用户名: 密码: 验证码:
AZ31B变形镁合金及其焊接件激光冲击处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为最轻的金属结构材料,具有比强度和比刚度高、密度小、阻尼性能好、导热性好、电屏蔽性好、易回收等优点,被誉为21世纪的“绿色工程材料”,在航空航天及交通等领域有着广泛的应用前景。但镁合金强度低、抗磨损、抗应力腐蚀及抗疲劳性能差,限制了其优越性的发挥。随着我国各项节能减排法规的相继出台,构件的轻量化成为解决该问题的重要途径。因此,加大镁合金基础研究,可以充分发挥镁合金性能的优势,拓宽镁合金的应用范围,不仅符合我国科学发展的需要,而且经济和社会效益十分可观。为此本文开展了激光冲击AZ31B变形镁合金及其交流氩弧焊接件宏观性能、微观结构和强化机理的研究,丰富了超高应变率下材料塑性变形理论研究体系,为镁合金表面自纳米化和抗应力腐蚀提供了新的工艺方法,为镁合金零件疲劳损伤容限设计提供了理论依据,在激光诱导晶粒细化以及镁合金表面改性处理方面,具有重要的实用价值和理论意义。
     通过理论计算,结合不同激光工艺参数对AZ31B变形镁合金表面微凹坑、表面粗糙度及表面微观结构的影响,得到优化的激光工艺参数;采用法国Thales公司研制的YAG激光器,根据优化的激光工艺参数:波长为1.054μm,脉冲宽度为15ns,激光脉冲能量为10J,光斑直径3mm,选用美国3M公司生产厚度为0.1mm的铝箔作为涂层,选用厚度为3mm水帘作为约束层,在AZ31B变形镁合金表面制得纳米晶,采用X射线衍射仪和透射电镜表征了AZ31B变形镁合金激光冲击处理后塑性变形层沿深度方向不同截面上的微观结构,分析了纳米晶粒内微孪晶的成因,探讨了激光冲击处理诱导AZ31B镁合金表面纳米化的机理;测定了残余应力、显微硬度、动电位极化曲线、拉伸性能、冲击韧性、耐磨性、抗应力腐蚀性能及抗疲劳性能。
     根据优化的焊接工艺参数:焊接电流45-50A,钨极直径Φ2mm,焊丝直径Φ2mm,保护气体(氩气)流量8-10L/min,焊接速度以获得理想的焊接接头为准。利用自制的焊丝,采用单面焊接双面成型工艺手工焊接2.2mm厚AZ31B镁合金薄板,交流氩弧焊能够获得理想的焊接头。观测了焊接头宏观和微观结构,测定了焊接件热影响区残余应力和力学性能,分析了焊缝微观结构的变化和残余拉应力的成因。
     采用法国Thales公司研制的YAG激光器,根据优化的激光工艺参数:波长为1.0541μm,脉冲宽度为15ns,脉冲能量4J,光斑直径3mm,选用美国3M公司生产厚度为0.1mm的铝箔作为涂层,选用厚度为3mm水帘作为约束层,在AZ31B镁合金交流氩弧焊接件热影响区表面制得纳米晶。测定了残余应力、动电位极化曲线、力学性能及抗应力腐蚀性能。
     本文通过AZ31B变形镁合金及其TIG焊接件激光冲击处理研究,获得了以下创新性成果:
     1、在机理研究方面,首次采用激光冲击处理技术,发现根据优化的激光工艺参数,能在AZ31B变形镁合金表层制得纳米晶。系统研究了激光冲击诱导AZ31B变形镁合金塑性变形层沿深度方向不同截面上的微观组织结构,首次揭示了激光冲击处理诱导AZ31B变形镁合金表层纳米化的机理:在变形初期,位错滑移导致位错缠结,应力集中诱发机械孪生;在已经细化的晶粒、亚晶粒内,继续形成网络状位错胞和位错缠结;位错缠结转变成小角度取向差的亚晶界,细分粗大晶粒为亚晶粒;亚晶界不断吸收新的位错而演变成大角度晶界,最终形成等轴状、取向随机分布的纳米晶。
     2、在加工工艺方面,本文为AZ31B变形镁合金及其TIG焊接件表面自纳米化和抗应力腐蚀等性能的提高提供了新的工艺方法。根据激光冲击前后AZ31B镁合金及其TIG焊接件在酸性去离子水中应力腐蚀对比实验结果:AZ31B镁合金及其TIG焊接件分别经历了261小时和192小时后发生应力腐蚀断裂,而激光冲击试样在经历10个月后也未断裂,得出了激光冲击处理能显著提高AZ31B镁合金及其T1G焊接件抗应力腐蚀能力的结论;发现激光冲击处理之后,AZ3113变形镁合金的抗拉强度提高了16.9%左右,屈服强度提高了16.3%,延伸率下降了4%左布,夏比冲出功提高了70.3%,磨损率下降了384.5%,摩擦系数减小了60%,表面硬度提高了91.8%,塑性变形层深度达到700μmn左右,表面残余压应力达到-125MPa,AZ31B镁合金及其TIG焊接件热影响区表面纳米晶粒的大小分别为20hm和35nm左右。
     3、在数据处理方面,提出了修正七点递增多项式拟合法,建立了原始试样和激光冲击试样在不同存活率下基于Paris公式的疲劳裂纹扩展速率方程,发现了不同存活率下,激光冲击试样的裂纹扩展速率明显小于原始试样的规律。首次运用数理统计的方法,对激光冲击前后AZ3113镁合金的疲劳寿命、断裂裂纹长度和裂纹扩展速率进行数字特征分析。发现二者断裂裂纹长度没有显著差异;而二者疲劳寿命和裂纹扩展速率存在显著差异,以95%的置信度,激光冲击处理试样的裂纹扩展寿命是原始试样裂纹扩展寿命的1.85-2.37倍,并从激光冲击抗疲劳的机理上解释了这一统计现象。
Magnesium alloys, as the lightest metal structural material, are regarded as the21st century green engineering material because of their excellent properties such as low density, superior strength-to-weight ratio, better thermal and electrical conductivity, good vibration and shock absorption ability, perfect electromagnetic interference shielding property and easy recycling. There are great application prospect for magnesium alloy in aerospace, transportation and other fields. However, a number of undesirable properties such as poor strength, wear resistance, stress corrosion cracking (SCC) resistance and fatigue resistance hinder the play of its advantages. With the various laws and regulations of energy conservation and emissions reduction, lightweight of the component becomes an important way to solve the problem. Therefore, to intensify the basic research of magnesium alloy could give full play to the advantages of magnesium alloy performance, broaden the application range of magnesium alloy, which not only meets the needs of scientific development, but also can achieve considerable economy and society benefits. In the paper research on macro properties, microstructure and strengthening mechanism is carried out for AZ31B wrought magnesium alloy and its pulsed tungsten inert-gas (TIG) welding treated by Laser Shock Processing (LSP), which could enrich material plastic deformation theory under super high stain rate, provide new technology method for magnesium alloy surface nanocrystallization and stress corrosion cracking (SCC) resistance, and provide theoretical basis for fatigue damage tolerance design of magnesium alloy. In LSP induced grain refinement and magnesium alloy surface modification processing, there are important application value and theoretical significance.
