用户名: 密码: 验证码:
基于流量监控的网络性能优化关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何控制网络拥塞、优化网络性能,提高网络服务质量是急待解决的问题。本文研究流量监控及网络性能优化中几个主要问题,包括:网络流量监测点优化部署、基于多速率VBR业务流量的性能分析、基于呼叫接纳控制的流量控制、基于分支路由器协调的流量控制和异常流量检测控制等问题,以期改善网络性能。论文主要研究内容包含以下几方面:
     1.网络流量监测模型优化问题研究及其近似算法
     网络流量测量的代价包括测量站部署代价和测量代价两个部分。网络流量监测模型优化的重点是:首先考虑部署尽量少的测量站降低部署代价,然后优化测量分配方案减少测量代价,并提高网络性能。利用流守恒规律,可以将网络流量监测模型优化问题抽象为无向图中的最小弱顶点覆盖问题。因求解最小弱顶点覆盖问题是一个NP难题,对于集中式网络,本文利用图论中关联矩阵的概念提出了一个近似算法,并分析了算法的复杂性,在此基础上将该算法拓展到顶点加权情况下图的弱顶点覆盖问题。对于分布式网络,本文给出了一种分布式求解弱顶点覆盖集的近似算法,该算法不需要维护网络拓扑的全局信息。仿真结果表明,所提出算法与以往方法相比,能找出更小的弱顶点覆盖集,具有更好的可扩展性。流量测量分配问题及其解决思路和近似算法,同样可用于解决测量延迟、丢包率等其它网络性能参数优化问题,对网络测量系统的设计和实现具有指导作用。
     2.基于实时VBR业务流量的网络性能分析
     对多速率实时VBR业务系统中呼叫级和分组级主要性能指标的分析计算进行了深入研究。对于资源部分共享情况,从多维Markov链的全局平衡条件出发,提出了一种计算各业务在线连接数的联合概率分布的方法,在此基础上分析了呼叫损失概率和分组丢失率,仿真结果验证了算法的正确性。其次,分析了呼叫损失概率和分组丢失率等服务质量指标与其传输控制参数之间的函数关系。在分组级,先对信源发送速率呈on-off分布的情形下系统的分组丢失概率进行分析,然后对更接近实际情况的一般实时VBR业务的信源发送信息速率的随机过程模型进行研究,提出一种各业务源信息速率可取为某一最小速率(离散)整数倍的通用信源模型,并给出了分组丢失概率的理论计算方法。对几种典型信源发送信息速率概率分布下的分组丢失概率进行了分析比较,并通过仿真检验了该方法的正确性。
     3.基于呼叫接纳控制的流量控制技术
     对于资源部分共享情况,探讨了多速率VBR业务系统呼叫接纳控制策略的实施,提出了以峰值带宽和预期的分组丢失率门限为依据的呼叫接纳控制策略,并进行了理论分析和验证;对于资源完全共享情况,提出一种可支持多种实时可变比特率业务的呼叫接纳控制策略,该策略只需动态调整容量缩放因子,并根据容量缩放因子与物理容量之积、各类业务的在线连接数和呼叫请求的类型决定是否接纳一个呼叫,给出了呼叫损失概率、分组丢失率及容量缩放因子的求解方法,数值计算结果表明所提出的策略可提高系统的吞吐量。
     4.基于分支路由器协调的流量控制技术
     为了提高整个网络的性能,提出了一种基于分支路由器协调的组播流量控制策略,其基本思想是在各分支路由器节点处采用一种闭环控制器来对源端的发送速率进行实时调节,使得源端的发送速率趋于稳定;另外,策略还在拥有一定数量接收端的分支路由器处对其发送的数据进行拷贝,一旦在规定时间内收到接收端发来的重传请求信息包,则对该接收端进行数据重发。针对网络拓扑结构动态变化的情况进行了仿真试验,结果表明,该方法具有良好的可扩展性、稳定性。
     5.基于流量分析的异常流量控制技术
     利用流量统计分析和深度业务分析引擎,对电信级IP网络流量进行了综合分析,设计和实现了一套基于网络流量的宽带业务行为分析控制系统。提出了将该系统与电信网现有的IP网管系统、安全管理系统、大客户系统等其他系统接口的策略,以进行联动响应控制。运用主元分析法检测了异常流量,探讨了网络异常流量检测控制策略,并基于流量监测系统的监测数据对大规模电信网中宽带业务流量流向和行为特征进行了分析。该网络流量分析控制系统已应用于实际的电信网中,为业务运营竞争防御管控、应用服务评估、客户报告服务、ICP业务评估等提供了有效分析管控手段,提升了电信宽带网络盈利能力。
Problems to be solved immediately in the modern network communication are the control of network congestion, optimization of network performance, and improvement of network service quality. In this dissertation, several major problems are studied to improve network performance in traffic control and network optimization, including the deployment optimization of monitor-nodes, performance analysis based on the traffic of multi-rate VBR services, traffic control based on call admission control, traffic control based on the coordination of branch routers and abnormal traffic control.The main work of this dissertation is as follows:
     1. Research on the optimization of network traffic monitoring model and its approximate algorithm
     The cost of network traffic measurement includes test cost and cost of test station deployment. A key point to optimize network traffic monitoring model optimization is: firstly deploy measurement station is as less as possible to reduce the deployment cost, then optimize the distribution measurement plan to reduce the measurement cost, and improve the network performance. Under the traffic flow conservation law, we can reduce the problem of network traffic monitoring model optimization for finding the minimal weak vertex cover of a graph. Because the problem to find the minimal weak vertex cover of a graph is equivalent to an NP-hard problem,, an approximation algorithm is proposed based on the concept of incidence matrix in Graph for centralized network, the complexity of this algorithm has been analyzed, moreover, the algorithm is extended to seek the minimal weak vertex cover for a graph that has weights on the nodes. For the distributed network, the thesis presents an algorithm for finding the weak vertex cover of a graph, which does not require the information of the whole network topology. Analysis and experimental results show that this algorithm is more efficient and scalable than the traditional methods. The solution and approximate algorithm of traffic measurement assignment can be used to solve optimization problems of measurement delay, packet loss rate and other network performance parameters, which is meaningful to the design and implementation of the network measurement system.
