用户名: 密码: 验证码:
医学超声图像的轮廓波方法研究及其在相控HIFU治疗系统中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,相控高强度聚焦超声(HIFU, High Intensity Focused Ultrasound)技术已经成为治疗超声的研究热点。HIFU强度较高,为了避免损伤正常组织和提高治疗效率,必须提供治疗目标的精确位置。在目前超声图像引导的HIFU治疗系统中,超声图像由于受散斑噪声等降质因素影响分辨率较低,是达到HIFU精确治疗的障碍之一。另外,现在大部分已投入使用的HIFU系统未能充分考虑呼吸运动在治疗中造成的病灶等治疗目标的移位,也影响了HIFU的精确治疗。利用术中超声图像的实时处理达到通过体内标记来实时定位治疗目标,是提高临床治疗准确性与快速性的一种行之有效的方法。超声图像的预处理效果是定位准确的一个关键因素。本研究将目前图像领域的新进展之一——轮廓波引入对超声图像的处理,通过对图像引导的关键技术的研究促进相控HIFU精确治疗的发展。
     目前轮廓波在图像处理领域发展迅速,尤其对去噪、轮廓提取和纹理分析等应用的研究,都取得了相当的进展。轮廓波是小波在二维和高维数据处理的新发展,是多尺度几何分析方法之一。本文的研究集中于轮廓波在超声图像处理应用的适应性改进上,包括图像变换域统计建模、超声图像散斑抑制、边缘曲线特征的检测,给出改进的适用于超声图像处理的轮廓波方法,主要内容如下:
     (1)对轮廓波变换的构造原理以及变换域系数的统计分析与建模进行系统分析,提出一种针对图像变换域统计特性的建模方法,对图像轮廓波域建模所依赖的广义高斯分布函数加以扩展和改进。由于传统的广义高斯分布函数对非对称、尖峰或严重拖尾等分布难于精确建模,本文构建了非对称分段广义高斯函数(APGGF),并对其进行统计参数估计,以非对称分段特性实现对统计直方图的更精确拟合。在轮廓波变换域对医学超声图像统计建模,利用APGGF对超声图像轮廓波系数进行拟合,与广义高斯函数相比,逼近误差降低,提高了统计建模精度。
     (2)根据超声图像散斑噪声的一般模型,提出轮廓波域尺度自适应超声图像阈值去噪方法,通过对轮廓波域不同尺度不同子带系数进行阈值处理以实现对噪声分量的去除。同时,加入尺度子带自适应比例参数并给出经验计算公式,使之适于医学超声图像。
     (3)对超声图像中散斑噪声分布统计特性进行研究,提出基于对噪声分量用Rayleigh分布建模的轮廓波域超声图像散斑噪声抑制方法,该方法在贝叶斯框架下利用Laplacian分布对轮廓波域信号分量建模,通过MAP准则推导出轮廓波系数的估算子,通过模拟图像与临床图像的实验与经典方法的比较,验证其性能的改进;由于广义Nakagami分布(GND)对散斑噪声的统计特性描述更具通用性,本文提出一种基于GND的非同态轮廓波散斑抑制方法,并给出对GND几个退化模型的特例分析,通过临床图像实验与前人方法进行比较验证了算法有效性及性能改进。这两种基于不同噪声统计模型的方法实现了有针对性的噪声滤除。
     (4)为实现相控HIFU治疗在术中对病灶的实时跟踪检测,本文对超声图像中边缘轮廓等曲线特征检测和提取,并根据这些特征信息对呼吸运动影响下的器官病灶移位做实时检测和定位。本文提出基于子带系数模极大值的轮廓波域医学超声图像边缘轮廓检测方法。该方法更有效的提取肿瘤状轮廓特征边缘和血管、脏器边界等曲线状特征边缘,而这些特征信息可以作为呼吸运动影响下的器官病灶移位的实时检测和定位的体内跟踪标记。由于轮廓波固有的对平滑边缘的稀疏表达,降低了运算复杂度。
     (5)根据相控HIFU治疗中治疗探头与成像探头的结合特点,提出利用术中超声成像,通过同轴旋转扫描实现治疗目标在三维治疗系统中的定位。通过术中超声图像处理与电子相控聚焦的治疗焦点转换移位的实时控制,实现超声成像系统到治疗系统的目标定位。
High Intensity Focused Ultrasound (HIFU) has been explored for its therapeuticuse in the treatment of tumors. The main advantage of HIFU is its non-invasive nature,and the focus where therapy occurs can be placed deep within a patient’s bodywithout affecting the intervening tissue layers. The localized effects of HIFU and itsaccurate focusing capability make it an attractive non-invasive surgical modality. Inthe interactive image-guided HIFU therapy, fast and precise target localization is veryimportant for treatment planning. Ultrasound image guidance of HIFU therapy hasbeen used because of its portability, low cost, real time, simple integration with HIFUinstruments. Therefore, the use of US visualization for the guidance and monitoring ofHIFU therapies most often relies on the performance of the US image processing.