     Based on theoretical calculation and effect of different laser processing parameters on surface micro-dents, surface roughness and microstructure of AZ31B magnesium alloy, optimized laser processing parameters could be achieved. When AZ31B magnesium alloy plates are treated by using a YAG laser with a wavelength of1.054μm, a pulse width of15ns, a pulse energy of10J and a spot diameter of3mm.The water with a thickness of3mm was used as the transparent confining layer and the aluminum foil with a thickness of0.1mm was used as the opaque absorbing layer. Nano-sized grains are generated in the surface layer. The microstructure of the plastic deformation layer along the depth direction in different cross section is characterized by means of X-ray diffraction (XRD) and transmission electron microscope (TEM). The formation reasons of micro-twins and a possible LSP induced AZ31B magnesium alloy surface nanocrystallization mechanism are discussed. Residual stress, micro-hardness, potentiodynamic polarization curves, tensile property, impact toughness, wear resistance, stress corrosion cracking resistance and fatigue performance are examined.
     According to the optimized welding technology parameters:welding current range from45to50A, tungsten electrode diameter of2mm, welding wire diameter of2mm, shield gas rate range from8to10liter per minute, welding speed based on accepting ideal welded joint. TIG welding was used to weld AZ31B Mg alloy plates with the thickness of2.2mm by using single-side welding double-side molding process, the ideal welded joints can be obtained. The macrostructure and microstructure of TIG welded joints are observed. The residual stress and mechanical properties of the welded joint are examined. The changes of microstructure for welded joint and reason for residual tensile stress formation are discussed.
     According to optimized laser processing parameters, TIG welded AZ31B magnesium alloy sheets surface are processed using a YAG laser with a wavelength of1.054μm, a pulse width of15ns, a pulse energy of4J and a spot diameter of3mm. The water with a thickness of3mm was used as the transparent confining layer and the aluminum foil with a thickness of0.1mm was used as the opaque absorbing layer. A nano-structured surface layer can be produced on heat effect zone of welded AZ31B Mg alloys. Residual stress, potentiodynamic polarization curves, mechanical property and stress corrosion cracking performance are examined.
     The innovative results are obtained through the above study as followings.
     Firstly, in the aspect of mechanism research, LSP technology is used to produce nanocrystalline in AZ31B magnesium surface layer according to optimized laser processing parameters. Microstructures of LSP induced plastic deformation layer along the depth in different cross section is studied systematically. For the first time the mechanism of surface nanocrystallization for AZ31B wrought magnesium with LSP is proposed as followings:In original grains, dislocation slipping leads to the formation of dislocation tanglings and stress concentration leads to deformation twinning; in the subgrains and refined grains, dislocation tanglings and dislocation cells are formed continuously; dislocation tanglings are transformed into subgrains boundary with low angle, which divides coarse grains into subgrains; subboundaries are gradually developed into grains boundary with high angle, finally, nano-scale grains with equiaxed shape and random orientations are formed.
     Secondly, in the aspect of processing technology, the paper has provided a new technology method for AZ31B wrought magnesium alloy and its TIG weldment surface nanocrystallization and the improvement of performance of stress corrosion cracking resistance, etc. Stress corrosion cracking contrast experiment results in acid deionized water for AZ31B wrought magnesium alloy and its TIG weldment before and after LSP show that the time of stress corrosion fracture for AZ31B wrought magnesium alloy and its TIG weldment without LSP is261hours and192hours, respectively, however, no cracks are observed on samples with LSP after ten months. So it is concluded that LSP can significantly improve stress corrosion cracking resistance of AZ31B magnesium alloy and its TIG weldment. Comparing with the as-received sample, the tensile strength and the yield strength are improved by16.9%and16.3%for samples treated by LSP, respectively, however, the elongation is decreased by4%, the mean impact energy of samples with LSP is increased by70.3%, the wear rate of the treated specimen is decreased by384.5%and the value of steady-state friction coefficient decreased by60%, surface micro-hardness is improved by91.8%, the depth of plastic layer is about700μm, the surface residual compressive stress is as high as-125MPa. The surface nano grain size of AZ31B magnesium alloy and its TIG weldment by LSP is about20nm and35nm, respectively.
