500 A spatial resolution light microscope:I. light is efficiently transmitted through λ/16 diameter apertures [J]. Ultramicroscopy,1984,13:227-231
    [24]Harootunian A, Betzig E, Isaacson M, et al. Super-resolution fluorescence near-field scanning optical microscopy [J]. Applied Physics Letters,1986,49:674-676
    [25]Betzig E, Isaacson M.Lewis A. Collection mode near-field scanning optical microscopy [J]. Applied Physics Letters,1987,51:2088-2090
    [26]Betzig E, Trautman J K. Near-field optics:microscopy, spectroscopy, and surface modification beyond the diffraction limit [J]. Science (New York, NY),1992,257:189
    [27]V.F.Drjahlushin, A. J. Klimov, V.V.Rogov, et al. Scanning near-field optical microscope probe [J]. Pribory i tehnika eksperimenta,1998,2:138-139
    [28]Hecht B, Heinzelmann H, Pohl D. Combined aperture SNOM/PSTM:best of both worlds? [J]. Ultramicroscopy,1995,57:228-234
    [29]Hecht B, Sick B, Wild U P, et al. Scanning near-field optical microscopy with aperture probes:Fundamentals and applications [J]. The Journal of Chemical Physics,2000, 112:7761
    [30]Fischer U C, Pohl D. Observation of single-particle plasmons by near-field optical microscopy [J]. Physical review letters,1989,62:458-461
    [31]Zenhausern F, Oboyle M, Wickramasinghe H. Apertureless near-field optical microscope [J]. Applied Physics Letters,1994,65:1623-1625
    [32]Sanchez E J, Novotny L,Xie X S. Near-field fluorescence microscopy based on two-photon excitation with metal tips [J]. Physical review letters,1999,82:4014-4017
    [33]Sugiura T, Kawata S, Okada T. Fluorescence imaging with a laser trapping scanning near-field optical microscope [J]. Journal of microscopy,1999,194:291-294
    [34]Reddick R, Warmack R, Ferrell T. New form of scanning optical microscopy [J]. Physical Review B,1989,39:767
    [35]吴世法,章健,潘石,et al.原子力与光子扫描隧道组合显微镜[J].光学学报,2005,25:10991104
    [36]Zia R, Schuller J A, Chandran A, et al. Plasmonics:the next chip-scale technology [J]. Materials today,2006,9:20-27
    [37]Wei P, Fann W. The probe dynamics under shear force in near-field scanning optical microscopy [J]. Journal of applied physics,1998,83:3461-3468
    [38]Brunner R, Bietsch A, Hollricher 0, et al. Distance control in near-field optical microscopy with piezoelectrical shear-force detection suitable for imaging in liquids [J]. Review of scientific instruments,1997,68:1769-1772
    [39]Bozhevolnyi S I, Smolyaninov I I,Keller 0. Correlation between optical and topographical images from an external reflection near-field microscope with shear force feedback [J]. Applied optics,1995,34:3793-3799
    [40]Martin Y, Wickramasinghe H K. Magnetic imaging by''force microscopy''with 1000 A resolution [J]. Applied Physics Letters,1987,50:1455-1457
    [41]Yaminsky I V, Tishin AM. Magnetic force microscopy [J]. Russian chemical reviews, 2007,68:165
    [42]Girard P. Electrostatic force microscopy:principles and some applications to semiconductors [J]. Nanotechnology,2001,12:485
    [43]Bridger P, Bandic Z, Piquette E, et al. Measurement of induced surface charges, contact potentials, and surface states in GaN by electric force microscopy [J]. Applied Physics Letters,1999,74:3522-3524
    [44]Hammiche A, Hourston D, Pollock H, et al. Scanning thermal microscopy:Subsurface imaging, thermal mapping of polymer blends, and localized calorimetry [J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,1996,14:1486-1491
    [45]Gmelin E, Fischer R, Stitzinger R. Sub-micrometer thermal physics-An overview on SThM techniquesl [J]. Thermochimica acta,1998,310:1-17
    [46]Kittel A, Muller-Hirsch W, Parisi J, et al. Near-field heat transfer in a scanning thermal microscope [J]. Physical review letters,2005,95:224301
    [47]Hammiche A, Pollock H, Song M, et al. Sub-surface imaging by scanning thermal microscopy [J]. Measurement Science and Technology,1999,7:142
    [48]Eckel R, Ros R, Ros A, et al. Identification of binding mechanisms in single molecule-DNA complexes [J]. Biophysical journal,2003,85:1968-1973
    [49]Alessandrini A, Facci P. AFM:a versatile tool in biophysics [J]. Measurement Science and Technology,2005,16:R65
    [50]Cohen S R, Bitler A. Use of AFM in bio-related systems [J]. Current Opinion in Colloid & Interface Science,2008,13:316-325
    [51]Decher G, Hong J,Schmitt J. Buildup of ultrathin multilayer films by a self-assembly process:III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces [J]. Thin solid films,1992,210:831-835
    [52]Bard A J. Integrated Chemical Systems:A Chemical Approach to Nanotechnology [M]. Wiley New York,1994.
