用户名: 密码: 验证码:
扬州鹅肠道微生物多样性及其受饲粮纤维水平的调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鹅对粗纤维具有较强的利用能力。大部分研究者认为鹅消化纤维主要是通过其强大的肌胃的磨损作用和盲肠微生物的发酵作用。但是也有学者认为除盲肠以外的肠道部分也有可能消化利用纤维。而家禽自身不能分泌纤维素分解酶和半纤维素分解酶,主要是靠消化道内的微生物来分泌的,所以研究鹅肠道微生物的多样性以及菌群的组成是十分重要的。随着分子生物学技术的发展,16S核糖体核糖核酸(16S ribosomal RNA,16S rRNA)基因分子技术已经开始应用于动物肠道菌群区系的研究中,其中16S rRNA克隆文库技术和多聚酶链式反应(Polymerase chain reaction, PCR)-变性梯度凝胶电泳(denaturing gradient gel electrophoresis, DGGE)图谱技术的应用可以使我们从定性水平上对鹅肠道微生物区系有更全面、更深入、更准确的了解。而实时荧光定量(real time PCR, RT-PCR)技术的应用从定量水平上使我们更清楚知道鹅肠道菌群的变化情况。与其他家禽相比,鹅是草食类节粮型家禽,所以对于日粮的研究主要集中于日粮纤维上。故明确鹅肠道菌群的组成,了解不同年龄对鹅肠道菌群的动态变化,以及清楚日粮纤维对鹅肠道微生物的影响,可为调控鹅的健康生长以及鹅的集约化饲养提供科学依据。全文分为5个部分进行。
     试验一鹅盲肠产纤维素降解菌的分离鉴定与进化树分析
     本试验选择散养的成年扬州鹅6只,屠宰,在无菌条件下取出盲肠食糜,利用厌氧罐、厌氧袋与厌氧指示剂相结合的方法厌氧培养,在分离板上反复划线分离,直至长出单菌落。共筛选到15株,将初筛出的菌株用刚果红染色,测定溶解圈,并计算酶的相对活性,然后挑取酶的相对活性较大的3株菌株进行16S rRNA基因序列测序。结果表明,分离的菌株M2的16S rRNA的部分序列与放线菌株Coriobacteriaceae中的Olsenella sp的同源性高达96%,M5与Uncultured Streptococcus sp.的相似性达99%,鉴定为链球菌属。M8与一株利用延胡索酸的菌的同源性达到99%。通过进化树分析,分离菌株M2与第五章盲肠DGGE图谱切胶回收测序所代表的菌36都属于Coriobacteriaceae,但两个菌亲缘关系的比较远。
     试验二扬州鹅盲肠细菌16S rRNA基因序列分析
     采用细菌通用引物F27和R1492对目标基因进行PCR扩增,克隆、测序后利用Neighbor-joining方法构建系统进化树。结果显示:鹅盲肠细菌的多样性丰富,其中盲肠内容物细菌16S rRNA克隆文库共获得了160个16S rRNA基因序列,可分为46个操作分类单元(operational taxonomic units, OTUs);而盲肠粘膜细菌获得了124个16S rRNA基因序列,可分为29个操作分类单元。鹅盲肠内容物文库中,Clostridia是第一优势菌,占58.7%;Bacteroidetes是第二大优势菌群,占26.9%;Erysipelotrichi占11.2%。盲肠内容物中存在1.3%的Veillonellaceae。鹅盲肠内容物菌群主要有4个门,分别为Firmicutes、Bacteroidetes、 Elusimicrobia和Proteobacteria,所占的比例分别为69.9%、26.9%、2.6%、0.6%。而在鹅盲肠粘膜文库中,获得的124个序列中,有34个序列与Pseudomonas sp的相似性达99%;9个序列与Stenotrophomonas rhizophila,相似性达99%。鹅盲肠粘膜中Gammaproteobacteria是第一优势菌,占59.6%,Clostridia是第二大优势菌群,占20.1%。鹅盲肠粘膜菌群有4个门,分别为Proteobacteria、Firmicutes、Actinobacteria和Bacteroidetes,所占的比例分别为71.89%、24.26%、2.42%、1.61%。
     试验三扬州鹅回肠细菌16S rRNA基因序列分析
     采用细菌通用引物F27和R1492对目标基因进行PCR扩增,克隆、测序后利用Neighbor-joining方法构建系统进化树。结果显示:回肠内容物细菌16S rRNA克隆文库共获得了86个16S rRNA基因序列,可分为8个操作分类单元。回肠的微生物种类很少,回肠内容物文库中35%的克隆来自未培养细菌,Turicibacter sanguinis(41.8%)和Peptostreptococcaceae (32.5%)是其中的优势菌群。且没有发现与纤维分解相关的菌群,推测鹅的回肠不是鹅消化纤维的主要场所。
     试验四PCR-DGGE技术研究不同周龄扬州鹅肠道细菌的区系变化
     利用基于16S rDNA的DGGE图谱技术结合特异性和共性条带割胶回收DNA进行克隆和测序,对2、4、6、8、10周龄鹅十二指肠、空肠、回肠和盲肠内容物细菌群落的结构和多样性进行了比较,并鉴定了10周龄鹅部分特异性和共性群落成员,分析不同周龄扬州鹅肠道细菌的区系变化。肠道菌群DGGE图谱显示2周龄时各肠段微生物的多样性最丰富,鹅的盲肠微生物在6周龄时已经建立了相对稳定的微生物群落DGGE图谱中共性条带序列分析表明鹅肠道中存在很多未培养菌。盲肠中主要足不可培养的菌、假单胞菌和拟杆菌。其他肠道也存在一些未培养菌,且链球菌是空肠所特有的菌,假单胞菌、Uncultured Turicibacter是所有肠道所共有的菌。