     Thirdly, in the aspect of data processing, modified fitting method of seven data is put forward to obtain fatigue crack growth rate equations in different probability of AZ31B Mg alloy with and without LSP. It is found that crack growth rate of samples by LSP is obviously smaller than as-received samples. For the first time mathematical statistics method is used to analyze the value of fatigue life, crack length and crack growth rate. It is found that the standard deviation of crack length between sample with and without LSP has no obvious difference, however, the standard deviation of crack growth rate and fatigue life between sample with and without LSP has obvious difference. Fatigue life of sample by LSP is1.85-2.37times longer than sample without LSP under95%reliability, and the statistical phenomenon is explained by the mechanism of LSP leading to improvement of fatigue resistance.
引文
[1]宋光铃.镁合金腐蚀与防护[M].北京:化学工业出版社,2006:1-391.
    [2]陈振华,严红革,陈吉华.镁合金[M].北京:化学工业出版社,2004:1-477.
    [3]卫英慧,许并社.镁合金腐蚀防护的理论与实践[M].北京:冶金工业出版社,2007:1-367.
    [4]刘正、张奎、曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002:1-236.
    [5]T. J. Ruden, D.L.Albright. High ductility magnesium alloys in automotive application[J]. Advanced Materials and Processes,1998,145(6):28-32.
    [6]I. J. Polmear.Magnesium alloys and applications[J].Materials Science and Technology,1994, 10 (1):1-16.
    [7]陈振华.变形镁合金[M].北京:化学工业出版社,2005:1~397.
    [8]李忠盛,潘复生,张静.AZ31镁合金的研究现状和发展前景[J].金属成形工艺,2004,22(1):54~57.
    [9]B.L.Mordike. Development of highly creep resistant magnesium alloys[J].Journal of materials Processing Technology,2001,117(3):391-394.
    [10]B.L.Mordike. Mangesium and Mangesium alloys[J]. Journal of Japan Institute of Light Metals,2001,51(1):2-13.
    [11]刘正,王越,王中光等.镁基轻质材料的研究与应用[J].材料研究学报,2000,14(5):449~456.
    [12]曹荣昌,柯伟,徐永波等.镁合金的最新进展及应用前景[J].金属学报,2001,51(1):2~13.
    [13]张新明,彭卓凯,陈健美等.耐热镁合金及其研究进展[J].中国有色金属学报,2004,14(9):1443-1450.
    [14]G.S.Cole. Issues that influence magnesium's use in the automotive industry [J].Magnesium Alloys,2003,419 (4):43-49.
    [15]B.L.Mordike, T.Ebert. Magnesium properties-applications-potential[J].Materials Science and Engineering A,2001,302(1):37-45.
    [16]李龙川,高家诚,王勇.医用镁合金的腐蚀行为与表面改性[J].材料导报.2003,11(10):32~33.
    [17]F. Witte, J. Fischer, J. Nellesen. In vitro and in vivo corrosion measurements of magnesium alloys[J].Biomaterials,2006,27(7):1013-1018.
    [18]R.D.Naranjo, H.P.HuangFu, M.Gwyn. Lightweight Casting:Improving the Fuel Efficiency of American.NADCA 108th Metalcasting Congress, June 12-15,2004,Chicago,USA.
    [19]刘倩.镁合金在汽车工业中的应用现状与发展趋势[J].铸造技术,2007,12:1668~1671.
    [20]Y. Kojima. Project of platform science and technology for advanced magnesium alloys [J].Materials Transactions,2001,42(7):1154-1159.
    [21]P.Bala Srinivasan, C.Blawert, W.Dietzel, et al. Stress corrosion cracking behavior of a surface-modified magnesium alloy [J]. Scripta materials,2008,59:43-46.
    [22]A.Gebert, U.Wolff,A.John, et al. Corrosion behaviour of Mg65Y10Cu25 metallic glass [J]. Scripta materials,2000,43:279-283.
    [23]H.Inoue, K.Sugahara, A.Yananoto, et al. Corrosion rate of magnesium and its alloys in buffered chloride solutions [J].Corrosion Science,2002,44:603-610.
    [24]R.G.Song, C.Blawert, W.Dietzel, et al.A study on stress corrosion cracking and hydrogen embrittlement of AZ31B magnesium alloy [J].Materials Science and Engineering A,2005, 399:308-317.
    [25]刘道新.材料的腐蚀与防护[M].西北工业大学出版社,2006:1 52-213.
    [26]梁永政,郝远,张汉茹等.镁合金表面技术的研究近况[J],铸造设备研究,2003,5:48~51.
    [27]M.A.Gonzalez-nunez, C.A.Nunez-lopez, P.Skeldon, et al.A non-chromate conversion coating for magnesium alloys and magnesium-based metal matrix composites[J]. Corrosion,1995,37(11):1763-1772.
    [28]A.L.Rudd, C.B.Breslin, F.Mansfeld.The corrosion protection afforded by rare earth conversion coatings applied to magnesium [J]. Corrosion Science,2000,42:275-288.
    [29]M.Dabala, K.Brunelli, E.Napolitani, et al. Cerium-based chemical conversion coating on AZ63magnesium alloy[J]. Surface and Coatings Technology,2003,172:227-232.
    [30]Y. J. Zhang, C. W. Yan, F. H. Wang,et al.Study on the environmentally friendly anodizing of AZ91D magnesium alloy[J],Surface and Coatings Technology,2002,161:36-43.
    [31]W.Kobayashi,S-Takahata.Aqueous anodizing solution and process for coloring article of magnesium or magnesium-base alloy[P], US Patent 4551211, USA,1985,11.
    [32]H.Y.Hsiao, W.T.Tsai. Characterization of anodic films on AZ91D magnesium alloy [J]. Surface and Coatings Technology,2005,190:299-308.
    [33]边风刚,李国禄,刘金海等,镁合金表面处理的发展现状[J].材料保护,2002,35(3):1-4.