    [53]Gotsmann B, Schmidt C, Seidel C, et al. Molecular resolution of an organic monolayer by dynamic AFM [J]. The European Physical Journal B-Condensed Matter and Complex Systems, 1998,4:267-268
    [54]Magonov S N, Whangbo M H. Surface Analysis with STM and AFM [M]. Wi ley Onl ine Library, 1996.
    [55]Blackman G, Mate C, Philpott M. Interaction forces of a sharp tungsten tip with molecular films on silicon surfaces [J]. Physical review letters,1990,65:2270-2273
    [56]Mizes H, Loh K G, Miller R, et al. Submicron probe of polymer adhesion with atomic force microscopy:Dependence on topography and material inhomogeneities [J]. Applied Physics Letters,1991,59:2901-2903
    [57]Frisbie C D, Rozsnyai L F, Noy A, et al. Functional group imaging by chemical force microscopy [J]. Science,1994,2071-2071
    [58]Wilbur J L, Biebuyck H A, MacDonald J C, et al. Scanning force microscopies can image patterned self-assembled monolayers [J]. Langmuir,1995,11:825^831
    [59]Lee G U, Kidwell DA, ColtonR J. Sensing di screte streptavidin-biotin interactions with atomic force microscopy [J]. Langmuir,1994,10:354-357
    [60]Moy V T, Florin E L, Gaub H E. Adhesive forces between ligand and receptor measured by AFM [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1994,93: 343-348
    [61]Qi Y. Investigation of organic films by atomic force microscopy:Structural, nanotribological and electrical properties [J]. Surface science reports,2011,
    [62]Lee H, Bae E,Lee W. Fabrication of nanometer scale patterns with organized molecular films [J]. Thin Solid Films,2001,393:237-242
    [63]Bethe H. Theory of diffraction by small holes [J]. Physical Review,1944,66: 163-182
    [64]Murphy-DuBay N, Wang L, Kinzel E C, et al. Nanopatterning using NS0M probes integrated with high transmission nanoscale bowtie aperture [J]. Optics Express,2008,16: 2584-2589
    [65]Wang L, Xu X. High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging [J]. Applied Physics Letters,2007,90:261105-261105-261103
    [66]Raether H. Surface plasmons [M]. Springer-Verlag Berlin,1988.
    [67]Wessel J. Surface-enhanced optical microscopy [J]. JOSA B,1985,2:1538-1541
    [68]Royer P, Barchiesi D, Lerondel G, et al. Near-field optical patterning and structuring based on local-field enhancement at the extremity of a metal tip [J]. Philosophical Transactions-Royal Society of London Series a Mathematical Physical and Engineering Sciences,2004,821-842
    [69]Hamann H F,O'Boyle M, Martin Y C, et al. Ultra-high-density phase-change storage and memory [J]. Nature Materials,2006,5:383-387
    [70]Roberts S. Dielectric and piezoelectric properties of barium titanate [J]. Physical Review,1947,71:890
    [71]Howland R, Benatar L. A Practical Guide:To Scanning Probe Microscopy [M]. Park scientific instruments,1996.
