用户名: 密码: 验证码:
微型胃肠道疾病诊疗机器人系统及其实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
消化道疾病已经开始成为威胁国民身体健康的重要问题。目前,微型胃肠道疾病诊疗机器人系统的研究处于国际生物医疗器械的研究前沿。在国家和省部级科研计划的资助下,利用微机械加工、微执行器、微传感与微电子等技术,开展了面向临床应用的微型胃肠道疾病诊疗机器人系统的研究。
     由于微型胃肠道疾病诊疗机器人运行在人体的胃肠道中,因此本文首先从胃肠道环境着手,依据其特殊的生理环境与生物力学特性,提出驻留-伸缩的主动运动方式。该机器人的动作主要由轴向伸缩与径向驻留两种方式组成。为获得机器人设计参数,对机器人的运动进行了以下几个方面的力学分析:机器人舱体运动时其外表面与肠道内壁在机器人轴线方向上的粘滞阻尼与摩擦损耗;静止时驻留舱体在径向上因支撑而带来的轴向驻留力;机器人整机在肠道中的运动条件;与肠道组织自身的弹性特性密切相关的运动效率。在上述力学分析的基础上,结合描述肠道应力-应变关系的超弹性本构方程,建立了描述机器人参数与临界步距之间关系的数学模型。通过离体肠道的物理模型实验测得模型在肠道中的运动速度与阻力等主要曲线,并将测试数据返回到临界步距数学模型中,推出了机器人参数的设计范围与基本设计准则。
     在已优化的机器人参数范围内,选择了微型直流电机作为机器人驱动器,并分别设计与实现了机器人的机械机构与控制系统。针对机器人机械系统,分别采用了三种方式实现了驻留机构,两种方式实现了伸缩机构,并分析了各机构的主要力学特性;机器人的控制系统分为嵌入式本体运动控制系统与体外控制台两部分,并通过具体的微电子电路实现了嵌入式系统的硬件,并编写了控制算法与人机界面;完成的第三代机器人样机直径为13mm,长度为90mm,质量为22g,并以该参数为例,分析了机器人整机的运动特性,得到其运动时的负载曲线。
     为提高机器人在胃肠道中的运动效率,降低机器人对胃肠道损伤的可能性,提出并研究了基于视觉导航的机器人主动转向系统。针对实际内窥镜图像,提出了暗区导航方法。该导航方法的核心算法可分为亮度提取、图像分割以及暗区中心计算三个部分。该核心算法得到的转向矢量位于图像空间中,通过将该矢量映射到被控参数空间中,实现视觉导航系统的闭环控制。为验证算法的有效性并研究算法细节,采用了实际的小肠内窥镜图像进行实验,最终通过小肠内窥镜图片库测试了整个导航算法的精度及计算速度。
     针对微型胃肠道疾病诊疗机器人样机进行了力学性能测试与离体肠道实验。测试了各样机的两组力学曲线,分别是足伸出长度与支撑力关系曲线,与其轴向伸缩速度与输出力关系曲线,以验证整机的设计;在样机满足性能要求的基础上,进行了整机的水平与垂直模拟管道爬行测试,进一步测试了整机负载能力与运动速度之间的关系;最后采用离体猪小肠为实验对象搭建实验台测试了机器人运动能力。在模拟肠系膜支持良好的直径为18mm的离体肠道模型中,机器人能够有效地运动。通过离体实验说明,机器人在小肠直径适应性上与设计一致,验证了驻留-伸缩的运动方式。
     综上所述,为了使机器人安全有效地运动在胃肠道环境中,本文从机器人运动方式入手建立了基于超弹性本构方程的临界步距数学模型,并在该模型的指导下进行了机器人的机械机构与控制系统设计,同时讨论了基于视觉的导航系统以提高机器人的安全性与运动效率,最后对研制的机器人样机进行了力学测试,通过离体肠道实验验证了驻留-伸缩的运动方式。
The diseases of the digestive tract became a significant problem in humanhealthcare. Nowadays, the actively locomotive diagnoses and treatment systemon the gastrointestinal (GI) tract is one of the focus points in the research of thebiotechnology worldwide. In the funding of the national, provincial andministerial-level projects, by the technology of micro mechanism, micro actuator,micro sensing and micro electronics, the intestinal micro robot system whichfaces the clinical application is researched.