    [34]李淑华,程金生,尹金生.微弧氧化过程中电流和电压变化规律的探讨[J].特种铸造及有色合金,2001,(3):4~5.
    [35]Z. M. Liu, W. Gao.The effect of substrate on the electroless nickel plating of Mg and Mg alloys[J]. Surface and Coatings Technology,2006,200:3553-3560.
    [36]R.Ambat, W.Zhou. Electroless nickel-plating on AZ91D magnesium alloy:effect of substrate microstructure and plating parameters [J]. Surface and Coatings Technology, 2004,179:124-134
    [37]I.Shigematsu, M.Nakamura, N.Saitou, et al. Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating[J] Journal of materials science letters,2000,19(6):473-475.
    [38]G.Bolellia,R.Giovanardia, R.Lusvarghi, et al. Corrosion resistance of HVOF-sprayed coatings for hard chrome replacement[J].Corrosion science,2006,48(11):3375-3397.
    [39]梁永政,王志刚,王飞等.镁合金防蚀技术的研究现状[J].铸造设备研究,2008,5:48~52.
    [40]I.Nakatsugawa, R.Martin, E.J.Knystautas. Improving Corrosion Resistance of AZ91D Magnesium Alloy by Nitrogen Ion Implantation[J].Corrosion Science,1996,52(12): 921-926.
    [41]J.Zhang, D.H.Yang, X.B.Ou.Micro-structures and properties of aluminum film and its effect on corrosion resistance of AZ31B substrate[J].Transactions of Nonferrous Metals Society of China,2008,18:312-317.
    [42]K.T. Rie, J.Wohle. Plasma-CVD of TiCN and ZrCN films on light metals[J].Surface and Coatings Technology,1999,112:226-229.
    [43]F.Fracassi, R.D.Agostino,F.Palumbo,et al.Application of plasma deposited organosilicon thin films for t he corrosion protection of metals [J].Surface and Coatings Technology, 2003,174-175:107-111
    [44]D.Deiseroth, W.Zinn, B.Scholtes. Consequences of mechanical surface treatments on near surface properties of Mg alloy AZ31 [M].Magnesium Alloys and their Applications, Wolfsburg. Germany,1998.409-414.
    [45]L.Wagner.Mechanical surface treatments on titanium, aluminum and magnesium alloys[J]. Materials Science and Engineering A,1999,263:210-216.
    [46]W.Zinn, B.Scholtes. Mechanical surface treatments of lightweight materials effects on fatigue strength and near-surface microstructures[J] Journal of Materials Enginering and Performance,1999,8(2):145-151.
    [47]P. Zhang, J.Lindemann. Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80[J].Scripta Materials,2005,52:485-490.
    [48]冯忠信,张建中,陈新增ZM1 Mg合金的表面滚压强化[J].金属学报,1994,30(9):422-426.
    [49]冯忠信,何家文,张建中等.ZM1镁合金的滚轧形变强化及机理[J].机械工程学报,1996,32(1):103~108.
    [50]钱存济,黄洪生,施引扔.航空铸镁机轮滚压强化[J].西北工业学院学报,1993,13(1):61-65
    [51]I.Altenberger, B.Scholtes. Improvement of fatigue behaviour of mechanically surface treated materials by annealing[J]. Scripta Materials,1999,41(8):873-881.
    [52]侯利锋,卫英慧,刘宝胜等.AZ31B镁合金表面纳米化处理后的显微结构特征[J1.材料热处理学报,2007,28(S):214-217.
    [53]侯利锋,卫英慧,刘宝胜等.AZ91D镁合金表面机械研磨处理后显微结构研究[J].稀有金属材料与工程,2008,37(3):530~533.
    [54]K.D.Xu, A.H.Wang, Y.Wang. Surface nanocrystallization mechanism of a rare earth magnesium alloy induced by HVOF supersonic microparticles bombarding [J].Applied Surface Science,2009,256:619-626.
    [55]H.Q. Sun, Y.N.Shi, M.X.Zhang, et al. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy [J]. Acta Materials,2007,55:975-982.
    [56]陈菊芳,张永康,许仁军.镁合金激光表面处理的研究进展[J].激光技术,2008,32(3):293-295.
    [57]陈菊芳,张永康,李仁兴等.AM50A镁合金激光表面熔凝层的强化效果与机理[J].中国有色金属学报,2008,18(8):1426-1431.
    [58]陈菊芳,张永康,许仁军.AM50镁合金表面激光熔凝层的组织与耐蚀性能[J].中国激光,2008,35(2):307-310.
    [59]许仁军,张永康,陈菊芳.AZ91镁合金激光表面熔凝处理的微观组织变化[J].激光技术,2008,32(5):487~489.
    [60]高亚丽,王存山,刘红宾等.AZ91HP镁合金真空激光熔凝的微观组织与性能[J].应用激光,2005(3):148-150.
    [61]高亚丽,王存山,刘红宾等.AZ91HP镁合金真空激光熔凝晶粒细化[J].材料热处理学报,2006(1):92~95.
    [62]A.Kousomichalis, L.Saettas, H.Badekas. Laser treatment of magnesium[J] Journal of Material Science,1994,29:6543-6547.
    [63]G.Abbas, L.Liu, P.Skeldon.Corrosion behaviour of laser-melted magnesium alloys [J].Applied Surface Science,2005,247:347-353.
    [64]J.D.Majumdar, R.Galun, B.Mordike, et al. Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy[J].Materials science and Engineering A,2003,361(1-2):119-129.
    [65]D.Dube, M.Fiset, A.Couture, et al. Characterization and performance of laser melted AZ91D and AM60B [J]. Materials Science and Engineering A,2001,299:38-45.
    [66]T.M.Yue, Y.P.Su, H.O.Yang. Laser cladding of Zr65A17.5Ni10Cu17.5 amorphous alloy on magnesium[J]. Materials Letters,2007,61 (1):209-212.