     2. Network performance analysis based on real-time VBR business traffic
     A systematic research is made on the call level and packet level performance analysis in a system with multi-rate VBR traffic. For the resource partial-shared case, an algorithm is proposed to accurately evaluate the probability distribution of on-line connections of each traffic type according to the global balance condition of a multi-dimensional Markov chain. Furthermore, the call blocking probability and the packet loss probability are also obtained. Simulation results show that the algorithm is accurate. In addition, analysis has been done on the function relation between the service quality indicators such as the call blocking probability and the packet loss probability and their transmission control parameters. In the packet level, firstly we analyse the packet loss probability of the system in the case that the source sending rate is on-off style, then we study the random process model of the source sending rate of general real-time VBR traffic which is close to the actual situation, and propose a universal source model that each traffic's source rate desirable for a multiple minimum rate (discrete integral times), and the theory calculation method of packet loss probability is presented. Several typical probability distributions of packet loss probability of source sending rate are analyzed and compared, Simulation test results show that the proposed method is valid.
     3. A traffic control scheme based on call admission control
     The implementation of a call admission control strategy is discussed for resource partial-shared systems with multi-rate VBR traffic. The strategy is dependent on the max bandwidth and the expected threshold of the cell loss probability. Both the relative theory analysis and verification are carried out. Another call admission control strategy is proposed for resource full-shared systems with multiple real time variable bit rate services. The strategy only needs dynamically adjust the capacity scaling factor and decides whether to admit a call on the base of the numbers of online service connections, the type of call requests, the product of capacity scaling factor, and physical capacity. A approach is presented to calculate the call blocking probability and the packet loss probability. The numerical results show that the proposed strategy could improve the throughput of the system.
     4. Traffic control scheme based on branch routers
     In order to improve the capability of the whole network, a multicast flow control strategies is proposed based on the coordination of branch routers, which employs a new closed loop controller in every branch router to regulate the transmitting rate of senders for stabilization. In addition, those branch routers possess a certain number receivers to copy the needed data. If the retransmit-request packets are arrived from receivers in the given time, then they will send the copied data to those receivers again. Simulations are done in the case of network topologic structure dynamic variation. Experiment results show that the novel strategies has fairly good expansibility, stability, and response speed.
     5. A anomaly traffic control based on traffic analysis
     Comprehensive analysis of telecom level IP network traffic was carried out with the help of traffic statistical analysis and deep packet analysis engine. A wideband service conduct analysis control system is designed based on network traffic and implemented in the paper. The system is proposed to interface with other systems such as IP network management system, security management system, and big customer system in the present telecom network to obtain incident response control. Strategies for network anomaly traffic detection and control are discussed, and the broadband service traffic direction and behavior characters in the large-scale telecom network are analyzed based on the data of traffic monitoring system. The network traffic analysis control system has been applied in the actual telecommunication networks, it supplies efficient analysis and management functions to business operations through competition defense, application service evaluation, customer service report and ICP business assessment, and promotes the profitability of Broadband telecommunications network.
引文
[1]中国互联网络信息中心.第26次中国互联网络发展状况统计报告.http://www.cnnic.net.cn/uploadfiles/pdf/2010/7/15/100708.pdf,2010-07-15.
    [2]杨洁.基于流量测量的网络QoS改善若干关键问题研究:[北京邮电大学博士学位论文].北京:邮电大学,2007.
    [3]刘岩.网络流量控制若干关键技术研究:[复旦大学博士学位论文].上海:复旦大学,2004.
    [4]Stallings W. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2.3rd ed.,Boston: Addison-Wesley Professional,1998.
    [5]Asgari A, Trimintzios P, Irons M, et al. A scalable real-time monitoring system for supporting traffic engineering. In:Proc. IEEE Workshop on IP Operations and Management,2002,202-207.