     Contourlet transform was introduced as a discrete domain multiresolution andmultidirection expansion using non-separable filter banks, and developed as a “true”two-dimensional representation for images. Contourlet is considered to be the newgeneration of wavelet in two and higher dimensions. It not only has themultiresolution and time-frequency localization properties, but also shows a very highdegree of directionality and anisotropy. Motivated by and capitalizing on this property,contourlet transform can be applied in a wide range of image processing tasks, such asdenoising, and has shown its potential in the field of medical image processing.
     The objectives of this dissertation were to introduce contourlet analysistechniques into the ultrasound image processing in HIFU system and make properadaption to clinical applications, including image statistical modeling, ultrasoundspeckle suppressing and treatment target edge detection for real-time HIFU therapy.
     Firstly, to further analyse the statistical characteristics of the contourletcoefficients for ultrasound image, we construct a new asymmetric piecewisegeneralized Gaussian function (APGGF) for image statistical modeling in transformdomain. By fitting the statistical probability more precisely and giving thecorresponding parametric estimation, this parametric modeling method has potentialfor many image processing applications, such as image coding, feature extraction,image denoising, and so on.
     Then we present a new contourlet-based speckle reduction method for medical ultrasound images. This method gives a scale-adaptive threshold in Bayesianframework based on modeling the subband contourlet coefficients of the ultrasoundimages after logarithmic transform as generalized Gaussian distribution. An adjustedproportional parameter is proposed for adapting the threshold to medical ultrasoundimages in contourlet domain. According to its less computing time, this ultrasoundimage pre-precessing algorithm can satisfy the HIFU intra-surgery requirement.
     For more precisely preprocessing the ultrasound images, a new specklesuppression method for medical ultrasound images based on contourlet transform wasproposed. Modeling the speckle with Rayleigh distribution in logarithmicallytransformed ultrasound images, a maximum a posterior (MAP) estimator is appliedfor speckle reduction via manipulating the coefficients in contourlet domain. Asgeneralized Nakagami distribution provides a better model for the statistic of speckledue to its capability and generality, we also proposed another speckle suppressionmethod according to generalized Nakagami distribution model, and further analysiswere then given for several special cases.
     A contourlet based edge detection method was then given to extracting theinside-body mark from ultrasound images for phased HIFU intra-surgery targetlocalization. This method extracts the curve structure in images by detecting modulusmaxima in different scale and different directional coutourlet subbands. Thecharacteristic of multiresolution and multidirection, and the low computationcomplexity make the contourlet based edge detection method a choice for phasedHIFU intra-surgery image processing.
     Finally, we discussed the affection of the respiration in HIFU therapy system andthe respiration control techniques in image guided radiotherapy. For HIFUintra-surgery target tracking, there are two key factors: the effectiveness ofinside-body mark detection in real time to locating the treatment target; the positionshift of the phased HIFU lesion is also fast enough to make tracking treatmentpossible. According to the characteristics of the image series scanning mode duringthe surgery system, a target localization method is then given in our clinical phasedHIFU therapy system.
引文
[1] N.T. Sanghvi. Introduction and background of high-intensity focused ultrasound. Ultrasoundin Medicine and Biology,2003,29(5S):S40.
    [2] J.G. Lynn, R.L. Zwemer, A.J. Chick, A.F. Miller. A new method for the generation and use offocused ultrasound in experimental biology. Gen. Phsiol.1942,26,179-193.
    [3] J. Horvath. Ultraschallwirkung beim menschlichen Sarkom(I. Klinischer Teil).Strahlentherapie,1944,75(1):119-125.
    [4] R.S. Foster, R. Bihrle, N.T. Sanhvi, et al. High-intensity focused ultrasound in treatment ofprostaic disease. Eur Urol,1993,23(Suppl1):29-33.
    [5] C.J. Diederich, K. Hynynen. Ultrasound technology for hyperthermia. Ultrasound in Med.&Biol.,1999,25(6):871-887.
    [6] K. Hynynen. Review of ultrasound therapy. IEEE Ultrasonics Symposium,1997,2(2):1305-1313.