    [72]Mokaberi B, Requicha A A G. Drift compensation for automatic nanomanipulation with scanning probe microscopes [J]. Automation Science and Engineering, IEEE Transactions on, 2006,3:199-207
    [73]Lapshin R V. Automatic drift elimination in probe microscope images based on techniques of counter-scanning and topography feature recognition [J]. Measurement Science and Technology,2007,18:907
    [74]Grutter P, Zimmermann-Edling W, Brodbeck D. Tip artifacts of microfabricated force sensors for atomic force microscopy [J]. Applied physics letters,1992,60:2741-2743
    [75]Van Noort S J T, Van der Werf K 0, De Grooth B G, et al. Height anomalies in tapping mode atomic force microscopy in air caused by adhesion [J]. Ultramicroscopy,1997,69: 117-127
    [76]Mendez-Vilas A, Gonzalez-Martin M, Nuevo M. Optical interference artifacts in contact atomic force microscopy images [J]. Ultramicroscopy,2002,92:243-250
    [77]Dai Z, Yoo M, de Lozanne A. Shallow ripples with giant wavelengths observed by atomic force microscopy:Real effects and the report of a new artifact [J]. Journal of Vacuum Science& Technology B:Microelectronics and Nanometer Structures,1996,14:1591-1595
    [78]Burnham N, Chen X, Hodges C, et al. Comparison of calibration methods for atomic-force microscopy cantilevers [J]. Nanotechnology,2002,14:1
    [79]Huang Q X, Fei Y T, Gonda S, et al. The interference effect in an optical beam deflection detection system of a dynamic mode AFM [J]. Measurement Science and Technology, 2006,17:1417
    [80]Kassies R, van der Werf K 0, Bennink M L, et al. Removing interference and optical feedback artifacts in atomic force microscopy measurements by application of high frequency laser current modulation [J]. Review of scientific instruments,2004,75:689^693
    [81]陈莹莹,孙润广,王夫雨,et al.紫杉醇/DPPC单分子层相互作用的Langmuir膜技术和原子力显微镜研究[J].化学学报,2011,69:2299-2306
    [82]刘云龙,王文军,高学喜,et al.中心对称双酞菁铥LB膜二次谐波产生特性[J].Acta Phys.-Chim. Sin,2011,27:
    [83]朱杰,孙润广.原子力显微镜的基本原理及其方法学研究[J].生命科学仪器,2005,3:22-26
    [84]杨晓敏,顾忠泽,韦钰.LB膜的原子力显微镜观测:从微米至分子量级[J].应用科学学报,1995,13:1-6
    [85]孙润广,齐浩,张静.脂质体结构特性的原子力显微镜研究[J].物理学报,2002,51:1203-1207
    [86]Langmuir I. The constitution and fundamental properties of solids and liquids. II. Liquids.1 [J]. Journal Of The American Chemical Society,1917,39:1848-1906
    [87]Langmuir I. The mechanism of the surface phenomena of flotation [J]. Trans. Faraday Soc.,1920,15:62-74
    [88]Langmuir I. Pilgrim Trust Lecture. Molecular Layers [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1939,170:1-39
    [89]Ren W, Li Y, Chen M, et al. Oriented growth of single NaCl (100) crystal induced by Langmuir-Blodgett film [J]. Journal Of Materials Research,2011,26:230
    [90]Mann S. Molecular tectonics in biomineralization and biomimetic materials chemistry [J]. Nature,1993,365:499-505
    [91]Bunker B, Rieke P, Tarasevich B, et al. Ceramic thin-film formation on functionalized interfaces through biomimetic processing [J]. Science,1994,264:48-55
    [92]Cooper S, Sessions R, Lubetkin S. Role of interfacial tension in nucleation beneath monolayer films [J]. Langmuir,1997,13:7165-7172
    [93]Tang R, Tai Z. Get a certain crystal face directly:Self-organization of an inorganic ultrathin crystal film on an organic surface [J]. Langmuir,1997,13:5204-5207
    [94]Malta V, Celotti G, Zannetti R, et al. Crystal structure of the C form of stearic acid [J]. J. Chem. Soc. B,1971,548-553
    [95]Goto M, Asada E. The crystal structure of the B-form of stearic acid [J]. Bulletin Of The Chemical Society Of Japan,1978,51:2456-2459