    [6]Do Awduche. MPLS and traffic engineering in IP networks. IEEE Communi-cations Magazine, Dec,1999:42-47.
    [7]Peng L, Hai Z, Ye Q. A platform of software network measurement design and implement. In:2010 2nd International Conference on Advanced Computer Control. Shenyang:2010 IEEE,2010,336-339.
    [8]Manish Jain, Constantinos Dovrolis. End-end Estimation of the Available Bandwidth Variation Range. In:Proceedings of the 2005 ACM SIGMETRICS international conference on Measurement and modeling of computer systems. New York, USA:ACM,2005,265-276.
    [9]Joel Sommers, Paul Barford, Nick Duffield, et al. Improving Accuracy in End-to-End Packet Loss Measurement. In:Proceedings of the 2005 conference on Applications, technologies, architectures, and protocols for computer communications, Philadephia, Pennsylvania. New York, USA:ACM,2005, 157-168.
    [10]Qi He, Constantinos Dovrolis, Mostafa Ammar. On the Predictability of Large Transfer TCP Throughput. In:Computer Networks:The International Journal of Computer and Telecommunications Networking.New York, USA:ACM,2007, 3959-3977.
    [11]Han Hee S, Lili Q, Yin Z. NetQuest:A Flexible Framework for Large-Scale Network Measurement. In:IEEE/ACM Transactions on Networking,2009, 17(1):106-119.
    [12]Seong Soo Kim, Narasimha Reddy. A Study of Analyzing Network Traffic as Images in Real-Time. In:Proc. IEEE INFOCOM 2005.Miami, USA:2005 IEEE, 2005,2056-2067.
    [13]Kuai Xu, Zhili Zhang, Supratik Bhattacharya.Profiling Internet Backbone Traffic:Behavior Models and Applications. In:Proc. ACM SIGCOMM 2005, New York, USA:ACM,2005,169-180.
    [14]Ningning Hu, Li Li, Morley Mao Z, Peter Steenkiste, Jia Wang. A Measurement Study of Internet Bottlenecks. In:INFOCOM 2005.24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, Miami, USA:2005 IEEE,2005,1689-1700.
    [15]蔡志平.基于主动测量和被动测量的网络测量技术、模型和算法研究:[国防科技大学博士学位论文].长沙:国防科技大学,2004.
    [16]陈松,王珊,周明天.基于实时分析的网络测量抽样统计模型.电子学报,2010,38(5):1177-1180.
    [17]朱畅华,裴昌幸,李建东等.网络测量及其关键技术.西安电子科技大学学报(自然科学版),2002,29(6):813-818.
    [18]韦安明.互联网中基于流测量的P2P流量及异常事件检测:[北京邮电大学博士学位论文].北京:邮电大学,2007.
    [19]程光,龚俭,丁伟等.面向IP流测量的哈希算法研究.软件学报,2005,16(5):652-658.
    [20]陶智勇,王全一,南凯等.基于多采集器网络流量测量系统的设计与实现.计算机工程与应用,2006,(2):121-129.
    [21]吕军,李星.网络测量分析及研究综述.计算机工程与应用,2003,(24):19-23.
    [22]CAID. Available:http://www.caida.org/home/
    [23]NLANR.Avaiable:http://pma.nlanr.net/
    [24]AT&T Labs. Available http://vww.att.com/
    [25]WAND Network Research Group.A vailable:http://wand.cs.waikato.ac.nz/index. Php.
    [26]Paxson V, Almes G, Mahdavi J, et al. Framework for IP Performance Metrics [DB/OL]. http://www.faqs.org/rfcs/rfc 2330.html,1998-05-23.
    [27]Adams A, Mahdavi J, Mathis M, et al. Creating a Scalable Architecture for Internet Measurment [DB/OL]. http://www.isoc.org/inet98/proceedings/6g/6gl. htm,2001-11-28.
    [28]Lihua S, Haitao W. A measurement-based united congestion control resolution for TCP/IP networks. In:2010 International Conference on Computer Application and System Modeling. Taiyuan,2009,352-356.
    [29]张文杰,钱德沛,张兴军等.分布式互联网流量监测模型的研究与实现.西安交通大学学报,2002,36(8):814-817.
    [30]徐鹏,刘琼,林森.基于支持向量机的Internet流量分类研究.计算机研究与发展,2009,46(3):407-414.
    [31]刘湘辉,殷建平,唐乐乐等.网络流量的有效测量方法分析.软件学报,2003,14(2):300-304.
    [32]程光,龚俭,丁伟.基于分组标识的网络流量抽样测量模型.电子学报,2002,30(12A):1986-1990.
    [33]杨建华,谢高岗,李忠诚.一种业务流自适应尽力采样方法.计算机研究与发展,2006,43(3):402-409.
    [34]杨新宇,魏恒义,程竹林等.一种新的端到端采样网络流量测量方法,2003,(8):40-43.
    [35]张连芳,薛飞,舒炎泰.高速网络自相似业务模型及其性能评价.计算机研究与发展,1998,35(6):548-552.
    [36]戴飞军,时云峰,刘飞等.网络测量中的一种优化路径算法.计算机应用研究,2009,26(1):88-91.