     According to the working environment of the intestinal micro robot, firstly,the specific physiological environment and biomechanical features are analyzed,and the gait of anchoring and extending is proposed. The motion of this robotmainly consists of two parts, extending in axial direction and anchoring in radialdirection. Secondly, the motions are analyzed in following aspects: the dampingand friction between the robot and the intestinal inner wall; the anchoring abilitybecause of the support of legs in the radical direction; the locomotion conditionof the robot; and the locomotion efficiency due to the elasticity of the intestinaltissues. Based on the above analyses, combining the hyper elastic model whichdescribes the stress-strain relation of the intestinal, a mathematical model thatdescribes the relationship between the robot parameters and critical step isdeduced. To obtain some key parameters in the critical step model, a robotsimulation model is used in in-vitro experiments, and the relation between themodel speed and the resistance force is acquired. Finally, the results in theexperiments are used to solve the critical step model and the range of some keyparameters and some guidelines in robot design processes are deduced.
     With the optimized parameters range, micro direct current motor is selectedas robot actuator, and the mechanical system and its control system is designed and fabricated. By the discussion of principle of machinery and the calculationof mechanical property, the anchoring mechanism is designed in three forms andthe extending mechanism is in two forms. Meanwhile, the robot control systemis designed in two parts, on-board motion control and external console, and thehardware of on-board system is realized by the micro electronic technique, thecontrol algorithm and the human interface is programmed. Third generation ofthe robot prototype measures13mm in diameter,90mm in length and22g inweight, and by these parameters, the robot kinetic characteristic is analyzed, theload characteristic is calculated.
     To increase the locomotion efficiency and reduce the GI tract damageprobability, a vision based robot steering system is proposed and researched.According to the real endoscopy image, a dark zone navigation method isproposed. The algorithm is consistsed of brightness feature extraction, imagesegmentation and dark zone center calculation. The steering vector in the imagespace, which is calculated by the algorithm, can be mapped into the controlledvariable space and forms a close loop control of the visual navigation system.By using real endoscopy image in the small intestine, details of the algorithm isdescribed. The accuracy and the speed of the navigation algorithm are tested byusing a small intestine endoscopy image database.
     The mechanical feature of the micro intestinal robot prototype is tested, andthe prototype is used in an in-vitro experiment. Firstly, the relation between theanchoring leg length and the stall force, and the extending speed and the outputforce of robot prototypes are tested. Secondly, while the performance of eachmechanism fulfills the requirements, the robot was tested in both horizontal andvertical simulation tube for the relation of its load and speed. Thirdly, the robotis tested in in-vitro experiments by using the pig’s small intestine. The resultsshowed that the performance in diameter adaptability of the robot is the same asthe design, and the robot is locomotive in the intestinal model, which simulatesthe intestine is well supported by the mesentery.
     As mentioned above, this thesis proposes critical step model based on ahyper elastic model for the GI robot firstly. Under the direction of the model, the mechanical system and the control system is designed and fabricated, the kineticcharacteristic is analyzed. Meanwhile, to make the robot working safely andeffectively in GI tract, a vision based navigation system, which using dark zoneextraction, is designed and discussed. Finally, the prototypes are tested and theentire design and fabrication is verified in experiments. The gait of anchoringand extending is tested in in-vitro experiments.
引文
[1]黄亚楼,卢桂章.微机器人和精微操作的研究与发展.机器人,1992.14(4): pp.53-59.
    [2]马光.仿生机器人的研究进展.机器人,2001.23(5): pp.460-466.
    [3]张冬至,胡国清.微机电系统关键技术及其研究进展.压电与声光,2010.32(3): pp.514-520.
    [4]陈竺,全国第三次死因回顾抽样调查报告.北京:中国协和医科大学出版社.2008.
    [5] Li, A.F.-Y., A.C.-H. Li, and C.-Y. Hsu, et al., Small cell carcinomas in gastrointestinaltract: immunohistochemical and clinicopathological features. Journal of ClinicalPathology,2010.63(7): pp.620-625.