    [7] K. Hynynen, J. Sun. Trans-skull ultrasound therapy: the feasibility of using image-derivedskull thickness information to correct the phase distortion. IEEE Transaction on Ultrasonics,Ferroelectrics, and Frequency Control,1999,46(3):752-755.
    [8] N.T. Songhvi, K. Hynynen, F.L. Lizzi. New developments in therapeutic UltrasonicUltrasound. IEEE Engineering in Medicine and Biology,1996,15(6):83-92.
    [9] N.B. Smith, K. Hynynen. The feasibility of using ultrasound for transmyocardialrevascularization. Ultrasound in Med.&Biol.,1998,24(7):1045-1054.
    [10] D.R. Daum, K. Hynynen. Cutting edge acoustics-Noninvasive surgery using ultrasound.IEEE potentials,1999,17(5):17-20.
    [11] D.R. Daum, N.B. Smith, R. King, et al. In vivo demonstration of noninvasive thermal surgeryof the liver and kidney using ultrasonic phased array. Ultrasound in Medicine and Biology,1999,25(7):1087-1098.
    [12] A.V. Zaitsev, N.T. Sanghvi, S. Ikenberry, et al. High intensity focused ultrasound (HIFU)Treatment of human pancreatic cancer. IEEE Ultrasonics Symposium,1996,1295-1298.
    [13] N.T. Sanghvi, R. Hawes, K. Kopecky, et al. High intensity focused ultrasound for thetreatment of rectal tumors: a feasibility study. IEEE Ultrasonics Symposium,1994,1895-1898.
    [14] M.T. Buchanan, K. Hynynen. Design and experimental evaluation of an intracavitaryultrasound phased array system for hyperthermia. IEEE Transactions on BiomedicalEngineering,1994,41(12):1178-1187.
    [15] F. Wu, Z.B. Wang, W.Z. Chen, et al. Extracorporeal focused ultrasound surgery for treatmentof human solid carcinomas: early Chinese clinical experience. Ultrasound Med Biol,2004,30(2):245-260.
    [16] G.W. Li, Y.Z. Chen. Optimization of the design parameters of high intensity focusedultrasound phased arrays. Acoustic Letters,2001,24(7):133-135.
    [17] Y.M. Huo, Y.Z. Chen. Simulation of field characteristics of the focused axisymmetricallycurved surface transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and FrequencyControl,2001,48(2):445-451.
    [18] Q. Chen, J.F. Bai, Y.Z. Chen. The effect of unequal countercurrent vessels on the3-Dtemperature fluctuation during simulated high intensity focused ultrasound. SecondInternational Symposium on Therapeutic Ultrasound, Washington USA, Seattle,2002.
    [19] Z. Wang, F. Wu, Z. Wang, et al. Targeted damage effects of high intensity focused ultrasoundon liver tissues of Guizhou Province miniswine. Ultrason Sonochem,1997,4(2):181-182.
    [20]邹建中,伍烽,李佩希等.超声监控超声聚焦刀治疗肝癌及疗效评价研究.中国超声医学杂志,2000,16(10):766-768.
    [21]邹建中. HIFU高强度聚焦超声治疗肿瘤的超声定位实时监控及疗效评价.临床超声医学杂志,2001,3(11):23-29.
    [22]李小平,谢敬华,李培根.五坐标高强度聚焦超声刀的研制.医疗卫生装备,2002,4:22-24.
    [23]于晋生,朱厚卿,兰江等.高强度体外聚焦热疗仪的特性与致热效果.中国超声医学杂志,1998,14(4),26.
    [24]何申戌,熊六林,姚松森等.高能聚焦超声热疗临床前实验研究.北京医科大学学报,1999,31(6):573-576.
    [25]何申戌,熊六林,王国民等.高强度聚焦超声治疗869例腹腔盆腔实性癌瘤和组织增生症临床初步报告.中国超声医学杂志,2002,18(3):180-183.
    [26] HY2900聚焦超声肿瘤治疗系统.中国医疗器械信息,2002.8(6):42-43.
    [27]翟亮,孙福成,蒋继伟等.超声热疗技术的发展与应用.中国医疗器械杂志,2002,26(4):281-284.
    [28]张洪峰,钱晓平,孙福成等. HIFU肿瘤热疗机的计算机辅助治疗系统.中国医疗器械杂志,2002,26(2):96-99.
    [29] I. Sakuma, Y. Takai, E. Kobayashi, et al. Navigation of high intensity focused ultrasoundapplicator with an integrated three-dimensional ultrasound imaging system. MICCAI2002,LNCS2489,133-139,2002.