    [37]Kc C.The Internet as emerging critical infrastructure:what needs to be measured? In:workshop on the "Future of the Internet". Paris:OECD ICCP,2006.
    [38]Iannaccone G, Diot C, Graham I, McKeown N. Monitoring very highspeed links. In:Proceedings of the 1st ACM SIGCOMM Workshop on internet Measurement, New York, USA:ACM,2001,267-271.
    [39]Lakhina A, Crovella M, Diot C. Characterization of Network-Wide Anomalies in Traffic Flows. In:Proceedings of the 4th ACM SIGCOMM conference on Internet measurement.New York:ACM,2004,201-206.
    [40]王蛟.基于行为的P2P流量及异常流量检测技术研究:[北京邮电大学博士学位论文].北京:邮电大学,2008.
    [41]袁小坊.IP网络测量数据存储与流量建模研究:[湖南大学博士学位论文].长沙:湖南大学,2009.
    [42]Kyoungwon S, Yang G, Jim K, et al. Locating Network Monitors:Complexity. Heuristics and Coverage. In:INFOCOM 2005.24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE.USA: 2005 IEEE,2005,351-361.
    [43]Khuller A S. Moss J Naor. The budgted maximum coverage promblem. Information Processing Letters,1999,7(1):39-45.
    [44]Slavik. Improved performance of the greedy algorithm for the minimum set cover and minimum partial cover problems,Electronic Colloquium on Computational Complexity,1995,2(53):118-122.
    [45]黎芸.高速网络拥塞控制端算法的研究:[广西师范大学硕士学位论文].桂林:广西师范大学,2008.
    [46]Ramjee R, Towsley D, Nagarajan R. On optimal call admission control in cellular networks. Wireless Netw,1997,3(1):29-41.
    [47]Wen C, Jinming Y, Feng P. An Optimal CAC Scheme Based on GSMDP Model in Heterogeneous Wireless Networks. In:2010 2nd International Workshop on intelligent Systems and Applications. Wuhan,2010,1-6.
    [48]Naghshineh M, Schwartz S. Distributed call admission control in mobile/ wireless networks. IEEE J. Sel. Areas Commun,1996,14(4):711-717.
    [49]Wu S, Wong K Y M, Li B. A new distributed and dynamic call admission policy for mobile wireless networks with QoS guarantee. in Proc.9th IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun,1998,1(1):260-264.
    [50]Peha J M, Sutivong A. Admission control algorithms for cellular systems. Wireless Netw,2001,7(2):117-125.
    [51]Shyu L, Hu W, Lan G. Evaluate the relationship between coronary artery calcification (CAC) and arterial compliance. In:Computers in Cardiology. 2009,753-755.
    [52]Levine D, Akyildiz I, Naghshineh M. A resource estimation and call admission algorithm for wireless multimedia networks using the shadow cluster concept. IEEE/ACM Trans. Netw.,1997,5(1):1-12.
    [53]Kwon T, Choi Y, Bisdikian C, Naghshineh M. Measurement based call admission control for adaptive multimedia in wireless/mobile networks. In Proc. IEEE Wireless Commun. Netw. Conf,1999,5(2):540-544.
    [54]De Rango F, Malfitano A. Bandwidth availability aware defragmentation based CAC algorithm for IEEE 802.16 distributed mesh networks. In:SPECTS 2009 international Symposium on performance Evaluation of Computer & Telecommunication. Istanbul,2009,146-153.
    [55]Capone J M. Stavrakakis I. Delivering diverse delay/dropping QoS requirements in a TDMA environment. In Proc. ACM MobiCom,1997,9(1):110-119.
    [56]Figueira N R, Pasquale J. Providing quality of service for wireless links: Wireless/wired networks. IEEE Pers. Commun,1998,6(5):42-51.
    [57]Oliveira C, Kim J B, Suda T. An adaptive bandwidth reservation scheme for high-speed multimedia wireless networks. IEEE J. Sel. Areas Commun,1998, 16(6):858-874.
    [58]Yilmaz O, Ing-Ray C. Comparative Performance Analysis of CAC Reward Optimization Algorithms in Wireless Networks. In:International Conference on Advanced Information Networking and Applications. Bradford,2009,463-470.
    [59]Zhuang W, Bensaou B, Chua K C. Adaptive quality of service handoff priority scheme for mobile multimedia networks. IEEE Trans. Veh. Technol,2000,49(2): 494-505.
    [60]Talukdar A K, Badrinath B R, Acharya A. MRSVP:A resource reservation protocol for an integrated services network with mobile hosts. Wireless Netw, 2001,7(1):5-19.
    [61]Hao W, Zhe G, Jialun H, Lai T. Measurement and Feedback Scheme for CAC in Cellular Networks. In:Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing. Brisbane, QLD,2009,452-455.
    [62]Braden R, Clark D, Shenker S. Integrated service in the Internet architecture: An overview. IETF, RFC1633,1994.