    [67]T.M.Yue, A.H.Wang, C.Manh. Corrosion resistance enhancement of magnesium ZK60 /SiC composite by Nd:YAG laser cladding [J]. Scripta Materials,1999,40(3):303-311.
    [68]T.M.Yue, Q.W.Hu. Laser cladding of stainless steel on magnesium ZK60/SiC composite [J]. Materials Letters,2001,47(3):165-170.
    [69]Ya-li Gao, Cun-shan Wang, Man Yao, et al. The resistance to wear and corrosion of laser-cladding Al2O3 ceramic coating on Mg alloy [J]. Applied Surface Science,2007, 253:5306-5311.
    [70]Ya-li Gao, Cun-shan Wang, Qi Lin, et al. Broad-beam laser cladding of Al-Si alloy coating on AZ91HP magnesium alloy [J]. Surface and Coatings Technology,2006,201: 2701-2706.
    [71]Yali Gao, Cunshan Wang, Hongjie Pang, et al. Broad-beam laser cladding of Al-Cu alloy coating on AZ91HP magnesium alloy[J]. Applied Surface Science,2007,53:4917-4922.
    [72]A.H.Wang, H.B.Xia, W.Y.Wang et al. YAG laser cladding of homogenous coating onto magnesium alloy [J]. Materials Letters,2006,60:850-853.
    [73]R.Galun, A.Weisheit, B.L.Mordike. Laser surface alloying of magnesium base alloys [J]. Journal of Laser Applications,1996,8(6):299-305.
    [74]K.Murayama, A.Suzuki, T.Takagi,et al. Surface modification of magnesium alloys by laser alloying using Si power [J].Materials Science Forum,2003,419(2):969-974.
    [75]J.D.Majumdar, R.Chandra, R.Galun,et al. Laser composite surfacing of a magnesium alloy with silicon carbide [J].Composite Science and Technology,2003,63(6):771-778.
    [76]J.D.Majumdar, R.Chandra, B.L.Mordike,et al. Laser surface engineering of a magnesium alloy with Al+A12O3 [J]. Surface and Coatings Technology,2004,179(2):297-305.
    [77]S.Charles, Montross,W. Tao, Y.Lin, et al. Laser shock processing and its effects on microstructure and properties of metal alloys:a review[J]. International Journal of Fatigue 2002,24:1021-1036.
    [78]B.P.Fairand, A.H.Clauer.Effect of water and paint coatings on the magnitude of laser-generated shock waves [J]. Optics Communications.,1976,14(3):588-591.
    [79]R.Fabbro, J.Fournier, P.Ballard, et al. Physical Study of Laser-Produced Plasma in Confined Geometry [J] Journal of Applied Physics,1990,68(2):775-784.
    [80]B.P.Fairand,B-A.Wilcox,W.J.Gallaghtr,et al.Laser Shock Induced microstructural and mechanical property changes in 7075 Aluminum [J].Applied Physics,1972,43(9):3893-3895.
    [81]J.E.Masse, G.Barreau. Laser generation of stress waves in metal[J]. Surface and Coatings Technology,1995,70:179-191.
    [82]C.S.Montross. Laser-induced shock wave generation and shock wave enhancement in basalt[J]. International journal of rock mechanics and mining sciences,1999,36:849-855.
    [83]张永康.激光加工技术[M].北京:化学工业出版社,2004,259-290.
    [84]B.P.Fairand, A.H.Clauer, B.A.Wilcox.Laser shock hardening of weld zones in aluminum alloys[J].Metallurgical Transactions A,1976,8A:1871-1876.
    [85]P.Peyre, L.Berthe, X.Scherpereel,et al. Laser-shock processing of aluminum coated 55C1 steel in water-confinement regime,characterization and application to high-cycle fatigue behaviour[J]. Journal of Materials Science,1998,33:1421-1429.
    [86]张永康.激光冲击强化产业化关键问题及应用前景[J].激光与光电子学进展,2007(3):74~77.
    [87]肖爱民,杨继昌,张永康.激光冲击强化原理及应用概述[J].电加工与模具,2000(6):7-9.
    [88]张宏,邓琦林,唐亚新.激光冲击强化技术及其进展[J].航空工艺技术,1997(1):19-21.
    [89]毕凤琴,张春成,李红翠等.激光冲击强化技术的发展及应用[J].兵器材料科学与工程,2010,33(1):101~104.
    [90]J.Singh.Laser-beam and photon-assisted processed materials and their microstructures[J]. Journal of Materials Science,1994,29 (20):5232-5258.
    [91]A.Kar, M.D.Langlais.Optothermal effects of laser modes in laser materials processing [J].Optical and quantum electronics,1995,27(12):1165-1180.
    [92]S.Mannava.US Patent 5,756,965, General Electric Company (Cincinnati,OH),1998.
    [93]周南,乔登江.脉冲束辐照材料动力学[M].北京:国防工业出版社.2002:1-649.
    [94]A.Clauer, J.Holbrook, B.Fairand.Shock waves and high strain rate phenomena in metals [M]. New York:Plenum Press,1981:675-702.
    [95]J. D. O'Keefe, C. H. Skeen. Laser induced stress-wave and impulse augmentation [J]. Applied Physics Letters,1972, (10):462-466.
    [96]N.C.Anderholm. Laser-generated stress waves[J]. Applied Physics Letters,1970, (16):102-113。
    [97]A. H. Clauer, B. P Fairand, B. A. Wilcox. Pulsed laser induced deformation in an Fe3PctSi alloy [J]. Metallurgical Transaction A,1977, (8):119-125.
    [98]D.Devaux, R.Fabbro, L.Tollier,et al.Generation Shock Waves by Laser-Induced Plasma in Confining Geometry [J]. Journal of Applied Physics,1993,74:2268-2273.