    [30] H. Yao, P. Phukpattaranont, E. Ebbini. Enhanced Lesion Visualization in Image-GuidedNoninvasive Surgery with Ultrasound Phased Arrays.2001Proceedings of the23AnnualEMBS, International Conference, October25-28, Istanbul,2492-2495, Turkey,2001.
    [31] C. Simon, J. Shen, T. Hall, et al. Combined ultrasound image guidance and therapy using atherapeutic phased array. SPIE: MedicalImaging1998,3341, San Diego,1998.
    [32] A.H. Chan. Image-guided High Intensity Focused Ultrasound Treatment for UterineLeiomyomata. Ph.D Dissertation, University of Washington.2003.
    [33] B.A. Rabkin. High-Intensity focused ultrasound (HIFU) induced hyperechoic region for theultrasound guidance of HIFU therapy. Ph.D Dissertation, University of Washington.2004.
    [34] K.R. Gorny, N.J. Hangiandreou, G.K. Hesley, et al. MR guided focused ultrasound: technicalacceptance measures for a clinical system. Phys Med Biol.2006,51(12):3155-3173.
    [35] K. Hynynen, A. Darkazanli, E. Unger, et al. MRI guided noninvasive ultrasound surgery.Med Phys,1993,20:107-115.
    [36] H. Cline, K. Hynynen. Simultaneous magnetic resonance phase and magnitude temperaturemaps in muscle. Magn Reson Med,1996,35:309-315.
    [37] I. Suramo, M. Pivnsalo, V. Myllyl. Cranio-caudal movements of the liver, pancreas andkidneys inrespiration. Acta Radio l Diag,1984,25(2):129-131.
    [38]于甬华,赵月环,罗立民等.呼吸运动对肝部占位性病灶位置的影响及数学模型的建立.中华放射肿瘤学杂志,2002,12,11(4):245-247.
    [39] K. Kitamura, H. Shirato, Y. Seppenwoolde, et al. Tumor location, cirrhosis, and surgicalhistory contribute to tumor movement in the liver, as measured during stereotactic irradiationusing a real-time tumor tracking radiotherapy system. Int J Radiat Oncol Biol Phys,56:221-228,2003.
    [40] A.M. Berson, R. Emery, L. Rodriguez, et al. Clinical experience using respiratory gatedradiation therapy: comparison of free-breathing and breath-hold techniques. Int J RadiatOncol Biol Phys,2004,60(2):419-426.
    [41] L.A. Dawson, K. Brock, S. Kazanjian, et al. The rep roducibility of organ position usingactive breathing control (ABC) during liver radiotherapy. Int J Radiat Oncol Biol Phys,2001,51:1410-1421.
    [42] M.N. Do, M. Vetterli. The contourlet transform: an efficient directional multiresolution imagerepresentation. IEEE Trans. Image Proc.,2005,14(12):2091-2106.
    [43] J. Stoeckler, G.V. Welland. Beyond Wavelets. New York:Academic Press,2003
    [44] Z.F. Zhou and P.L. Shui. Contourlet-based image denoising algorithm using directionalwindows. Electronics Letters,2007,43(2):92-93.
    [45] W. Ni, B.L. Guo, Y.Y. Yan, et al. Speckle suppression for SAR images based on adaptiveshrinkage in contourlet domain. Wcica2006: Sixth World Congress on Intelligent Controland Automation, Vol.1-12, pp.10017-10021, June2006.
    [46] K. Li, J.H. Gao, W. Wang. Adaptive Shrinkage for Image Denoising Based on ContourletTransform, Intelligent. Second International Symposium on Information TechnologyApplication, IITA '08. Vol.2, pp.995-999,20-22Dec.2008.
    [47] H.F. Li, W.W. Song, S.X. Wang. A novel blind watermarking algorithm in contourlet domain.18th International Conference on Pattern Recognition, Vol.3, pp.639-642, September2006.
    [48] A. Bouzidi, N. Baaziz. Contourlet domain feature extraction for image content authentication.IEEE Workshop on Multimedia Signal Processing, pp.202-206, Victoria, BC, Canada,October2006.
    [49] Y. Chai, Y. He, C.L. Ying. CT and MRI Image Fusion Based on Contourlet Using a NovelRule. The2nd International Conference on Bioinformatics and Biomedical Engineering,ICBBE2008. pp.2064–2067,16-18, May2008.
    [50] P. Feng, Y. J. Pan, B. Wei, et al. Enhancing retinal image by the Contourlet transform. PatternRecognition Letters, Vol.28, Issue4, pp.516-522, March2007.