    [63]Yang W, Geraniotis E. Admission policies for integrated voice and data traffic in CDMA packet radio networks. IEEE J. Sel. Areas Commun,1994,12(4): 654-664.
    [64]Ben-Jye C, Ying-Hsin L, Chih-Hsien W. MDP-Based CAC for Two-Dimension Spreading VSF-OFCDM in 4G Cellular Communications. In:Global Telecommunications Conference,2009. Honolulu, HI,2009,1-6.
    [65]Liu T. Silvester J A. Joint admission/congestion control for wireless CDMA systems supporting integrated services. IEEE J. Sel. Areas Commun,1998, 16(6):845-857.
    [66]Cho C, Shin S M, Sung D K. Interference-based channel assignment for DS-CDMA cellular systems. IEEE Trans. Veh. Technol.,1999,48(1):233-239.
    [67]Jeon W S, Jeong D G. Call admission control for CDMA mobile communications systems supporting multimedia services. IEEE Trans. Wireless Commun,2002,1(4):649-659.
    [68]Huang Lei, LLC C, Kuo J. Joint connection-level and packet-level Quality-of-Service Support for VBR Traffic in Wireless Multimedia Networks. IEEE Journal On Selected Areas In Communications,2005,23(6):1167-1177.
    [69]Omesh T, Biplab S. On the Impact of IEEE 802.11 MAC on Traffic Characteristics. IEEE Journal On Selected Areas In Communications,2003, 21(2):189-203.
    [70]王兵,叶栋,丁炜.适应自相似业务流量模型的CAC算法研究.通信学报,2003,24(5):121-128.
    [71]Wang L, Zhuang W, H. A Call Admission Control Scheme for Packet Data in CDMA Cellular Communications. IEEE Transactions On Wireless Communi-cations,2006,5(2):406-416.
    [72]吕国英,刘泽民.基于多种业务流共享的在线呼叫接入控制算法.通信学报,2001,22(2):8-14.
    [73]Kaufman J S. Blocking in a shared resource environment. J. IEEE Trans on Commun,1981,29(10):1474-1481.
    [74]Siebenhaar R. Multiservice call blocking approximations for virtual path based ATM networks with CBR and VBR traffic. Proc. INFOCOM'95,1995,321-329.
    [75]Awater G A, Van D, Vlag H A B. Exact computation of time and call blocking probabilities in large, multi-traffic, multi-resource loss systems. Performance Evaluation,1996, (25):41-58.
    [76]黄生叶,叶梧,冯穗力.基于准独立近似的巨型资源共享系统呼叫阻塞概率的快速估算.通信学报,2002,23(11):123-128.
    [77]黄生叶,史恒.宽带实时VBR业务与尽力而为业务复用系统的性能研究.电子与信息学报,2008,30(12):3009-3012.
    [78]吴秋丽,李太君.流媒体业务呼叫接纳控制算法.通信技术,2010,43(6):198-203.
    [79]林峰,黄生叶.综合业务切换呼叫损失概率计算方法.计算机工程,2008,34(10):133-137.
    [80]赵玲,黄生叶.基于共享缓存的无线网络呼叫接纳控制算法.计算机工程,2007,33(12):111-113.
    [81]陈明欣,刘干,朱光喜WLAN中基于效用的呼叫接纳控制策略.电子学报,2008,36(7):1429-1434.
    [82]Emre A Y, Victor C M. Leung. Efficient Methods for Performance Evaluations of Call Admission Control Schemes in Multi-Service Cellular Networks. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2008,7(9):3468-3476.
    [83]Niyato D, Hossain E. Call admission control for QoS provisioning in 4G wireless networks:issues and approaches. IEEE Networks,2005,19(5):5-11.
    [84]Stylianos C, Polychronis K, Michael P. A new call admission control mechanism for multimedia traffic over next-generation wireless cellular networks. IEEE Transactions on mobile computing,2008,7(1):95-112.
    [85]Luglio M, Theodoridis G, Roseti C, Pavlidou N. A TCP Driven CAC Scheme: Efficient Resource Utilization in a Leaky HAP-Satellite Integrated Scenario. In: IEEE Transactions on aerospace and Electronic Systems,2009,45(3):885-898.
    [86]Zafar A, Waseem S, Edwin K P, Chong, Arif G. A Scalable Call Admission Control Algorithm. IEEE/ACM Transactions on networking,2008,16(2): 424-434.
    [87]Kenta Y, Andrea G F, Henning S. Distributed Delay Estimation and Call Admission Control in IEEE 802.11 WLANs. Proceedings of ICC,2009,1-6.
    [88]Jain R, Ramakrishnan K K, Chiu Dah-Ming. Congestion avoidance in computer networks with a connectionless network layer.Technical Report. DEC-TR-506. Digital Equipment Corporation,1988. http://www.cis.ohio-state.edu/-jain.
    [89]代丽娴Internet网络拥塞控制算法研究:[华中科技大学硕士学位论文].武汉:华中科技大学,2005.
    [90]李世银,王秀娟,钱建生等.TCP端到端等效噪声模型及拥塞控制方法研究.电子科技大学学报,2009,38(4):489-492.