    [96]Kimura F, Umemura J, Takenaka T. FTIR-ATR studies on Langmuir-Blodgett films of stearic acid with 1-9 monolayers [J]. Langmuir,1986,2:96-101
    [97]Wu J H, Ang S G, Xu G Q. Atomic Force Microscopy Study of Self-Assembled Sodium Chloride Nanocrystallites and Their Morphology Transitions [J]. The Journal of Physical Chemistry C,2008,112:7605-7610
    [98]Schugens C, Maquet V, GrandfilsC, et al. Biodegradable and macroporous polylactide implants for cell transplantation:1. Preparation of macroporous polylactide supports by solid-liquid phase separation [J]. Polymer,1996,37:1027-1038
    [99]Stephane B, Wei-Shou H. Confocal Laser Scanning Microscopy Examination of Cell Distribution in Macroporous Microcarriers [J]. Biotechnology Progress,1996,12:398-402
    [100]Nishikawa T, Nishida J, Ookura R, et al. Honeycomb-patterned thin films of amphiphilic polymers as cell culture substrates [J]. Materials Science and Engineering: C,1999,8-9:495-500
    [101]Campbell M, Sharp D N, Harrison M T, et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography [J]. Nature,2000,404:53-56
    [102]Masuda H, Ohya M, Asoh H, et al. Photonic Crystal Using Anodic Porous Alumina [J]. Japanese Journal of Applied Physics,1999,38:1403-1405
    [103]Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds [J]. Nature,1994,368:321-323
    [104]Seo J S, Whang D, Lee H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis [J]. Nature,2000,404:982-986
    [105]Akolekar D B, Hind A R, Bhargava S K. Synthesis of Macro-, Meso-, and Microporous Carbons from Natural and Synthetic Sources, and Their Application as Adsorbents for the Removal of Quaternary Ammonium Compounds from Aqueous Solution [J]. Journal of Colloid and Interface Science,1998,199:92-98
    [106]Tennikov M B, Gazdina N V, Tennikova T B, et al. Effect of porous structure of macroporous polymer supports on resolution in high-performance membrane chromatography of proteins [J]. Journal of Chromatography A,1998,798:55-64
    [107]Palm A, Novotny M V. Macroporous Polyacrylamide/Poly(ethylene glycol) Matrixes as Stationary Phases in Capillary Electrochromatography [J]. Analytical Chemistry,1997, 69:4499-4507
    [108]Kuiper S, Wolferen II, Rijn C, et al. Fabrication of microsieves with sub-micron pore size by laser interference lithography [J]. Journal Of Micromechanics and Microengineering,2001,11:33
    [109]Haginoya C, Ishibashi M, Koike K. Nanostructure array fabrication with a size-controllable natural lithography [J]. Applied Physics Letters,1997,71:2934
    [110]Whitney A V, Myers B D, Van Duyne R P. Sub-100 nm triangular nanopores fabricated with the reactive ion etching variant of nanosphere lithography and angle-resolved nanosphere lithography [J]. Nano Letters,2004,4:1507-1511
    [111]Velev 0 D, Kaler E W. Structured Porous Materials via Colloidal Crystal Templating: From Inorganic Oxides to Metals [J]. Advanced Materials,2000,12:531-534
    [112]丛海林,曹维孝.二氧化硅胶体晶体及其为模板的多孔材料[J].高等学校化学学报,2005,26:535-539
    [113]Imhof A, Pine D J. Ordered macroporous materials by emulsion templating [J]. Nature, 1997,389:948-951
    [114]Davis S A, Burkett S L, Mendelson N H, et al. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases [J]. Nature,1997,385:420-423
    [115]Meldrum F C,Seshadri R. Porous gold structures through templating by echinoid skeletal plates [J]. Chemical Communications,2000,29-30
    [116]Hoa M L K, Lu M,Zhang Y. Preparation of porous materials with ordered hole structure [J]. Advances in Colloid and Interface Science,2006,121:9-23