    [6] Rockey, D.C., occult and obscure gastrointestinal bleeding: causes and clinicalmanagement. Nature Reviews Gastroenterology and Hepatology,2010.7: pp.265-279.
    [7] Hart, R., Complications of diagnostic gastrointestinal endoscopy. Endoscopy,1990.22(05): pp.229-233.
    [8] Hart, R., and Classen, M., Complications of Diagnostic Gastrointestinal Endoscopy.Endoscopy,1990.22(05): pp.229-233.
    [9] Moglia, A., Capsule endoscopy. BMJ. British medical journal,2009.339: pp. b3420.
    [10] Wang, X., and Meng, M.Q.-H., Perspective of active capsule endoscope: actuation andlocalisation. International Journal of Mechatronics and Automation,2011.1(1): pp.38-45.
    [11] Menciassi, A., Quirini, M., and Dario, P., Microrobotics for future gastrointestinalendoscopy. Minimally Invasive Therapy&Allied Technologies,2007.16(2): pp.91-100.
    [12] Jain, R., Kasturi, R., and Schunck, B.G., Machine vision. New York: McGraw-Hill, Inc.1995.
    [13] Wikipedia. Endoscopy. Available: http://en.wikipedia.org/wiki/Endoscopy (Dec.27.2011).
    [14] Olympus.内窥镜历史. Available: http://www.olympus-global.com/zh/corc/history/story/endo/origin/(Dec.27.2011).
    [15] Meron, G.D., The development of the swallowable video capsule (M2A).Gastrointestinal Endoscopy,2000.52(6): pp.817-819.
    [16] Swain, P., Wireless capsule endoscopy. Gut,2003.52(90004): pp. iv48-iv50.
    [17] Mata, A., Llach, J., and Bordas, J., Wireless capsule endoscopy. World Journal ofGastroenterology,2008.14(13): pp.1969-1971.
    [18] Li, C., OMOM capsule endoscopy in diagnosis of small bowel disease. Journal ofZhejiang University (Science) B,2008.9(11): pp.857-862.
    [19] Rey, J.-F., Kuznetsov, K., and Vazquez-Ballesteros, E., Olympus Capsule Endoscope forSmall and Large Bowel Exploration. Gastrointestinal Endoscopy,2006.65(5): pp.AB176.
    [20] Gheorghe, C., Iacob, R., and Bancila, I., Olympus capsule endoscopy for small bowelexamination. Journal of Gastrointestinal and Liver Diseases,2007.16(3): pp.309-314.
    [21] Uehara, A., and Hoshina, K., Capsule endoscope NORIKA system. Minimally InvasiveTherapy&Allied Technologies,2003.12(5): pp.227-234.
    [22] Li, X., Zhang, M., and Wang, Z., et al., Smart Image Sensor with Integrated LowComplexity Image Processing for Wireless Endoscope Capsules. Tsinghua Science&Technology,2009.14(5): pp.586-592.
    [23] Wang, W.-X., Yan, G.-Z. and Sun, F., et al., A non-invasive method for gastrointestinalparameter monitoring. World Journal of Gastroenterology,2005.11(4): pp.521-524.
    [24] Zhang, W.-Q., Yan, G.-Z. and Yu, L.-Z., et al., Non-invasive measurement ofpan-colonic pressure over awhole digestive cycle: Clinical applications of acapsule-stylemanometric system. World Journal of Gastroenterology,2006.12(47): pp.7690-7694.
    [25] Ikuta, K., Tsukamoto, M., and Hirose, S. Shape memory alloy servo actuator systemwith electric resistance feedback and application for active endoscope. IEEEInternational Conference on Robotics and Automation.1988.1: pp.427-430.
    [26] Sturges, R.H., Jr., and Laowattana, S. A flexible, tendon-controlled device forendoscopy. Robotics and Automation, IEEE International Conference on.1991.3: pp.2582-2591.
    [27] Sturges, R.H., Flexible steerable device for conducting exploratory procedures.1995:U.S. Patent.