    [99]P.peyre,R.Fabbro,P.Metrien,et al.Laser shock processing of aluminium alloys:Application to high cycle fatigue behaviour[J]. Materials Science and Engineering A,1996,210:102-113.
    [100]P.Ballard, J.Fournier, R.Fabbro, et al. Residual stresses induced by laser shocks[J]. Journal de Physique IV,1991,1:487-494.
    [101]卞保民,陈建平,杨玲等.空气中激光等离子体冲击波的传输特性研究[J].物理学报,2000,49(3):445~448.
    [102]卞保民,杨玲,陈笑等.激光等离子体及点爆炸空气冲击波波前运动方程的研究[J].物理学报,2002,51(4):809~813.
    [103]段志勇,吴鸿兴,王声波等.激光冲击波的幅度和时间特性的理论研究[J].激光杂志,2000,21(3):20-22.
    [104]袁钢,周光泉,唐志平等.高压短脉冲激波的传播及衰减[J].爆炸与冲击,1992,12(4):307-312.
    [105]Z.H.Li,D.M.Zhang,B-M.Yu. Charaeteristics of plasma shock waves generated in the pulsed laser ablation Process [J]. Chinese Physics Letters,2002,19(12):1841-1843.
    [106]J.A.Fox., D.N.Barr. Laser-induced shock effects in Plexiglas and 6061-T6 aluminum [J]. Applied Physics Letters,1973,22(11):592-596.
    [107]J.A.Fox., D.N.Barr. Effect of water and paint coatings on laser-irradiated targets [J]. Applied Physics Letters,1974,24(10):401-404.
    [108]张宏.抗疲劳断裂激光冲击处理技术[D].南京:南京航空航天大学.1997.
    [109]Y.K Zhang, S.Y.Zhang. Study of visual inspection and control methods of effectiveness of Laser Shock Processing[J]. Applied Physics A,1997,65:419-423.
    [110]顾永玉,张永康,张兴权,史建国.约束层对激光驱动冲击波压力影响机理的理论研究[J].物理学报,2006,55(11):5885-5891.
    [111]Y.K.Zhang, Y.Y.Gu, X.Q. Zhang,et al. Study of mechanism of overlay acting on laser shock waves[J]. Joural of Applied Physics,2006,100:103517-103521.
    [112]张永康.激光冲击强化效果的直观判别与控制方法研究[J].中国激光,1997,24(5):467-471.
    [113]C.B.Dane,L.A.Hackel, J.Daly, et al. Shot peening with lasers[J].Advanced Materials and Processes,1998,153:37-38.
    [114]C.B.Dane,L.A.Hackel,J.Daly, et al.Laser peening of metals-enabling laser technology [J]. Advanced Materials and Processes,1997,5:13-27.
    [115]G.Gomez-Rosas,C.Rubio-Gonzalez,J.L.Ocana,et al.High level compressive residual stresses produced in aluminum alloys by laser shock processing[J].Applied Surface Science,2005,252(4):883-887.
    [116]J.L.Dulaney,A.H.Clauer,S.M.Toller.Oblique angle laser shock processing[P]. EP0861917, USA,1998,9.
    [117]张永康,张雷洪,周建忠等.激光斜冲实验与理论研究[J].中国激光,2005,32(10):1437~1440.
    [118]W.D.Cowie,J.E.Gutrnecht,H.Halila,et al.Laser Shock Peened gas turbine engine fan blade edges[P]. US Patent 5591009, USA,1997,1.
    [119]L.Hackel, F.Harris.Contour Forming of Metals By Laser Peening[P].EP1627929, USA,2006,2.
    [120]R.D.Tenaglia,D.F.Lahrman. Preventing fatigue failures with laser peening[J].The AMPTIAC Quarterly,2003,7(2):3-7.
    [121]J.Harrison.Laser peening prevents fatigue and stress related corrosion failures.TAPPI PLACE 2012 Conference,May 7-9,2012,Washington,USA.
    [122]M.J.Leap,J.Rank:n,J.Harrison.Effect of laser peening on fatigue life in an arrestment hook shank application for naval aircraft[J].International Journal of Fatigue,2011(33): 788-799.
    [123]Yuji SANO.Development of Laser Peening Technology and Application to Nuclear Power Reactor. Application of LSP in nuclear industry 2009 conference, April 18-21, 2009, SuZhou, China.
    [124]H.L.Chen, J.Rankin,L.Hackel,et al.Laser peening of alloy 600 to improve intergranular stress corrosion cracking resistance in power plants.6th International EPRI Conference on Welding and Repair Technology for Power Plantsjune 17,2004, Sandestin, Florida.
    [125]郭大浩,吴鸿兴,王声波等.激光冲击强化机理研究[J].中国科学(E辑),1999,29(E辑):222~226.
    [126]S.K.Zou, Z.W.Cao.Laser peening of aluminum alloy 7050 with fastener holes[J].Chinese Optics Letters,2008,6 (2):116-119.
    [127]周建忠.金属板料激光冲击成形加载机制及变形特性研究,[博士学位论文].镇江江苏大学,2003.
    [128]任旭东.基于激光冲击机理的裂纹面闭合与疲劳性能改善特性研究,[博士学位论文]. 镇江:江苏大学,2009.
    [129]陈菊芳.AM50镁合金表面激光改性研究,[博士学位论文].镇江:江苏大学,2008.
    [130]鲁金忠.激光冲击强化铝合金力学性能及微观塑性变形机理研究,[博士学位论文].镇江:江苏大学,2010.
    [131]张永康,陈菊芳,许仁军.AM50镁合金激光冲击强化实验研究[J].中国激光,2008,35(7):1068~1072.
    [132]裴旭,任爱国,顾永玉等.AZ91镁合金激光冲击强化力学性能研究[J].激光技术,2010,34(4):552~556.