     试验五用DGGE和RT-PCR技术研究不同纤维水平对扬州鹅肠道微生物的影响
     试验选用140日龄体重相近的健康扬州鹅公鹅96只,随机分成A、B、C、D共4组每组4个重复,每个重复6只,A组为对照组,B、C、D组为试验组,试验日粮分别用稻壳替代20%、40%、60%的基础日粮,3周后每组取8只屠宰,无菌采集十二指肠、空肠、盲肠内容物,提取细菌基因组总DNA, PCR扩增16S rRNA,用DGGE方法分析不同纤维水平对鹅肠道细菌多样性的影响,并对盲肠DGGE图谱中各组的共性条带和特异条带进行切胶回收,克隆转化测序来分析盲肠细菌群落结构的变化,用实时荧光定量PCR检测盲肠中总菌、梭菌Ⅳ、梭菌ⅩⅣ、拟杆菌、双歧杆菌、乳酸菌、肠杆菌、肠球菌、韦荣球菌、大肠杆菌、丁酸激酶、丁酰辅酶A的含量。结果表明,纤维水平的不同对鹅的盲肠菌群起主要的作用,且随着纤维水平的提高,盲肠中微生物的种类也增加。基因测序分析发现鹅盲肠中特异条带主要是不可培养细菌,添加稻壳后的B组、C组中出现与分解纤维素和发酵碳水化合物相关的菌,包括梭菌属细菌、密螺旋体、纤维单细胞菌属、拟杆菌属、真细菌属。通过Real-time PCR对鹅盲肠中细菌数量的定量结果发现C组与A组相比,梭菌Ⅳ含量显著提高;纤维水平的改变对总菌和双歧杆菌没有显著影响,但是纤维水平的增加显著增加了乳酸杆菌的含量。A组与C组相比,C组中韦荣氏菌的含量显著比A组高。纤维水平的增加,对产丁酸菌相关的酶的基因没有显著影响。A组与B组、C组中的大肠杆菌数量有显著差异,纤维水平增加一定量时,可以抑制大肠杆菌的数量,但是纤维水平过高,也会使大肠杆菌的含量增加。
Waterfowl are renowned for their ability to exploit a wide variety of food resources, due to their big gizzard and fermentation of geese ceca. But birds cannot excrete cellulose by themselves, so there are many cellulose-splitting bacteria within the ceca. It is very important to study the gut microbial flora ecology in geese. With the development of molecular biology, different molecular techniques have been used to evaluate the microbial diversity of different ecosystems. In recent years, denaturing gradient gel electrophoresis (DGGE). as a molecular fingerprint and the use of16S ribosomal RNA gene (16S rRNA) sequences to classify and identify microorganisms, have been widely used in microbial diversity. And Real-time PCR (Real time ploymerase chain reaction, RT-PCR) can be quantitative of bacterial numbers of geese intestinal. Using group-specific primer sets, the abundance of a particular gene marker for a defined group in the community can be estimated by comparison to a standard curve. Unlike other avian species, the goose can take advantage of fibrous plant materials partly. So we must focus on the study about the effect of dietary fibre on geese. The purpose of this study was to understand the intestinal microbiota composition of geese, to know what kind of bacteria colonize the ceca with different age, to know the effect of dietary fibre on community of geese intestinal. So we start to make some experiments.