    [117]Kuan S W J, Frank C W, Fu C C, et al. Ultrathin polymer films for microlithography [J]. Journal of Vacuum Science and Technology B,1988,6:2274-2279
    [118]Yoshimura T, Asai N, Shiraishi H, et al. Nanofabrication with Langmuir-Blodgett Films of a Chemical Amplification Resist SAL601 [J]. Japanese Journal of Applied Physics, 1994,55:970
    [119]Kim C-N, Kang D-W, Kim E-R, et al. High-Resolution Electron Beam Lithography with Langmuir-Blodgett Films [J]. Molecular Crystals and Liquid Crystals Science and Technology Section A,1997,295:181-184
    [120]Takano H, Fujihira M. AFM microlithography of a thin chromium film covered with a thin resist Langmuir-Blodgett (LB) film [J]. Thin Solid Films,1996,273:312-316
    [121]Xu S, Dong M, Liu X, et al. Direct force measurements between siRNA and chitosan molecules using force spectroscopy [J]. Biophysical Journal,2007,93:952-959
    [122]Dong M, Sahin 0. A nanomechanical interface to rapid single-molecule interactions [J]. Nature Communications,2011,2:247
    [123]Kim J C, Lee Y M, Kim E R, et al. Nanometer-scale lithography of the Langmuir-Blodgett films with atomic force microscope [J]. Thin Solid Films,1998,327-329: 690-693
    [124]Sang Jung A, Yun Kyeong J, Haeseong L, et al. Mechanism of atomic force microscopy anodization lithography on a mixed Langmuir--lodgette resist of palmitic acid and hexadecylamine on silicon [J]. Applied Physics Letters,2002,80:2592-2594
    [125]Matveeva N K, Bokov Y S. Preparation of cyanoacrylate Langmuir-Blodgett films and their ultraviolet and electron resist application [J]. Thin Solid Films,1992,210-211: 477-479
    [126]Guo Y, Feng F, Miyashita T. Preparation of Poly(N-alkylmethacrylamide) Langmuir-lodgett Films for the Application to a Novel Dry-Developed Positive Deep UV Resist [J]. Macromolecules,1999,32:1115-1118
    [127]Kaganer V M, ouml, hwald H, et al. Structure and phase transitions in Langmuir monolayers [J]. Reviews of Modern Physics,1999,71:779
    [128]Avila L, Saraiva S, Oliveira J. Stability and collapse of monolayers of stearic acid and the effect of electrolytes in the subphase [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1999,154:209-217
    [129]Yazdanian M, Yu H, Zografi G. Ionic interactions of fatty acid monolayers at the air/water interface [J]. Langmuir,1990,6:1093-1098
    [130]Lyubchenko Y L, Jacobs B L, Lindsay S M. Atomic force microscopy of reovirus dsRNA: a routine technique for length measurements [J]. Nucleic Acids Research,1992,20:3983-3986
    [131]Wang H, Bash R, Yodh J G, et al. Glutaraldehyde modified mica:a new surface for atomic force microscopy of chromatin [J]. Biophysical Journal,2002,83:3619-3625
    [132]Tang L, Huang Y, Liu D, et al. Effects of the silanized mica surface on protein crystallization [J]. Acta Crystallographica Section D:Biological Crystallography,2004, 61:53-59
    [133]孙利群,章恩耀.基于近场光学超衍射分辨力的高密度光存储[J].光电子.激光,2001,12:646-652
    [134]魏劲松,张约品.近场光存储及其研究进展[J].物理学进展,2002,22:188-197
    [135]Rice P, Macovski A, Jones E D, et al. An experimental television recording and playback system using photographic discs [J]. Journal of the SMPTE,1970,79:997-1002
    [136]Mansfield S M,Kino G. Solid immersion microscope [J]. Applied physics letters, 1990,57:2615
    [137]Mansfield S M, Studenmund W R, KinoGS, et al. High-numerical-aperture lens system for optical storage [J]. Opt. Lett.,1993,18:305-307
    [138]Ichimura I, Hayashi S, Kino G S. High-density optical recording using a solid immersion lens [J]. Appl. Opt.,1997,36:4339-4348