    [133]李杨,裴旭,鲁金忠等.定量分析激光冲击镁合金晶粒细化的研究[J].应用激光,2010,30(3):234~239.
    [134]张水康,裴旭,陈菊芳等.脉冲激光冲击镁合金表面产生周期性波纹结构的现象及分析[J].光学学报,2010,30(9):2613-2619.
    [135]张永康,于水生,姚红兵等.强脉冲激光在AZ31B镁合金中诱导冲击波的实验研究[J].物理学报,2010,59(8):5602~5605.
    [136]于水生,姚红兵,工飞等.作用参数对镁合金中强激光诱导冲击波的影响[J].中国激光,2010,37(5):1386~1390.
    [137]黄舒,周建忠,蒋素琴等.AZ31B镁合金激光喷丸后的形变强化及疲劳断口分析[J].中国激光,2011,38(8):0803002-1-0803002-7.
    [138]赵建飞,周建忠,黄舒等.AZ31B镁合金激光喷丸强化后疲劳裂纹扩展的数值模拟研究.机械设计与制造[J].2009,(12):117~119.
    [139]陈雷,吕泉,马艳玲等.表面完整性对航空发动机零件疲劳寿命的影响分析[J].航空精密制造技术,2012,48(5):47-50.
    [140]黄舒,周建忠,孙月庆等.激光喷丸强化606-T6铝合金板料的表面完整性研究[J].应用激光,2007,27(6):450-455.
    [141]郭伟国,李玉龙,索涛.应力波基础简明教程[M].陕西:西北工业大学出版社,2007:1-119.
    [142]J.N.Johnson,R.W.Rhode. Dynamic deformation twinning in shock loaded iron[J]. Journal of Applied Physics,1971,42:4171-4182.
    [143]H.Y. Ding, G.H.Zhou, Z.D.Dai, et al. Corrosion wear behaviors of 2024 AL in artificial rainwater and seaweater at fretting contact [J]. Wear,2009,267:292-298.
    [144]H.Zhong, C.Y.Yu Chen.Laser shocking processing of 2024-T62 aluminum alloy [J]. Materials Science and Engineering A,1998,257:322-327.
    [145]U.Sanchez-Santana, C.Rubio-Gonzalez, G. Gomez-Rosas, et al. Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing [J]. Wear,2006,260:847-854.
    [146]刘文才,董杰,翟春泉等.喷丸对高强度变形镁合金ZK60-T5高周疲劳性能的影响[J].郑州大学学报(工学版),2009,30(1):1-5.
    [147]刘文才,董杰,张平等.喷丸强化对ZK60镁合金高周疲劳性能的影响[J].中国有色金属学报,2009,19(10):1733-1740.
    [148]A.Clauer, J.Holbrook, B.Fairand. Shock waves and high strain rate phenomena in metals [M]. New York:Plenum Press,1981:675-702.
    [149]C.Suryanarayana.Nanocrystalline materials[J].International Materials Reviews,1995, 40(2):41-63.
    [150]H.K. Kim, W.J. Kim. Microstructure instability and strength of AZ31 mg alloy after severe plastic deformation [J]. Materials Science and Engineering A,2004,300-308.
    [151]Z.N. Farhat, Y. Ding, D.O. Northwood, A.T. Alpas. Effect of grain size on friction and wear of nanocrystalline aluminum[J]. Mateials Science and Engineering A,1996, 206:302-313.
    [152]束德林.金属力学性能[M].北京:机械工业出版社,1999:1~169.
    [153]Y.K.Zhang, J.F.Chen, W.N.Lei, et al. Effect of laser surface melting on friction and wear behavior of AM50 magnesium alloy[J]. Surface and Coatings Technology,2008,202: 3175-3179.
    [154]K.Lu, J.Lu. Surface nano-crystallization of metallic materials presentation of the concept behind a new approach [J]. Journal of Material Science and Technology,1999,15 (3):193~197.
    [155]刘刚,雍兴平,卢柯.金属材料表面纳米化的研究现状[J].中国表面工程,2001,52(3):1-5.
    [156]张静文,罗新民,马辉等.2A02航空铝合金激光冲击诱导的表层纳米化[J].材料热处理2011,36(9):22-26.
    [157]罗新民,马辉,张静文.激光冲击诱导的奥氏体不锈钢表层纳晶化[J].中国激光,2011, 38(6):0603028-1~0603028-6.
    [158]J.Z.Lu, K.Y.Luo,Y.K.Zhang, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic stain during multiple laser shock processing impacts [J]. Acta Materials, 2010,58(11):3984-3994.
    [159]A.D.Schino,J.M.Kenny.Grain size dependence of the fatigue behavior of a ultrafine-grained AISI 304 stainless steel [J].Materials Letters,2003,57:3182-3185.
    [160]L.G.Wang. Effects of silicocalcium on microstructure and properties of Mg-6A1-0.5Mn alloy [J]. Transactions of Nonferrous Metals Society of China,2006,16:551-555.
    [161]M.Vedani. Microstructural and impact toughness properties of a magnesium AM60B die cast alloy [J]. Key Engineering Materials,2000,188:129-138.
    [162]杨勇彪,王富耻,谭成文.镁合金动态力学行为研究进展[J].兵器材料科学与工程,2008,31(3):71~74.
    [163]李娟,王文先,张兰等.AZ31镁合金的缺口冲击韧性及其断裂机理[J].材料科学与工程学报,2011,29(2):246-251.
    [164]庄楚强,吴亚森.应用数理统计基础[M].广州:华南理工大学出版社,2002:199~576.
    [165]J.S. Liao,M.Hotta, K.Kaneko,et al. Enhanced impact toughness of magnesium alloy by grain refinement J]. Scripta materials,2009,61:208-211.