     Trial6Study on isolation and identifation of cellulose decomposing bacterial in geese ceca by16S rRNA genes analysis
     The study also included a correlative research work developing cellulolytic microbiology resources. In order to know the function of geese ceca, and digestion mechanism of fiber, we select six geese in the experiment. Geese were slaughtered and sterilized then ceca were collected immediately. Using the technology of anaerobic culture, culture mixture were streaked onto CMC-Na culture medium. All15strains were selected from ceca content. Colonies were stained with Cong-red. Diameters of stain circles were measured and relative enzyme activity was calculated. Three of which was selected for the biggest diameters of stain circles. The clones were identified bby comparing16S rRNA partial gene sequence of strains with BLAST analysis. The results showed that the strain (M2) had a identity (96%) with the cultured species Olsenella sp.. The strain (M5) had a high identity (99%) with the species Uncultured Streptococcus sp..The strain (M5) had a high identity (99%) with the rumen bacterium enrichment culture clone for utilizing fumarate.
     Trial2Molecular profiling of bacterial species in the caecum of geese
     The purpose of this study was to analyse the microbial diversity in the caecum of geese using a16S rRNA clone library approach. A total of160clones and124clones were sequenced and phylogenetically analysed from the contents and mucosa of the caecum of Yang Zhou geese, respectively. The result indicated that there was a rich variety of bacteria in the caecum contents. Forty-six operational taxonomic units (OTUs) based on a98%similarity criterion were classified in the contents of goose caecum, as compared to29OTUs based on a97%similarity criterion in the mucosa of goose caecum. Contents of goose caecum were dominantly occupied by Clostridia-related species (58.7%) with other abundant sequences being related to Bacteroidetes (26.9%) and Erysipelotrichi (11.2%). There are four phylum in the content of geese caecum, such as Firmicutes (69.9%), Bacteroidetes (26.9), Elusimicrobia (2.6%), Proteobacteria (0.6%). Thirty-four clones had a high identity (99%) with the cultured species, Pseudomonas sp. and nine clones had a high identity (99%) with the cultured species, Stenotrophomonas rhizophila.in the mucosa of goose caecum. Gammaproteobacteria (59.6%) and Clostridia (20.1%) were predominant in the mucosa of goose caecum. There are four phylum in the content of geese caecum, such as Proteobacteria (71.89%), Firmicutes (24.26%), Actinobacteria (2.42%)Bacteroidetes (1.61).
     Trial3Molecular profiling of bacterial species in the ileum of geese
     The purpose of this study was to analyse the microbial diversity in the ileum of geese using a16S rRNA clone library approach. A total of86clones were sequenced and phylogenetically analysed from the contents of the ileum of Yang Zhou geese. The result indicated that eight operational taxonomic units (OTUs) based on a97%similarity criterion were classified in the contents of goose ileum. Contents of goose ileum were dominantly occupied by Turicibacter sanguinis (41.8%) and with other abundant sequences being related to Peptostreptococcaceae (32.5%).
     Trial4The bacterial community and diversity in the intestinal tract of geese analyzed by PCR-DGGE
     In the present paper, it is presented and discussed how age affected the bacterial community in the gastrointestinal tract of geese. PCR-DGGE of bacterial16S rRNA gene fragments was applied. DGGE analyses revealed that there were the fewest bands in ileum and the most bands in cecum, respectively. At Week2, bands numbers in duodenum and jejunum were significantly more than other ages. Then, the bands number decreased with the increasing of age. The bands numbers in jejunum were relatively stable. Most of the sequences retrieved from the DGGE bands were closely related to uncultured bacteria. Six sequences were related to Pseudomonas, with98-100%similarity. The special bacterial in ceacal digesta of geese were Pseudomonas, Bacteroides sp., and plenty of uncultured bacterial. There are uncultured bacterial in the duodenum, jejunum, ileum. The special bacterial in jejunum digesta of geese were Streptococcus pyogenes. Pseudomonas sp. and Uncultured Turicibacter were predominant in the intestinal tract.