    [139]Fang C, Zhang Y, Zhu H. Optimizing the optical field distribution of near-field SIL optical storage system using five-zone binary phase filters [J]. Optics Communications, 2012,
    [140]Tominaga J, Nakano T, Atoda N. An approach for recording and readout beyond the diffraction limit with an Sb thin film [J]. Applied physics letters,1998,73:2078
    [141]Tominaga J, Fuji H, Sato A, et al. The characteristics and the potential of super resolution near-field structure [J]. Japanese Journal of Applied Physics,2000,39:957
    [142]Betzig E, Trautman J, Wolfe R, et al. Near-field magneto-optics and high density data storage [J]. Applied Physics Letters,1992,61:142-144
    [143]Mamin H J, Ried R P, Terris B D, et al. High-density data storage based on the atomic force microscope [J]. Proceedings of the IEEE,1999,87:1014-1027
    [144]Ovshinsky S R. Reversible electrical switching phenomena in disordered structures [J]. Physical Review Letters,1968,21:1450-1453
    [145]Feinleib J, DeNeufville J, Moss S, et al. Rapid Reversible Light-Induced Crystallization of Amorphous Semiconductors [J]. Applied physics letters,1971,18:254-257
    [146]Yamada N, Ohno E, Akahira N, et al. High speed overwritable phase change optical disk material [J]. Japanese Journal of Applied Physics Supplement,1987,26:61-66
    [147]Satoh I, Yamada N. DVD-RAM for all audio/video, PC, and network applications [J]. 2001,4085:283.
    [148]Wuttig M, Yamada N. Phase-change materials for rewriteable data storage [J]. Nature Materials,2007,6:824-832
    [149]Jeong T H, Kim M R, Seo H, et al. Crystallization behavior of sputter-deposited amorphous Ge2Sb2Te5 thin films [J]. Journal of applied physics,1999,86:774-778
    [150]Yamada N, Matsunaga T. Structure of laser-crystallized Ge2Sb2-xTe5 sputtered thin films for use in optical memory [J]. Journal of applied physics,2000,88:7020-7028
    [151]Kohara S, Kato K, Kimura S, et al. Structural basis for the fast phase change of Ge2Sb3Te5:Ring statistics analogy between the crystal and amorphous states [J]. Applied physics letters,2006,89:201910-201910-201913
    [152]都健,潘石,吴世法,et al.生长温度对Ge2Sb2Te5薄膜的相变行为以及微观结构的影响[J].电子显微学报,2006,25:328-332
    [153]Shi X, Hesselink L, Thornton R L. Ultrahigh light transmission through a C-shaped nanoaperture [J]. Optics Letters,2003,28:1320-1322
    [154]Jin E, Xu X. Obtaining subwavelength optical spots using nanoscale ridge apertures [J]. Journal of Heat Transfer,2007,129:37
    [155]Ji-Ying X, Jia W, Hong-Feng G, et al. Experimental Investigation of an L-Shaped Very-Small-Aperture Laser [J]. Chinese Physics Letters,2006,23:2587
    [156]张红治,胡礼中,孙晓娟,et al.选择液相外延法制备GaAs SNOM微探尖3[J].半导体学报,2005,26:1178-1181
    [157]Abuse A, Woodson A P B J, Traynor M E, et al. Single-channel currents recorded from membrane of denervated frog muscle fibres [J]. Nature,1976,260:
    [158]Zayats A V, Smolyaninov I I. Near-field photonics:surface plasmon polaritons and localized surface plasmons [J]. Journal of Optics A:Pure and Applied Optics,2003,5:S16
    [159]Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance [J]. Advanced Materials,2004,16:1685-1706
    [160]Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing [J]. Annu. Rev. Phys. Chem.,2007,58:267-297
    [161]Ji-Ying X, Jia W, Hong-Feng G, et al. Experimental investigation of an 1-shaped very-small-aperture laser [J]. Chinese Physics Letters,2006,23:2587
    [162]Hongfeng G, Wang J, Tian Q, et al. Experimental research on the performance of a very-small-aperture laser [J]. Journal of microscopy,2008,229:496-502