    [28] Reynaerts, D., Peirs, J., and Brussel, H.V., Design of a shape memory actuatedgastrointestinal intervention system. Actuator,5th International Conference on NewActuators.1996: pp.409-412.
    [29] Reynaerts, D., Peirs, J., and Van Brussel, H., Shape memory micro-actuation for agastro-intestinal intervention system. Sensors and Actuators A: Physical,1999.77(2):pp.157-166.
    [30] W. S. Grundfest, J. W. Burdick, I., and Slatkin, A.B., Robotic Endoscopy.1994: U.S.Patent.
    [31] Slatkin, A.B., Burdick, J., and Grundfest, W. The development of a robotic endoscope.Intelligent Robots and Systems, IEEE/RSJ International Conference on.1995.2: pp.162-171.
    [32] Carrozza, M.C., A microrobot for colonoscopy. The Seventh International Symposiumon Micro Machine and Human Science.1996: pp.223-228.
    [33] Dario, P., Carrozza, M.C., Lencioni, L., et al. A microrobotic system for colonoscopy.Robotics and Automation, IEEE International Conference on.1997.2: pp.1567-1572.
    [34] Dario, P., Carrozza, M.C., and Pietrabissa, A., Development and in Vitro Testing of aMiniature Robotic System for Computer-Assisted Colonoscopy. Computer AidedSurgery,1999.4(1): pp.1-14.
    [35] Byungkyu, K., Younkoo, and J., Hun-Young, L., et al. Smart colonoscope system.Intelligent Robots and Systems. IEEE/RSJ International Conference on.2002.2: pp.1367-1372.
    [36] Menciassi, A., Park, J.H., and Lee, S., et al. Robotic solutions and mechanisms for asemi-autonomous endoscope. Intelligent Robots and Systems, IEEE/RSJ InternationalConference on.2002.2: pp.1379-1384.
    [37] Phee, L., Accoto, D., and Menciassi, A., et al., Analysis and development of locomotiondevices for the gastrointestinal tract. Biomedical Engineering, IEEE Transactions on,2002.49(6): pp.613-616.
    [38] Phee, L., Menciassi, A., and Gorini, S., et al. An innovative locomotion principle forminirobots moving in the gastrointestinal tract. Robotics and Automation, IEEEInternational Conference on.2002.2: pp.1125-1130.
    [39] Byungkyu, K., Younkoo, J., and Hyun-young, L., et al. Functional colonoscope robotsystem. Robotics and Automatio. Proceedings. ICRA '03. IEEE InternationalConference on.2003.1: pp.1092-1097.
    [40] Dario, P., Ciarletta, P., and Menciassi, A., et al., Modelling and Experimental Validationof the Locomotion of Endoscopic Robots in the Colon Experimental Robotics VIII.2003, Springer Berlin/Heidelberg. p.445-453.
    [41] Experimental Robotics VIII, Siciliano, B., and Dario, P., Editors. Springer Berlin/Heidelberg. p.445-453.2003.
    [42] Menciassi, A., and Dario, P., Bio-inspired solutions for locomotion in thegastrointestinal tract: background and perspectives. Philosophical Transactions of theRoyal Society of London. Series A: Mathematical, Physical and Engineering Sciences,2003.361(1811): pp.2287-2298.
    [43] Phee, L., Menciassi, A., and Accoto, D., et al., Analysis of Robotic Locomotion Devicesfor the Gastrointestinal Tract. Springer Tracts in Advanced Robotics.2003.6: pp.467-483
    [44] Robotics Research, Jarvis, R., and Zelinsky, A., Editors.2003, Springer Berlin/Heidelberg. p.467-483.
    [45] Cheung, E., Karagozler, and M.E., Park, S., et al. A new endoscopic microcapsule robotusing beetle inspired microfibrillar adhesives. Advanced Intelligent Mechatronics.IEEE/ASME International Conference on.2005: pp.551-557.
    [46] Karagozler, M.E., Cheung, and E., Kwon, J., et al. Miniature Endoscopic Capsule Robotusing Biomimetic Micro-Patterned Adhesives. Biomedical Robotics andBiomechatronics. The First IEEE/RAS-EMBS International Conference on.2006: pp.105-111.