    [91]Caserri C, Meo M. a new approach to model the stationary behavior of TCP connections. In:Proc IEEE INFOCOM 2000, Tel Aviv, Israel, CA:IEEE Computer Society,2000,367-375.
    [92]Jacobson V, ichaelJ M, arels K. Congestion avoidance and control. IEEE/ACM Transaction Networking,1988,6(3):314-329.
    [93]Ramkrishnan K, Floyd S. A Proposal to Add Explicit Congestion Notification (ECN) to IP. IETF RFC2481,1999.
    [94]Braden B, Clark D, Crowcroft J, et al. Recommendations on Queue Management and Congestion Avoidance in the Internet. RFC2309,1994.
    [95]Deering S. Multicast routing in a datagram internetwork [Ph.D.Thesis]. Stanford University,1991.
    [96]Floyd S, Fall K. Promoting the use of end-to-end congestion control in the internet. IEEE/ACM Transactions on Networking,1999,7(4):458-472.
    [97]Widmer J, Handley M. Extending equation-based congestion control to multicast applications. In:Floyd, S., ed. Proceedings of the ACM SIGCOMM. San Diego: ACM Press,2001,275-286.
    [98]Rizzo L. PGMCC:a TCP-friendly single-rate multicast congestion control scheme. In:Floyd, S., ed. Proceedings of the ACM SIGCOMM. Stockholm: ACM Press,2000,17-28.
    [99]Rhee J, Balaguru N, Rouskas G. MTCP:scalable TCP-like congestion control for reliable multicast. In:Doshi, B., ed. Proceedings of the IEEE INFOCOM. New York:IEEE Communications Society,1999,1265-1273.
    [100]Kadansky M, Chiu D, Wesley J, et al. Tree-Based reliable multicast (TRAM). INTERNET DRAFT draft-kadansky-tram-02.txt. Work in Progress,2000.
    [101]McCanne S, Jacobson V, Vetterli M. Receiver-Driven layered multicast. In: Deering, S., ed. Proceedings of the ACM SIGCOMM. Stanford:ACM Press, 1996,117-130.
    [102]Vicisano L, Rizzo L, Crowcroft J. TCP-Like congestion control for layered multicast data transfer. In:Charny, A., ed.Proceedings of the IEEE INFOCOM. San Francisco:IEEE Communications Society,1998,996-1003.
    [103]Byers J, Frumin M, Horn G, et al. FLID-DL:congestion control for layered multicast. In:Fdida, S., ed. Proceedings of the 2nd International Workshop on Networked Group Communication (NGC 2000). Palo Alto:ACM Press,2000, 71-81.
    [104]石锋,吴建平.组播拥塞控制综述.软件学报,2002,13(8):1441-1449.
    [105]王秦立,陈绍炜,李炜怿.基于底层流量估计的多级拥塞准入控制算法.计算机仿真,2009,26(10):119-121.
    [106]Vickers B, Albuquerque C, Suda T. Source-adaptive Multi-layered, Multicast Algorithms for Real-time Video Distribution. IEEE/ACM Transactions on Networking,2000,8(6):720-733.
    [107]孙知信,唐益慰,张伟等.基于特征聚类的路由器异常流量过滤算法.软件学报,2006,17(2):295-304.
    [108]程光,龚俭,丁伟.基于抽样测量的高速网络实时异常检测模型.软件学报,2003,(3):594-599.
    [109]Denning DE. An intrusion-detection model. IEEE Transactions on Software Engineering,1987, SE-13:222-232.
    [110]Carla TL, Brodley E. Temporal sequence learning and data reduction for anomaly detection. In:Reiter M, ed. Proceedings of the 5th Conference on Computer and Communications Security. New York:ACM Press,1998. 150-158.
    [111]Lee W, Stolfo S, Kui M. A data mining framework for adaptive intrusion detection. In:IEEE Computer Society, ed. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA:IEEE Press,1999,120-132.
    [112]Lunt TF, Tamaru A, Gilham F. A real-time intrusion detection expert system (IDES). Technical Report, Menlo Park, CA:Computer Science Laboratory, SRI International,1992.
    [113]Maxion R A. Anomaly detection for diagnosis. In:Proceedings of the 20th International Symposium Fault2Tolerant Computing (FTCS220),1990,20-27.
    [114]Maxion R A, Feather F E. A case study of Ethernet anomalies in a distributed computing environment. IEEE Transactions on Reli2 ability,1990,39(4): 433-443.
    [115]Lawrence H L, Cavuto D J, Papavassiliou S, Zawadzki A G. Adaptive and automated detection of service anomalies in transac2 tion2oriented WAN's: Network analysis algorithms implemen2 tation and deployment. IEEE Journal of Selected Areas in Com2 munications,2000,18(5):744-757.
    [116]Kai S, Yantai S, Yang O. Receiver assistant congestion control in high speed and lossy networks. In:Real Time Conference,2009. Beijing,2009,91-95.