     Trial5Analysis of geese intestinal community shifts in response to dietary fibre
     This study was carried out to investigate the effects of dietary fibre on intestinal microbial flora ecology in geese. Ninety six140-day old adult ganders were randomly assigned into4dietary treatments, each treatment allocated to4replicates and per replicate with6birds. The control (A group) was fed basal diet, and experimental B, C, D group were fed basal diets insteaded by20%,40%and60%rice husk. Food and water were offered ad libitum for3weeks. After3weeks, two birds from each replicate were randomly selected and killed. Duodenum, jejunum and cecal contents were aseptically collected, and the total genomic DNA was extracted, then the intestinal bacterial community was analyzed by denaturing gradient gel electrophoresis (DGGE) analysis of universal16S rDNA after amplication with PCR, and the populations of total bacteria, Clostridium genus cluster IV, Clostridium cluster XIVa and XIVb, Bifidobacterium, Lactobacillus, Enterobacteriaceae, Enterococcus spp., Veillonella spp., E.coil, butyryl-coenzyme A (CoA) CoA transferase gene copies, butyrate kinase gene were detected by real-time PCR. Results showed that:With the increase of dietary crude fibre level, the band numbers of DGGE profiles of the V3region gene amplication of16S rRNA of cecal microflora increased. Gene sequences analysis indicated that the specific bands were mainly uncultured bacteria in cecum of geese. Genomic DNA in the dominant band in the group B and group C confirmed to be closely related to DNA from Uncultured Clostridiaceae bacterium. Uncultured Treponema sp., Cellulomonas sp.,Uncultured Bacteroides sp., Uncultured Eubucteriaceae bacterium. Numbers of Clostridium genus cluster Ⅳ in group C and D was significant higeher than that in group A by Real-time PCR. There are no difference every group for populations of total bacteria and Bifidobacterium, but dietary fibre increased the populations of Lactobacillus. Numbers of Veillonella spp. in group C was significant higher than that in group A. and dietary fibre decreased the populations of E. coil. There were no significant differences in numbers of butyryl-coenzyme A (CoA) CoA transferase gene copies, butyrate kinase gene among every group.
引文
[1]Vaughan, E.E., Schut, F., Heilig Hans, G.H.J., Zoetendal, E. G., de Vos, W. M., Akkermans, A.D. L.. A molecular view of the intestinal ecosystem[J]. Current Issues in Intestinal Microbiology,2000.1:1-12.
    [2]Mackie, R. I., Sghir, A., Gaskins, H. R... Developmental microbial ecology of the neonatal gastrointestinal tract [J]. American Journal of Clinical Nutrition,1999,69:1035S-1045S.
    [3]Jeurissen, S. H., Lewis, F.J., van der Klis, D.. Parameters and techniques to determine intestinal health of poultry as constituted by immunity,integrity, and functionality [J]. Current Issues in Intestinal Microbiology, 2002.3:1-14.
    [4]Ewing, W. N., Cole, D. J. A.. The Living Gut.Context, Dungannon, Ireland.1994.
    [5]Collier, C. T., Smiricky M. R.,Tjardes, D. M.,et al. Molecular ecological analysis of porcine ileal microbiota responses to antimicrobial growth promoters [J]. Journal of Animal Science,2003,81:3035-3045.
    [6]Mead, G. C., Adams B. W.. Some observations on the cecal microflora of the chick during the first two weeks of life [J]. British Poultry Science,1975,16:169-176.
    [7]Barnes, E. M., Mead G. C., Barnum D. A.. The intestinal flora of the chicken in the period 2 to 6 weeks of age, with particular reference to the anaerobic bacteria [J]. British Poultry Science,1972,13:311-326.
    [8]Salanitro, J. P., Blake I. G., Muirhead P. A.. Studies on the cecal microflora of commercial broiler chickens[J]. Applied and Environment Microbiology,1974,28:439-447.
    [9]Barrow, P.. Probiotic for chickens.London,1992,225-257.
    [10]Coloe, P. J., Bagust, T. J., Ireland, L.. Development of the normal gastrointestinal microflora of special pathogen-free chickens. The Journal of hygiene(Lond),1984,92(1):79-87.