    [47] Kwon, J., Cheung, E., and Park, S., et al., Friction enhancement via micro-patterned wetelastomer adhesives on small intestinal surfaces. Biomedical Materials,2006.1(4): pp.216.
    [48] Karagozler, M.E., Goldstein, S.C., and Reid, J.R. Stress-driven MEMS assembly+electrostatic forces=1mm diameter robot. Intelligent Robots and Systems. IEEE/RSJInternational Conference on.2009: pp.2763-2769.
    [49] Zarrouk, D., Sharf, I., and Shoham, M. Analysis of earthworm-like robotic locomotionon compliant surfaces. Robotics and Automation (ICRA),2010IEEE InternationalConference on.2010: pp.1574-1579.
    [50] Zarrouk, D., and Shoham, M., Analysis and Design of One Degree of Freedom WormRobots for Locomotion on Rigid and Compliant Terrain. Journal of Mechanical Design,2012.134(2): pp.021010.
    [51] Zarrouk, D., Sharf, I., and Shoham, M., Conditions for Worm-Robot Locomotion in aFlexible Environment: Theory and Experiments. Biomedical Engineering, IEEETransactions on,2012.59(4): pp.1057-1067.
    [52] Lin, L., Gao, L., and Yan, G., et al. A study on the endoscope system driven by squirmyrobot. Intelligent Processing Systems. IEEE International Conference on.1997.1: pp.75-81.
    [53]高立明,林良明,颜国正等,全方向蠕动机器人驱动内窥镜系统的研究.中国生物医学工程学报,1998.17(1): pp.36-41.
    [54]颜国正,新型机器人驱动内窥镜系统的研究.高技术通讯,2000.10(5): pp.61-62.
    [55]迟冬祥,基于蚯蚓运动原理的肠道检查微小机器人内窥镜系统.机器人,2002.24(3): pp.223-238.
    [56] Chi, D., and Yan, G.-Z., From wired to wireless: a miniature robot for intestinalinspection. Journal of medical engineering&technology,2003.27(2): pp.71-76.
    [57]左建勇,基于蚯蚓原理的多节蠕动机器人.机器人,2004.26(4): pp.320-324.
    [58]左建勇,用于肠道检查的微小型蠕动机器人.上海交通大学学报,2004.38(8): pp.1310-1313.
    [59]王坤东,结肠诊查微型仿生机器人系统关键技术及实验研究[博士学位论文].2006,上海交通大学.
    [60] Kundong, W., Guozheng, Y., and Pingping, J., et al., A Wireless Robotic Endoscope forGastrointestine. Robotics, IEEE Transactions on,2008.24(1): pp.206-210.
    [61] Ye, D.-d., Yan, G.-z., and Wang, K.-d., et al., Development of a non-cable wholetectorial membrane micro-robot for an endoscope. Journal of Zhejiang University-Science A,2008.9(8): pp.1141-1149.
    [62]叶东东,仿生机器人诊查系统及运动相容性研究[博士学位论文].2008,上海交通大学.
    [63] Mangan, E.V., Kingsley, D.A., and Quinn, R.D., et al. Development of a peristalticendoscope. Robotics and Automation. IEEE International Conference on.2002.1: pp.347-352.
    [64] Thomann, G., Betemps, M., and Redarce, T. The design of a new type of micro robot forthe intestinal inspection. Intelligent Robots and Systems, IEEE/RSJ InternationalConference on.2002.2: pp.1385-1390.
    [65] Thomann, G., Redarce, T., and Betemps, M. A new type of colonoscope, less painful forthe engineering society. Engineering in Medicine and Biology.24th Annual Conferenceand the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMESConference. Proceedings of the Second Joint.2002.3: pp.2362-2363.
    [66] Thomann, G., Redarce, T., and Betemps, M., et al. The design of an instrumentedsurgical tool for the intestinal inspection. Robot and Human Interactive Communication.11th IEEE International Workshop on.2002: pp.448-453.
    [67] Chen, G., Thomann, G., and Betemps, M., et al. Identification of the flexible actuator ofa colonoscope. Intelligent Robots and Systems, IEEE/RSJ International Conference on.2003.3: pp.3355-3360.