    [117]John E, Dickerson, Jukka J, Ourania K, Julie A. Dickerson. Fuzzy Intrusion Detection. IFSA World Congr-ess and 20th NAFIPS International Conference, 2001,9(3):1506-1510.
    [118]Huang P, Feldmann A, Willinger W, nonintrusive A. wavelet-based approach to detecting network performance problems. ACM sigcomn internet measurement workshop 2001. San Francisco USA,2001,110-112.
    [119]Hui L, Wen F F, Yong F H, Xing L. A Peer-To-Peer Traffic Identification Method Using Machine Learning. Proceedings of NAS2007,2007,155-160.
    [120]Zander S, Nguyen T, Armitage G. Automated Traffic Classification and Application Identification using Machine Learmng. Nov.2005,250-257.
    [121]卞鹏NetFlow的网络异常流量的分离与分类:[江苏大学硕士学位论文].江苏:江苏大学,2009.
    [122]邹柏贤.一种网络异常实时检测方法.计算机学报,2003,26(8):940-947.
    [123]梁昇,肖宗水,许艳美.基于统计的网络流量异常检测模型,计算机工程,2004,24(31):123-125.
    [124]Caberera J B D, Ravichandran B, Mehra R K. Statistical Traffic Modeling for Network Intrusion Detection. Modeling Analysis and Simulation of Computer and Telecommunication Systems 2000. Proceedings.8th International Symposium on,2000,29(1):466-473.
    [125]Lakhina A, Papagiannaki K, Crovella M, Diot C, et al. Structural Analysis of Network Traffic Flows. In ACMSIGMETRICS. New York,2004.
    [126]Lakhina A, Crovella M, Diot C. Diagnosing Network-Wide Traffic Anomalies. In ACM SIGCOMM. Portland,2004.
    [127]Lakhina A, Crovella M, Diot C. Characterization of Network-Wide Anomalies in Traffic Flows. Technical Report BUCS-2004-020. Boston University,2004.
    [128]Lakhina A, Crovella M, Diot C. Mining anomalies using traffic feature distributions. In ACM SIGCOMM (Philadelphia, Pennsylvania, USA,2005), 2005,217-228.
    [129]Breitbart Y. Chan C Y, Garofalais M. Rastogi R.Silberschatz A. Efficiently monitoring bandwidth and latency in IP networks. In Proc. IEEE INFOCOM 2001, Anchorage, Alaska,2001,4(2):933-942.
    [130]Vazirani V V. Approximation Algorithms.Berlin. Springer-Verlag,2001,93-129
    [131]Jamin S, Jin C, Jin Y, Raz D, Shavitt Y, Zhang L. On the placement of internet instrumentation. In Proc. of the IEEE INFOCOM,2000,26-30.
    [132]Caceres R, Duffield N G, Feldmann A, et al. Measurement and analysis of IP network usage and behavior. IEEE Communications Magazine,2000,38(5): 144-151.
    [133]Garey M R, Johnson D S. Computers and Intractability:A Guide to the Theory of NP-Completeness. W.H. Freeman,1979.
    [134]Waxman B M. Routing of multipoint connections. IEEE J. On Selected Areas in Communications,1988,6(9):1617-1622.
    [135]Lai K, Baker M. Measuring Bandwidth. In Proc. Of IEEE INOFOCOM 99,1999, (3):235-245.
    [136]Schwartz M. Network Management and control Issues in multimedia wireless networks. IEEE Personal Communications,1995,2(3):8-16.
    [137]Logothetis M, Kokkinakisd G. Path bandwidth management for large scale telecom networks. IEICE trans. Commun,2000, E83-B (9):2087-2099.
    [138]Pitsillides A, Stylianou G, Pattichis C S, et al. Bandwidth allocation for virtual paths(BAVP):Investigation of performance of classical constrained and genetic algorithm based optimization techniques. IEEE INFOCOM',2000,1501-1510.
    [139]Logothetis M, Shioda S. Medium term centralized virtual path bandwidth control based on traffic measurements. IEEE Trans. Commun,1995,43(10): 2630-2640.
    [140]Medhi D. Multi-hour, Multi-traffic class network design for virtual path-based dynamic reconfigurable wide area ATM networks. IEEE/ACM trans. Networking,1995,3(6):809-818.
    [141]Huang S Y, Ye W, Feng S L. Optimization of path bandwidth allocation for large-scale telecom networks. IEICE TRANS COMMUN,2002, E85-B(12): 2960-2962.
    [142]Song H, Ye W, Feng S L, Huang S Y. Fast bandwidth evaluation-an improvement on path bandwidth allocation for large-scale communication networks. IEICE Transactions on Communication,2004, E87-B(8):2438-2441.
    [143]Roberts J W. Teletraffic models for the Telecom 1 integrated services network. Proc.10th international teletraffic congress. Montreal,1983,1-7.
    [144]Ning J, Lei A. Receiver assistant congestion control in high speed and lossy networks. In:International Conference on Information Engineering and Computer Science. Wuhan,2009,1-4.
    [145]Francois J, Labourdete P, Hart G W. Blocking probabilities in multitraffic loss systems:Insensitivity, Asymptotic behavior and approximations. IEEE Trans Commun,1992,40(8):1355-1366.