    [51] R. Zewail, M. Mandal, N. Durdle. Iris identification using contourlet transform. SPIE Proc.:Image Processing: Algorithms and Systems V, Vol.6497, pp.6497C1-8, San Jose, CA, USA,2007.
    [52] Y.A. Zheng, C.S. Zhu, J.S. Song, et al. Fusion of multi-band SAR images based on contourlettransform. IEEE International Conference on Information Acquisition, vol.1-2, pp.420-424,Weihai, China, August2006.
    [53] M.N. Do. Directional multiresolution image representations. Ph.D dissertation, Swiss FederalInstitute of Technology, Lausanne, Switzerland, December2001.
    [54] E.J. Cand`es, D.L. Donoho. Ridgelets: a key to higher-dimensional intermittency. Phil. Trans.R. Soc. Lond. A.,1999, pp.2495–2509.
    [55] E.J. Cand`es, D.L. Donoho. Curvelets-a surprisingly effective nonadaptive representation forobjects with edges. In Curve and Surface Fitting, A. Cohen, C. Rabut, and L. L. Schumaker,Eds. Saint-Malo: Vanderbilt University Press,1999.
    [56] E.J. Cand`es, D.L. Donoho. New tight frames of curvelets and optimal representations ofobjects with piecewise C2singularities. Commun. on Pure and Appl. Math.,2004,2:219-266.
    [57] D.L. Donoho. Wedgelets: nearly-minimax estimation of edges. Ann. Statist.,1999,27:859-897.
    [58] M.B. Wakin, J.K. Romberg, H. Choi, et al. Ratedistortion optimized image compressionusing wedgelets. In Proc. IEEE Int. Conf. on Image Proc., Rochester, New York, Oct.2002.
    [59] E.L. Pennec, S. Mallat. Sparse geometric image representation with bandelets. IEEE Trans.Image Proc.,2005,14:423-438.
    [60] Y. Lu, M.N. Do. CRISP-contourlet: a critically sampled directional multiresolution imagerepresentation. In Proc. SPIE Conf. on Wavelet Applications in Signal and Image Processing,San Diego, Aug.2003.
    [61] D.D.Y. Po, M.N. Do. Directional Multiscale Modeling of Images Using the Contourlettransform. IEEE Trans. Image Proc.,2006,15(6):1610-1620.
    [62] J.P. Zhou, A.L. Cunha, M.N. Do. Nonsubsampled Contourlet Transform: Construction andApplication in Enhancement. IEEE International Conference on Image Processing, pp:469-472,2005.
    [63] M.N. Do, M. Vetterli. The contourlet transform: an efficient directional multiresolution imagerepresentation. IEEE Transactions on Image Processing,2005,14(12):2091-2106.
    [64] A.L. da Cunha, J.P. Zhou, M.N. Do. The Nonsubsampled Contourlet Transform: Theory,Design, and Applications. IEEE Transactions on Image Processing,2005,15(10):3089-3101.
    [65] R. Eslami, H.Radha. The contourlet transform for image denoising using cycle spinning.Conference Record of the37th Asilomar Conference on Signals, Systems and Computers,Vol.2, pp1982-1986,Pacific Grove, CA, USA, Nov.2003.
    [66] R. Eslami, H. Radha. Image denoising using translation-invariant contourlet transform. IEEEInternational Conference on Acoustics, Speech, and Signal Processing, Vol.4, pp:57-60,Philadelphia, PA, USA,18-23March2005.
    [67] B.S. Raghavendra, P. S. Bhat. Contourlet based multiresolution texture segmentation usingcontextual hidden Markov models. Intelligent Information Technology.7th InternationalConference on Information Technology, CIT2004. Proceedings,336-343, Hyderabad, India,20-23Dec.2004.
    [68]郁梅,易文娟,蒋刚毅.基于Contourlet变换尺度间相关的图像去噪.光电工程,2006,33(6):73~77,83.
    [69]王忠华.基于Contourlet变换的子带自适应图像去噪.南昌航空工业学院学报(自然科学版),2006,20(2):21~23.
    [70]张伟,刘文波,张弓等. SAR图像的NSCT域自适应收缩相干斑抑制.中国图象图形学报,2009,14(1):8~13.
    [71]陈耀文,刘伟文,沈智威等.基于Contourlet域Context模型的磁共振图像去噪方法.2008,13(2):116~120.
    [72]沙宇恒,丛琳,孙强等.基于Contourlet域HMT模型的SAR图像相干斑抑制.红外与毫米波学报,2009,28(1):66~71.
    [73]杨镠,郭宝龙,倪伟.基于层结构的Contourlet多阈值图像去噪算法.计算机工程,2006,32(20):180~182.