    [166]Y.H.Wei, B.S.Liu a,L.F.Hou, et al.Characterization and properties of nanocrystalline surface layer in Mg alloy induced by surface mechanical attrition treatment[J]. Journal of Alloys and Compounds,2008,452:336-342.
    [167]Y.K.Zhang, J.Z.Lu, X.D.Ren, et al.Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy [J]. Materials and Design,2009,30:1697-1703.
    [168]S.A.Martinez, S.Sathish, M.P.Blodgett, et al. Effects of fretting fatigue on the residual stress of shot peened Ti-6A1-4V samples [J]. Materials Science and Engineering A,2005, 399:58-63.
    [169]K.Y.Luo, J.Z.Lu,Y.K.Zhang, et al.. Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel [J]. Materials Science and Engineering A,2011,528:4783-4788.
    [170]J.P.Chu, J.M.Rigsbee, G.Banas, et al.Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel [J]. Materials Science and Engineering A,1999,260:260-268.
    [171]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004:1-307.
    [172]N.Winzer, A. Atrens, W. Dietzel et al..Fractography of Stress Corrosion Cracking of Mg-Al Alloys[J]. Metallurgical and Materials Transactions A,2008,39(A):1157-1173.
    [173]王国凡.材料成形与失效[M].北京:化学工业出版社,2002:1-270.
    [174]M.Bobby Kannan,W.Dietzel,R.Zeng, R.Zettler,J.F.dos Santos. A study on the SCC susceptibility of friction stir welded AZ31 Mg sheet [J]. Materials science and Engineering A,2007,460-461:243-250.
    [175]N.Winzer,S.Bender,T.Gross,et al. Stress corrosion cracking of gas-tungsten arc welds in continuous-cast AZ31 Mg alloy sheet [J]. Corrosion Science,2009,51:1950-1963.
    [176]P.B.Srinivasan, S.Riekehe, C.Blawert,et al.Mechanical properties and stress corrosion cracking behavior of AZ31B magnesium alloy laser weldments [J].Transactions of Nonferrous Metals Society of China,2011,21:1-8.
    [177]K.M.Bobby, W.Dietzel,C.Blawert, et. al. Stress corrosion cracking behavior of Nd:YAG laser butt welded AZ31B Mg sheet [J]. Materials science and Engineering A,2007, 444:243-250.
    [178]彭薇薇.激光喷丸强化不锈钢焊接接头抗应力腐蚀研究,[硕士学位论文].南京:南京工业大学,2006.
    [179]X.D.Ren, Y.K.Zhang, H.F.Yongzhuo, et al. Effect of laser shock processing on the fatigue crack initiation and propagation of 7050-T7451 aluminum alloy[J].Materials Science and Engineering A,2011,528(4-5):2899-2903.
    [180]C. Rubio-Gonzalez, J.L. Ocana, G.Gomez-Rosas,et al. Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy[J]. Materials Science and Engineering A,2004,386(1-2):291-295.
    [181]J.M. Yang, YC. Her, Nanlin Han, et al. Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes [J]. Materials Science and Engineering A,2001,298 (1-2):296-299.
    [182]C.Rubio-Gonzalez,C.Felix-Martinez,G.Gomez-Rosas, et al. Effect of laser shock processing on fatigue crack growth of duplex stainless steel [J]. Materials Science and Engineering A,2011,528:914-919.
    [183]I. Nikitin, B. Scholtes, H.J. Maier, et al. High temperature fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic steel AISI 304[J]. Scripta Materials,2004,50(10):1345-1350.
    [184]I. Nikitin, I. Altenberger. Comparison of the fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic stainless steel AISI 304 in the temperature range 25-600℃[J]. Materials Science and Engineering A,2007,465(1):176-182.
    [185]金属材料疲劳裂纹扩展速率试验方法GB/T6398-2000,国家质量技术监督局,2000.
    [186]航空金属材料疲劳裂纹扩展速率手册,北京航空材料研究所,1984.
    [187]P.C.Paris,F.Erdogan.A critical analysis of crack propagation laws[J] Journal of Basic Engineering,1963,85:528-534.
    [188]P.C.Paris, M.P.Gemez,W.P.Anderson.A rational analytic theory of fatigue[J].The Trend in Engineering,1961,13:9-14.
    [189]洪延姬,金星.恒幅载荷16MnR钢疲劳裂纹扩展统计特性分析[J].机械强度,2002,24(3):420-422.
    [190]徐人平,李淑兰30CrMnSiNi2A氐合金钢裂纹扩展特性统计分析[J].理化检验一物理分册.2002,38(12):532~536.
    [191]徐人平,李淑兰30CrMnSiN A和GC4(40CrMnSiMOVA)钢裂纹扩展性能比较分析研究[J].航空材料学报,2004,24(6):7~10.
    [192]高镇同.疲劳可靠性[M].北京:国防工业出版社,1986:258~308.
    [193]徐灏.疲劳强度[M].北京:高等教育出版社,1988:111-160.
    [194]H.X.Zhang, W.X.Wang, Y.H.Wei,,et al. Fatigue fracture mechanism of AZ31B magnesium alloy and its welded joint[J]. Transaetions of Nonferrous Metals Society of China,2011,21:1225-1233.
    [195]H.X.Zhang, W.X.Wang, Y.H.Wei,et al. Fatigue Crack Propagation Behavior of as-Extruded AZ31B Mg Alloy Welded Joint[J]. Rare Metal Materials and Engineering, 2012,41(6):967-972.
    [196]Y.Uematsu,K.Tokaji,M.Kamakura, et al. Effect of extrusion conditions on grain refinement and fatigue behaviour in magnesium alloys[J]. Materials Science and Engineering A,2006,434(1):131-140.
    [197]W.D.Cowie,S.R.Mannava.Technique to prevent or divert cracks[P]. US Patent 5569018, USA,1996,10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700