    [146]Saad, Youcef, Martin H. Schultz, GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput, 1986,7(3):856-869.
    [147]Fu T, Huang S. An approximate approach of finding the number of guard channels in wireless communication systems. Proceedings of ICCT2006. Guilin, 2006,531-534.
    [148]蒋红艳,林亚平,黄生叶.多速率系统呼叫级和分组级的损失率分析.通信学报,2007,28(9):15-21.
    [149]黄生叶,熊勤平,蒋红艳.一种适用于多速率VBR业务系统的呼叫接纳控制策略.湖南大学学报,2008,(10):75-79.
    [150]赵新元,王能.基于Web的网络流量监测系统的设计.计算机工程,2007,33(3):237-239.
    [151]刘军良,肖宗水.分布式网络流量监测.计算机工程,2008,34(20):124-126
    [152]Brownlee N, Mills C, Ruth G. Traffic Flow Measurement:Architecture. RFC2722,1999.
    [153]Norseth K C, Ganesh Sadasivan. Architecture Model for IP Flow Information Export. Draft-ietf-ipfix-architecture-02,2002.
    [154]李君,王攀,孙雁飞等.P2P业务流量识别、分析和控制研究.计算机工程,2006,32(11):122-124.
    [155]陈鸣,许博.一种基于NetFlow的网络蠕虫检测算法.解放军理工大学学报(自然科学版),2006,7(4):336-340.
    [156]华夏安,张大方,谢鲲等.基于H.323协议的VoIP语音流量识别.计算机应用,2008,28(9):2204-2206.
    [157]凌军,曹阳,尹建华等.基于时态知识模型的网络入侵检测方法研究.计算机学报,2003,26(11):1591-1597.
    [158]Puangpronpitag S, Boyle R. Performance comparison of explicit rate adjustment with other multi-rate multicast congestion control. In:Proc. of the 19th UK Performance Engineering Workshop (UKPEW 2003). Warwick,2003,142-153.
    [159]Paangpronpronpitag S, Boyle R, Djemame K. Performance evaluation of layered multicast congestion control protocols:FLIDDL vs. PLM. In:Proc. of Int'l Symp. on Performance Evaluation of Computer and Telecommunication Systems (SPECT 2003),2003.
    [160]Chiu D M, Kadansky M, Provino J, Wesley J, Bischof H, Zhu H. A congestion control algorithm for tree-based reliable multicast protocols. In:Proc. of the IEEE INFOCOM,2002.
    [161]Floyd S, Handley M, Padhye J. A comparison of equation-based and AIMD congestion control. http://www.aciri.org/tfrc/,2000.
    [162]Bansal D, Balakrishnan H. Binomial congestion control algorithms. In: Proceedings of IEEE INFOCOM2001, Anchorage, AK,2001,631-640.
    [163]Mahdavi J, Floyd S. TCP-friendly unicast rate-based flow control. http://www.psc.edu/networking/tcp-friendly.html.
    [164]Rhee I, Ozdemir M, Yi Y. TEAr:TCP emulation at reciver-flow control for multimedia streaming. NCSU:Technical Report, http://www.csc.ncsu.edu/,2000.
    [165]Mark A. TCP Congestion Control with Appropriate Byte Counting. BBN/NASA GRC. http://www.faqs.org/rfcs/rfc3465.html,2003-02-10.
    [166]Lee S H, Lim J T. Multicast ABR service in ATM networks using a fuzzy-logic-based consolidation algorithm. IEE Proc. of the Communication, 2001,148(1):8-13.
    [167]Tan LS, Xiong NX, Yang Y. A PGM-Based single-rate multicast congestion control scheme. Journal of Software,2004,15(10):1538-1546.
    [168]Tan LS, Pugh AC, Yin M. Rate-Based congestion control in ATM switching networks using a recursive digital filter. Control Engineering Practice (Special Issue on Control Methods for Telecommunication Networks),2003,11(10): 1171-1181.
    [169]Tan L S, Yang S H. Rate-Based congestion controllers for high-speed computer networks. In:Proc. of the Int'l Federation of Automatic Control 15th IFAC World Congress,2002.
    [170]高能,冯登国,向继.一种基于数据挖掘的拒绝服务攻击检测技术.计算机学报,2006,29(6):944-951.
    [171]张慧丽.基于NetFlow的异常流量智能检测引擎设计.计算机时代,2006,(9):17-19.
    [172]Handley M, Kreibich C, Paxson V. Network Intrusion Detection:Evasion. Traffic Normalization, and End-to-End Protocol Sematics, Proc. USENIX Security Symposium,2001.
    [173]Paxson V. An Analysis of Using Reflectors for Distributed Denial-of Service Attacks. Computer Communication Review,2001,31(3):22-30.
    [174]Jackson J E. A User's Guide to Principal Components. New York: Wilery-Inter-Science,1991.
    [175]MacGregor J F. Multivariate statistical approaches to fault detection and isolation. IFAC SAFEPROCESS 2003,579-584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700