    [74]沙宇恒,丛琳,孙强等.基于Contourlet域HMT模型的多尺度图像分割.红外与毫米波学报,2005,24(6):472~476.
    [75] Y.A. Zheng, C.S. Zhu, J.S. Song, et al. Fusion of multi-band SAR images based on contourlettransform. IEEE International Conference on Information Acquisition.2006:420-424.
    [76]练秋生,孔令富.冗余轮廓波变换的构造及其在SAR图像降斑中的应用.电子与信息学报,2006,28(7):1215~1218.
    [77] A.L. Cunha, M.N. Do. Bi-orthogonal filter banks with directional vanishing moments. InProc. IEEE Int. Conf. Acoust., Speech, and Signal Proc., pp. iv/553-iv/556, Philadelphia,Mar.2005.
    [78] Y. Lu, M.N. Do. A New Contourlet Transform With Sharp Frequency Localization. Proc. ofIEEE International Conference on Image Processing, pp.1629-1632,Atlanta,2006.
    [79] R. Young. An introduction to nonlinear Fourier series. New York: Academic Press,1980,43:215-235.
    [80] J. Morlet. Wave propation and sampling theory and complex waves. Geophysics,1982,47(2):222-236.
    [81] I. Daubechies. Orthonormal bases of compactly supported wavelets. Comm. On Pure andAppl. Math.,1988,41(7):909-996.
    [82] P.J. Burt, E. Adelson. The Laplacian Pyramid as a compact image code. IEEE Trans onCommunications,1983,31(4):532-540.
    [83] S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation.IEEE Trans. Patt. Recog. And Mach. Intell.,1989,11(7):674-693.
    [84] S. Mallat. Multifrequency channel decompositions of images and wavelet models. IEEE Tran.On Acoustics, Speech, and Signal Processing,1989,37(12):2091-2110.
    [85] P. J. Burt, E. H. Adelson. The Laplacian pyramid as a compact image code. IEEE Trans.Commun.,1983,31(4):532-540.
    [86] R.H. Bamberger, M.J.T. Smith. A filter bank for the directional decomposition of images:Theory and design. IEEE Trans. Signal Proc.,1992,40(4):882-893.
    [87] N. Kingsbury. Complex wavelets for shift invariant analysis and filtering of signals. Journalof Appl. and Comput. Harmonic Analysis,2001,10:234-253.
    [88] W.T. Xue, J.S. Song, L.H. Yuan, et al. Statistical Dependences of Images Coefficients inContourlet Domain: Analyzing and Modeling. Proceeding of the sixth World Congress onIntelligent Control and Automation, pp:10121-10125, Dalian, China, June,2006.
    [89] M.K. Varanasi, B. Aazhang. Parametric generalized Gaussian density estimation. J. Acoust.Soc. Amer.,1989,86:1404-1415.
    [90] G.V. Wouwer, P. Scheunders, D.V. Dyck. Statistical texture characterization from discretewavelet representations. IEEE Trans. Image Proc.,1999,8(4):592-598.
    [91] K.Sharifi, A. Leon-Garcia. Estimation of shape parameter for generalized Gaussiandistributions in subband decompositions of video. IEEE Trans. Circuits Sys. Video Tech.,1995,5:52-56.
    [92] P. Moulin, J. Liu. Analysis of multiresolution image denoising schemes using generalizedGaussian and complexity priors. IEEE Trans. Inform. Th.,1999,45:909-919.
    [93] Y. Meyer. Wavelets and Operators. Advanced mathematics. Cambridge University Press,1992.
    [94] T.M. Cover, J.A. Thomas. Elements of Information Theory. New York, NY: WileyInterscience,1991.
    [95] R. Moddemeijer. On estimation of entropy and mutual information of continuousdistributions. Signal Proc.,1989,16(3):233-246.
    [96] J. Beirlant, E.J. Dudewicz, L. Gy¨ofi, et al. Nonparametric entropy estimation: An overview.International Journal of Mathematical and Statistical Sciences,1997,6(1):17-39.
    [97] M. Crouse, R.D. Nowak, R.G. Baraniuk. Wavelet-based signal processing using hiddenMarkov models. IEEE Trans. Signal Proc.(Special Issue on Wavelets and Filterbanks),1998,46(4):886-902.
    [98] S. Theodoridis, K. Konstantinos. Recognition(Second Edition). New York, USA: AcademicPress,2003.
    [99] R.O. Duda, P.E. Hart, D.G. Stork. Pattern Classification(Second Edition). New York, USA:Wiley,2000.