    [68] Thomann, G., Betemps, M., and Redarce, T. The development of a bendablecolonoscopic tip. Robotics and Automation, IEEE International Conference on.2003.1:pp.658-663.
    [69] Kim, B., Park, S., and Jee, C.Y., et al. An earthworm-like locomotive mechanism forcapsule endoscopes. Intelligent Robots and Systems. IEEE/RSJ InternationalConference on.2005: pp.2997-3002.
    [70] Kim, J., Kim, B., and Kim, S., et al. A reversible thermo-sensitive hydrogel clamper oflocomotive mechanism in gastrointestinal tract. Solid-State Sensors, Actuators andMicrosystems. The13th International Conference on.2005.1: pp.749-752.
    [71] Kim, B., Lee, M.G., and Lee, Y.P., et al., An earthworm-like micro robot using shapememory alloy actuator. Sensors and Actuators A: Physical,2006.125(2): pp.429-437.
    [72] Kwon, J., Park, S., and Park, J., et al., Evaluation of the critical stroke of anearthworm-like robot for capsule endoscopes. Proceedings of the Institution ofMechanical Engineers, Part H: Journal of Engineering in Medicine,2007.221(4): pp.397-405.
    [73] Adachi, K., Yokojima, M., Hidaka, Y., and et al. Development of multistage typeendoscopic robot based on peristaltic crawling for inspecting the small intestine.Advanced Intelligent Mechatronics (AIM),2011IEEE/ASME International Conferenceon.2011: pp.904-909.
    [74] Kim, B., Lim, H.-Y., and Kim, K.-D., et al. A locomotive mechanism for a roboticcolonoscope. Intelligent Robots and Systems. IEEE/RSJ International Conference on.2002.2: pp.1373-1378.
    [75] Menciassi, A., Stefanini, C., and Gorini, S., et al. Legged locomotion in thegastrointestinal tract. Intelligent Robots and Systems, Proceedings.2004IEEE/RSJInternational Conference on.2004.1: pp.937-942.
    [76] Menciassi, A., Stefanini, C., and Gorini, S., et al. Locomotion of a legged capsule in thegastrointestinal tract: theoretical study and preliminary technological results.Engineering in Medicine and Biology Society,26th Annual International Conference ofthe IEEE.2004.1: pp.2767-2770.
    [77] Stefanini, C., Menciassi, A., and Dario, P., Modeling and Experiments on a LeggedMicrorobot Locomoting in a Tubular, Compliant and Slippery Environment. TheInternational Journal of Robotics Research,2006.25(5-6): pp.551-560.
    [78] Quirini, M., Webster, R.J., and Menciassi, A., et al. Design of a Pill-Sized12-leggedEndoscopic Capsule Robot. Robotics and Automation, IEEE International Conferenceon.2007: pp.1856-1862.
    [79] Quirini, M., Menciassi, A., and Scapellato, S., et al., Feasibility proof of a leggedlocomotion capsule for the GI tract. Gastrointestinal Endoscopy,2008.67(7): pp.1153-1158.
    [80] Quirini, M., Menciassi, A., and Scapellato, S., et al., Design and Fabrication of a MotorLegged Capsule for the Active Exploration of the Gastrointestinal Tract. Mechatronics,IEEE/ASME Transactions on,2008.13(2): pp.169-179.
    [81] Kim, B., Lee, S., and Park, J.H., et al. Inchworm-Like Microrobot for CapsuleEndoscope. Robotics and Biomimetics. IEEE International Conference on.2004: pp.458-463.
    [82] Kim, B., Lee, S., and Park, J.H., et al., Design and fabrication of a locomotivemechanism for capsule-type endoscopes using shape memory alloys (SMAs).Mechatronics, IEEE/ASME Transactions on,2005.10(1): pp.77-86.
    [83] Park, S., Park, H., and Park, S., et al., A paddling based locomotive mechanism forcapsule endoscopes. Journal of Mechanical Science and Technology,2006.20(7): pp.1012-1018.
    [84] Park, H., Park, S., and Yoon, E., et al. Paddling based Microrobot for CapsuleEndoscopes. Robotics and Automation, IEEE International Conference on.2007: pp.3377-3382.