    [163]Neacsu C C, Berweger S, Olmon R L, et al. Near-field localization in plasmonic superfocusing:a nanoemitter on a tip [J]. Nano Letters,2010,10:592-596
    [164]Betzig E, Lewis A, Harootunian A, et al. Near Field Scanning Optical Microscopy (NSOM)::Development and Biophysical Applications [J]. Biophysical Journal,1986,49: 269-279
    [165]Smolyaninov I I, Mazzoni D L, Davis C C. Near-field direct-write ultraviolet lithography and shear force microscopic studies of the lithographic process [J]. Applied Physics Letters,1995,67:3859-3861
    [166]Herndon M, Collins R, Hollingsworth R, et al. Near-field scanning optical nanolithography using amorphous silicon photoresists [J]. Applied Physics Letters,1999, 74:141
    [167]Betzig E, Chichester R J. Single molecules observed by near-field scanning optical microscopy [J]. Science,1993,262:1422
    [168]Matteo J, Fromm D, Yuen Y, et al. Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures [J]. Applied Physics Letters,2004, 85:648
    [169]Sendur K, Challener W. Near-field radiation of bow-tie antennas and apertures at optical frequencies [J]. Journal of microscopy,2003,210:279-283
    [170]Wang L, Uppuluri S M, Jin E X, et al. Nanolithography using high transmission nanoscale bowtie apertures [J]. Nano Letters,2006,6:361-364
    [171]Jin E X, Xu X. Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture [J]. Applied Physics Letters,2005,86:111106
    [172]Lezec II, Degiron A, Devaux E, et al. Beaming light from a subwavelength aperture [J]. Science,2002,297:820
    [173]Lockyear M J, Hibbins A P, Roy Sambles J, et al. Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves [J]. Journal of Optics A:Pure and Applied Optics,2005,7:S152
    [174]Mahboub 0, Palacios S C, Genet C, et al. Optimization of bull's eye structures for transmission enhancement [J]. Optics Express,2010,18:11292-11299
    [175]Carretero-Palacios S, Mahboub 0, Garcia-Vidal F, et al. Mechanisms for extraordinary optical transmission through bull's eye structures [J]. Optics Express,2011, 19:10429-10442
    [176]Kinzel E C, Srisungsitthisunti P, Li Y, et al. Extraordinary transmission from high-gain nanoaperture antennas [J]. Applied Physics Letters,2010,96:211116
    [177]Ishihara K, Ohashi K, Ikari T, et al. Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture [J]. Applied Physics Letters,2006,89:201120
    [178]Maier S A. Plasmonics:fundamentals and applications [M]. Springer,2007.
    [179]Markovic M I, Rakic A D. Determination of the reflection coefficients of laser light of wavelengths λ∈ (0.22 Wn,200 μm) from the surface of aluminum using the Lorentz-Drude model [J]. Applied Optics,1990,29:3479-3483
    [180]Lide D R. CRC handbook of chemistry and physics:a ready-reference book of chemical and physical data [M]. CRC Pr I Llc,2004.
    [181]Steele J M, Liu Z, Wang Y, et al. Resonant and non-resonant generation and focusing of surface plasmons with circular gratings [J]. Optics Express,2006,14:5664-5670
    [182]Fromm D P, Sundaramurthy A, Schuck P J, et al. Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible [J]. Nano Letters,2004,4: 957-961
    [183]Wang L, Xu X. Spectral resonance of nanoscale bowtie apertures in visible wavelength [J]. Applied Physics A:Materials Science & Processing,2007,89:293-297
    [184]Guo H, Meyrath T P, Zentgraf T, et al. Optical resonances of bowtie slot antennas and their geometry and material dependence [J]. Optics Express,2008,16:7756-7766

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700