    [100]P. Jonsson, L. Eklundh. Seasonality Extraction by Function Fitting to Time-Series of SatelliteSensor Data. IEEE Transaction on Geoscience and Remote Sensing,40(8):1824-1832,August,2002.
    [101]刘咏梅.基于混沌时间序列分析方法的测井曲线识别研究[博士学位论文].哈尔滨工程大学.2005.
    [102]D.L. Donoho, I.M. Johnstone. Ideal spatial adaptation via wavelet shrinkage. Biometrica,1994,81:425-455.
    [103]T. Loupas, W.N. McDicken, P.L. Allan. An adaptive weighted median filter for specklesuppression in medical ultrasonic images. IEEE Trans. Circuits and Syst.,1989,36:129-135.
    [104]A.K. Jain. Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice-Hall,1989.
    [105]I.M. Johnstone, D.L. Donoho. Adapting to smoothness via wavelet shrinkage. Journal of theStatistical Association,1995,90(432):1200-1224.
    [106]M. Vetterli, S.G. Chang, B. Yu. Adaptive wavelet thresholding for image denoising andcompression. IEEE Transactions on Image Processing,2000,9(9):1532-1546.
    [107]X.P. Zhang, M.D. Desai. Adaptive denoising based on SURE risk. IEEE Signal Process. Lett.,1998,5(10):265-267.
    [108]M. Nasri, H. Nezamabadi-pour. Image denoising in the wavelet domain using a new adaptivethresholding function. Neurocomputing,2009,72(4-6):1012-1025.
    [109]S. Gupta, R.C. Chauhan, S.C. Sexana. Wavelet-based statistical approach for specklereduction in medical ultrasound images. Medical and Biological Engineering and Computing,2004,42:189-192.
    [110]M. Jansene. Noise reduction using wavelets. Lecture series in Statisitcs, Springer Verlag,New York,2001.
    [111]R.F. Wagner, S.W.Smith, J.M.Sandrik, et al. Statistics of speckle in ultrasound B-scans. IEEETrans. Sonics Ultrason.,1983,30(3):156-163.
    [112]C. Burckhardt. Speckle in ultrasound B-mode scans. IEEE Trans. Sonics Ultrason.,1978,25:1-6.
    [113]T.A. Tuthill, R.H. Sperry, K.J. Parker. Deviation from Rayleigh statistics in ultrasonicspeckle. Ultrason. Imag.,1994,16:81-90.
    [114]A.N. Evan, M.S. Nixon. Mode filtering to reduce ultrasound speckle for feature extraction.IEE Proc. Vis. Image Signal Process.,1995,142(2):.87-94
    [115]S. Gupta, R.C. Chauhan, S.C. Saxena. Locally adaptive wavelet domain Bayesian processorfor denoising medical ultrasound images using Speckle modeling based on Rayleighdistribution. IEE Proc.-Vis. Image Signal Process.,2005,152(1):129-135.
    [116]A. Synyavskyy, S. Voloshynovskiy, I. Prudyus. Wavelet based MAP image denoising usingprovably better class of stochastic I.I.D. image models. Electron. Energetics Facta Univ.(NIS),2001,14(3):375-385.
    [117]S. Fukuda, H. Hirosawa. Smoothing effect of wavelet-based speckle filtering: the Harr basiscase. IEEE Transactions on Geosciences and Remote Sensing,1999,37:1168-1172.
    [118]A. Pizurica, W. Philips, I. Lemahieu, M. Acheroy. A versatile wavelet domain noise filtrationtechnique for medical imaging. IEEE Trans. Med. Imag.,2003,22(3):323-331.
    [119]S. Gupta, R.C. Chauhan, S.C. Waxena. A robust multi-scale non-homomorphic approach tospeckle reduction in medical ultrasound images. IEE J. Int. Fed. Med. Biol. Eng.,2005,152(1):129-135.
    [120]P.M. Shankar. Ultrasonic tissue characterization using a generalized Nakagami model. IEEETrans. Ultrason. Ferroelectr. Frequency Control,2001,48(6):1716-1720.
    [121]S. Na, D.L. Neuhoff. On the support of MSE optimal, fixed-rate scalar quantizers. IEEETrans. Inform. Theory,2001,47(4):2972-2982.
    [122]E.W. Stacy, G.A. Mihram. Parameter estimation for a generalized Gamma distribution.Technometrics,1965,7(3):349-357.
    [123]S. Mallat, W.L. Hwang. Singularity detection and processing with wavelet. IEEE Trans. OnInformation Theory,1992,38(2):617-643.
    [124]Y. Meyer. Wavelet algorithms&applications, New York: SIAM,1993.