    [11]李凯年.丁酸可以替代抗生素生长促进剂饲喂肉鸡[J].中国动物保健.2006,45-46.
    [12]Rutherfurd, S. M., Chung T. K., Morel P. C.,et al. Effect of microbial phytase on ileal digestibility of phytate phosphorus, total phosphorus, and amino acids in a lowphosphorus diet for broilers[J]. Poultry Science, 2004,83:61-68.
    [13]王悲跃,王健,赵万里.去盲肠鹅和未去方肠鹅对含不同草粉日粮粗纤维组分代谢率的比较研究[J].中国畜牧杂志,2004,40(12):16-18.
    [14]王世荣.微生态学研究进展[J].生态学进展,1989,6(4):252-256.
    [15]Knarreborg, A., Jensen S. K., Engberg R. M.. Pancreatic lipase activity as influenced by unconjugated bile acids and pH. measured in vitro and in vivo [J]. Journal of Nutritional Biochemistry,2003,14:259-65.
    [16]Green, J., Kellogg T. F.. Bile acid concentrations in serum, bile, jejunal contents, and excreta of male broiler chicks during the first six weeks posthatch[J]. Poultry Science,1987,66:535-40.
    [17]Lin,H. C., Visek W. J.. Colon mucosal cell damage by ammonia in rats[J]. Journal of Nutrition.1991, 21:887-93.
    [18]Corfield, A. P.. Wagner S. A.. Clamp J. R., Kriaris. M.S, Hoskins, L.C.. Mucin degradation in the human colon:production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria[J]. Infection and Immunity,1992,60:3971-978.
    [19]Binek. M., Borzemska W., Pisarski R., Nitsch, S., Schatzmayr, G., Fegeros, K.. Evaluation of the efficacy of feed providing on development of gastrointestinal microflora of newly hatched broiler chickens [J]. Arch. Geflugelkd,2000,64:147-151.
    [20]王金全,蔡辉益,周岩华等.小麦日粮非淀粉多糖和木聚糖酶对肉仔鸡肠道微生物区系的影响[J].畜牧兽医学报.2005,36(10):1014-1020.
    [21]Oyofo, B.A..Prevention of salmonmella infection in broiler production[J]. Poultry Science,1989,68: 1357.
    [22]邵彩梅,韩正康.鹅盲肠纤维类成分消化的研究[J].南京农业大学学报,1992,15(4):86-89.
    [23]Dibner, J. J., Richards J. D.. Antibiotic growth promoters in agriculture:history and mode of action [J]. Poultry Science,2005,84:634-643.
    [24]Garriga, M., Pascual M., Monfort J. M., Hugas, M..Selection of lactobacilli for chicken probiotic adjuncts [J]. Journal of Applied Microbiology,1998,84:125-132.
    [25]Smirnov, A., Perez, R., Amit-Romach, E., Sklan, D., Uni, Z..Mucin dynamics and microbial populations in chicken small intestine are changed by dietary probiotic and antibiotic growth promoter supplementation[J]. Journal of Nutrition,2005,135:187-192.
    [26]Bernet, M. F., Brassart D., Neeser J. R., Servin, A.L.. Lactobacillus acidophilus LAI binds to cultured human intestinalcell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria[J]. Gut, 1994,35:483-489.
    [27]Koenen, M. E., Kramer J., vander Hulst R., Heres, L., Jeurissen, S.H.M., Boersma, W.J.A. Immunomodulation by probiotic Lactobacilli in layer-and meat-type chickens[J]. British Poultry Science, 2004,45:355-366.
    [28]Jin, L. Z., Ho, Y. W., Abdullah, N., Jalaludin, S.. Digestive and bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures[J]. Poultry Science,2000,79:886-891.
    [29]Terada, A., Hara H., Sakamoto J., Sato, N., Takagi, S., Mitsuoka, T., Mino, R., Hara, K., Fujimori, I., Yamada, T.. Effects of dietary supplementation with lactosucrose (4G-beta-D-galactosylsucrose) on cecal flora, cecal metabolites, and performance in broiler chickens[J]. Poultry Science,1994,73:1663-1672.
    [30]Corrier, D. E.. Hinton A.Jr., Ziprin R. L., Beier. R.C., DeLoach, J.R.. Effect of dietary lactose on cecal pH, bacteriostatic volatile fatty acids, and Salmonella typhimurium colonization of broiler chicks[J]. Avian Diseases,1990,34:617-625.