    [85] Kim, H.M., Yang, S., and Kim, J., et al., Active locomotion of a paddling-based capsuleendoscope in an in vitro and in vivo experiment (with videos). GastrointestinalEndoscopy,2010.72(2): pp.381-387.
    [86] Gu, D.-q., and Zhou, Y., An approach to the capsule endoscopic robot with active drivemotion[J]. Journal of Zhejiang University-Science A,2011.12(3): pp.223-231.
    [87]何斌,医用微型机器人动力学建模及其行为智能控制研究[博士学位论文].2001.浙江大学.
    [88]何斌,杨灿军,周银生等,医用微型机器人蠕动肠道中的驱动力计算及实验研究.中国机械工程,2002.13(1): pp.43-45.
    [89]何斌,陈鹰,周银生,医用微型机器人的姿态可控性研究.自动化学报,2004.30(5):pp.707-715.
    [90] Kim, Y.T., and Kim, D.E., Novel Propelling Mechanisms Based on FrictionalInteraction for Endoscope Robot. Tribology Transactions,2010.53(2): pp.203-211.
    [91] Sendoh, M., Sudi, Y., and Ishiyama, K., et al. Fabrication of magnetic actuator for use incolon endoscope. Micromechatronics and Human Science, International Symposium on.2003: pp.165-170.
    [92] Yamazaki, A., Sendoh, M., and Ishiyama, K., et al., Three-dimensional analysis ofswimming properties of a spiral-type magnetic micro-machine. Sensors and Actuators A:Physical,2003.105(1): pp.103-108.
    [93]简小云,胶囊内窥镜机器人的外磁场驱动方法.机器人,2005.27(4): pp.367-372.
    [94]张永顺,岳明,郭东明等,肠道内变径胶囊微机器人空间磁力矩特性.中国科学E辑:技术科学,2009.39(7): pp.1284-1290.
    [95] Zhang, Y., Jiang, S., and Zhang, X., et al., Dynamic characteristics of an intestinecapsule robot with variable diameter. Chinese Science Bulletin,2010.55(17): pp.1813-1821.
    [96] Hong, Y.-S., Kim, J.-Y., and Kwon, Y.-C., et al., Preliminary study of a twistable threadmodule on a capsule endoscope in a spiral motion. International Journal of PrecisionEngineering and Manufacturing,2011.12(3): pp.461-468.
    [97] Lim, Y.M., Lee, J., and Park, J., et al. A self-propelling endoscopic system. IntelligentRobots and Systems.2001IEEE/RSJ International Conference on.2001.2: pp.1117-1122.
    [98] Kosa, G., Shoham, M., and Zaaroor, M. Propulsion of a Swimming Micro MedicalRobot. Robotics and Automation. Proceedings of the2005IEEE InternationalConference on.2005: pp.1327-1331.
    [99] Li, H., Furuta, K., and Chernousko, F.L. Motion Generation of the Capsubot UsingInternal Force and Static Friction. Decision and Control,45th IEEE Conference on.2006: pp.6575-6580.
    [100] Simi, M., Valdastri, P., and Quaglia, C., et al., Design, Fabrication, and Testing of aCapsule With Hybrid Locomotion for Gastrointestinal Tract Exploration. Mechatronics,IEEE/ASME Transactions on,2010.15(2): pp.170-180.
    [101] Pan, Q., Guo, S., and Okada, T., A novel hybrid wireless microrobot. InternationalJournal of Mechatronics and Automation,2011.1(1): pp.60-69.
    [102] Gregersen, Hans. Biomechanics of the Gastrointestinal Tract. England: Springer,2003.
    [103]冯元桢.生物力学.北京:科学出版社,1983.
    [104] Storkholm, J.H., Villadsen, G.E., and Jensen, S.L., et al., Passive elastic wall propertiesin isolated guinea pig small intestine. Digestive Diseases and Sciences,1995.40(5): pp.976-982.
    [105] Gregersen, H., and Kassab, G., Biomechanics of the gastrointestinal tract.Neurogastroenterology&Motility,1996.8(4): pp.277-297.