    [125]P.H. Weiss, J.M. Baker, E.J. Potchen. Assessment of hepatic respiratory excursion. J NuclMed.,1972,13:758-759.
    [126]J.M. Balter, R.K. Ten Haken, T.S. Lawrence, et al. Uncertainties in CT-based radiationtherapy treatment planning associated with patient breathing. Int J Radiat Oncol Bio Phys,1996,36:167-174.
    [127]S. Shimizu, H. Shirato, B. Xo, et al. Three-dimensional movement of a liver tumor detectedby high-speed magnetic resonance imaging. Radiother Oncol,1999,50:367-370.
    [128]I. Suramo, M. Paivansalo, V. Myllyla. Craniocaudal movements of the liver, pancreas andkidneys in respiration. Acta Radiol Diag,1984,25:129-131.
    [129]S.C. Davies, A.L. Hill, R.B. Holmes, et al. Ultrasound quantification of respiratory organmotion in the upper abdomen. Br J Radiol,1994,67:1096-1102.
    [130]K.K. Herfarth, J. Debus, F. Lohr, et al. Extracranial stereotactic radiation therapy: set-upaccuracy of patients treated for liver metastases. Int J Radiat Oncol Biol Phys,2000,46(2):329-335.
    [131]Y. Negoro, Y. Nagata, T. Aoki, et al. The effectiveness of an immobilization device inconformal radiotherapy for lung tumor: reduction of respiratory tumor movement andevaluation of the daily setup accuracy. Int J Radiat Oncol Biol Phys,2001,50(4):889-898.
    [132]S. Miohara, T. Kanai, M. Endo, et al. Respiratory gated irradiation system for heavy-ionradiotherapy. Int J Radiat Oncol Biol Phys,2000,47(4):1097-1103.
    [133]V.R. Kini, S.S. Vedam, P.J. Keall, et al. Patient training in respiratory gated radiotherapy.Med Dosim,2003,28(1):7-11.
    [134]K.E. Rosenzweig, J. Hanley, D. Mah, et al. The deep inspiration breath-hold technique in thetreatment of inoperable non-small-celllung cancer. Int J Radiat Oncol Biol Phys,2000,48(1):81-87.
    [135]J.W. Wong, M.B. Sharpe, D.A. Jaffray, et al. The use of active breathing control (ABC) toreduce margin for breathing motion. Int J Radiat Oncol Biol Phys,1999,44(4):911-919.
    [136]L. Gagnon, A. Jouan. Speckle filtering of SAR images---A comparative study betweencomplex-wavelet based and standard filters. In SPIE Proc,1997,3169:80-91.
    [137]H. Guo, J.E. Odegard, M. Lang et al. Wavelet based speckle reduction with application toSAR based ATD/R. In: Proc ICIP, pp.75-79,1994.
    [138]P. Perona, J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE TransPattern Anal Mach Intell,1990,12:629-639.
    [139]S.M. Phoong, C.W. Kim, P.P. Vaidyanathan, et al. A new class of two-channel biorthogonalfilter banks and wavelet bases. IEEE Trans Signal Process,1995,43(3):649-665.
    [140]F. Sattar, L. Floreby, G. Salomonsson, et al. Image enhancement based on a nonlinearmultiscale method. IEEE Trans Image Process,1997,6(9):888-895.
    [141]X. Hao, S. Gao, X. Gao. A novel mutiscale nonlinear thresholding method for ultrasonicspeckle suppressing. IEEE Trans Med Imag,1999,18:787-794.
    [142]A. Alin, B. Anastasios, T. Panagiotis. Novel Bayesian Mutiscale Method for SpeckleRemovel in Medical Ultrasound Images. IEEE Trans Med Imag,2001,20(8):772-783.
    [143]http://server.elektro.dtu.dk/personal/jaj/field/examples/ftp_files/cyst_phantom
    [144]http://www.csh.org.tw/into/rtweb/paper/gating-imrt.htm
    [145]郭圣文.超声图像斑点研究及应用[博士学位论文].东南大学,2003
    [146]赵永明,图像引导HIFU治疗中的图像分割与配准技术的研究[博士学位论文].上海交通大学,2005.
    [147]F. Argenti, T. Bianchi, G. M. Scarfizzi, et al. LMMSE and MAP estimators for reduction ofmultiplicative noise in the nonsubsampled contourlet domain. Signal Processing,2009,89(10):1891-1901.
    [148]贾建,焦李成,魏玲.基于概率模型的非下采样Contourlet变换图像去噪.西北大学学报(自然科学版),2009,39(1):13-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700