    [106] Gregersen, H., Emery, J.L., and McCulloch, A.D., History-Dependent MechanicalBehavior of Guinea-Pig Small Intestine. Annals of Biomedical Engineering,1998.26(5):pp.850-858.
    [107]周丁华,赵玮,闫涛等.人体肠道生物力学特性的研究.生物医学工程学杂志,2006.23(5): pp.1017-1019.
    [108] Zhao, J., Liao, D., and Yang, J., et al., Biomechanical remodelling of obstructed guineapig jejunum. Journal of Biomechanics,2010.43(7): pp.1322-1329.
    [109] Ciarletta, P., Dario, P., and Tendick, F., et al., Hyperelastic Model of Anisotropic FiberReinforcements within Intestinal Walls for Applications in Medical Robotics. TheInternational Journal of Robotics Research,2009.28(10): pp.1279-1288.
    [110]冯元桢.连续介质力学初级教程.北京:清华出版社.2009.
    [111] Desouza, G.N., and Kak, A.C., Vision for mobile robot navigation: a survey. PatternAnalysis and Machine Intelligence, IEEE Transactions on,2002.24(2): pp.237-267.
    [112] Se-gon, R., and Hyouk Ryeol, C., Differential-drive in-pipe robot for moving insideurban gas pipelines. Robotics, IEEE Transactions on,2005.21(1): pp.1-17.
    [113] Thielemann, J., Breivik, G., and Berge, A., Robot navigation and obstacle detection inpipelines using time-of-flight imagery. Proc. SPIE,2010.7526(1): pp.75260O.
    [114]成大先.机械设计手册.北京:化学工业出版社,2010.
    [115]徐峰,李庆祥.精密机械设计.北京:清华大学出版社,2005.
    [116] Asari, V.K., Kumar, S., and Kassim, I.M., A Fully Autonomous MicroroboticEndoscopy System. Journal of Intelligent&Robotic Systems,2000.28(4): pp.325-341.
    [117] Zhang, Z., Qian, J., and Zhang, Y., et al. A New Navigation Method for IntelligentColonoscope. Complex Medical Engineering. IEEE/ICME International Conference on.2007: pp.31-34.
    [118] Kumar, S., Asari, K., and Radhakrishnan, D., Real-time automatic extraction of lumenregion and boundary from endoscopic images. Medical and Biological Engineering andComputing,1999.37(5): pp.600-604.
    [119]潘凯.腹腔镜胃肠外科手术图谱.北京:人民卫生出版社,2009.
    [120] Silverstein, F.E., and Tytgat, G. NJ.著,赵欣等译.胃肠道内窥镜检查学.天津:天津科技翻译出版公司,2003.
    [121] Valaparla, D.P., and Asari, V.K. An adaptive technique for the extraction of objectregion and boundary from images with complex environment. Applied Imagery PatternRecognition Workshop.2001: pp.194-199.
    [122] Zabulis, X., Argyros, A.A., and Tsakiris, D.P. Lumen detection for capsule endoscopy.Intelligent Robots and Systems. IEEE/RSJ International Conference on.2008: pp.3921-3926.
    [123] Jianbo, S., and Malik, J., Normalized cuts and image segmentation. Pattern Analysis andMachine Intelligence, IEEE Transactions on,2000.22(8): pp.888-905.
    [124] Song Chun, Z., and Yuille, A., Region competition: unifying snakes, region growing,and Bayes/MDL for multiband image segmentation. Pattern Analysis and MachineIntelligence, IEEE Transactions on,1996.18(9): pp.884-900.
    [125] Sezgin, M., and Sankur, B., Survey over image thresholding techniques and quantitativeperformance evaluation. Journal of Electronic Imaging,2004.13(1): pp.146-168.
    [126] Zhang, H., Fritts, J.E., and Goldman, S.A., Image segmentation evaluation: A survey ofunsupervised methods. Computer Vision and Image Understanding,2008.110(2): pp.260-280.
    [127] Otsu, N., A Threshold Selection Method from Gray-Level Histograms. Systems, Manand Cybernetics, IEEE Transactions on,1979.9(1): pp.62-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700