    [31]张春扬,牛钟相,常维山,张壮志.黼生菌剂对肉用仔鸡的营养、免疫促进作用[J].中国预防兽医学报,2002,24(1):51-54.
    [32]da, S. Q. M. K., Costa, G. E., da Silva, N., Reis, S.M., de Oliveira, A.C.. Bifidogenic effect of dietary fiber and resistant starch from leguminous on the intestinal microbiota of rats[J]. Nutrition,2005,21:602-608.
    [33]古秀安.胡彩虹,许梓荣.果寡糖对肉鸡生长、肠道菌群和肠形态的影响[J].中国兽医学报,2003,23(2):196-199.
    [34]易中华.胥传来,计成,马秋刚,陈旭东.果寡糖和枯草芽孢杆菌对肉鸡肠道菌群数量及生产性能的影响[J].中国畜牧杂志,2005,41(12):11-15.
    [35]谢欣梅,张海龙.酸化剂对肉仔鸡肠道微生物区系的影响[J].黑龙江畜牧兽医,2005.32(12):32-33.
    [36]Arias, V. J., Koutsos. E. A.. Effect of dietary copper source on broiler chicken performance and immune responses[J]. Poultry Science,2004,83(Suppl. 1):107. (Abstr.)
    [37]Whitford, M.F., Forster, R.J., Beard, C.E., Gong, J. and Teather, R.M..Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes[J]. Anaerobe,1998,4:153-163.
    [38]图雅.虎粪细菌区系16S rDNA动态[D].南京:南京农业大学,2005.
    [39]Tajima, K., Aminov, R. I., Nagamine, T., Ogata, K., Nakamura, M., Matsui, H., Benno, Y., Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries[J]. FEMS Microbiology Ecology. 1999,29:159-169.
    [40]Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S.R., Nelson, K.E., Relman, D.A.. Diversity of the human intestinal microbial flora[J]. Sciecce,2005,308:1635-1638.
    [41]Matsui, H., Kato. Y., Chikaraishi, T., Moritani, M., Ban-Tokuda, T., Wakita, M.. Microbial diversity in ostrich ceca as revealed by 16S ribosomal RNA gene clone library and detection of novel Fibrobacter species[J]. Anaerobe,2010.16:83-93.
    [42]Lan, P.T.N., Hayashi, H., Sakamoto. M., Benno, Y.. Phylogeneic analysis of cecal microbiota in chicken by the use of 16S rDNA clone libraries[J]. Microbiology and Immunology,2002,46:371-82.
    [43]Scupham, A.J.. Succession in the intestinal microbiota of preadolescent turkeys[J]. FEMS Microbiology Ecology,2007,60(1):136-147.
    [44]Scupham, A,J,, Patton, T.G., Bent, E., Bayles, D.O.. Comparison of the cecal microbiota of domestic and wild turkeys[J]. Microbiology Ecology,2008,56:322-331.
    [45]Godoy-Vitorino, F., Goldfarb, K. C., Brodie, E. L., Garcia-Amado, M. A., Michelangeli, F., Dominguez-Bello, M. G..Developmental microbial ecology of the crop of the folivorous hoatzin[J]. International Society for Microbial Ecology,2010,4(5):611-620.
    [46]Schloss, P.D., Handelsman, J.. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness[J]. Applied and Environmental Microbiology,2005,71: 1501-1506.
    [47]Monteils, V., Cauquil, L., Combes, S., Godon, J.J., Gidenne, T.. Potential core species and satellite species in the bacterial communitywithin the rabbit caecum[J]. FEMS Microbiology Ecology,2008, 66:620-629.
    [48]Gong, J.H., Si, W.D., Forster, R.J., Huang, R.L., Yu, H., Yin, Y.L., Yang, C.B., Han, Y.M..16S rRNAgene-based analysis of mucosa-associated bacterial communityand phylogeny in the chicken gastrointestinal tracts:from crops to ceca[J]. FEMS Microbiology Ecology,2007.59:147-157.
    [49]段智勇,郭嫣秋.刘建新.现代分子生学技术在瘤胃微生态系统研究中的应用[J].微生物学报.2006,46(1):166-169.
    [50]Muyzer. G., SmallaM, K.. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis(TGGE) in microbial ecology[J]. Antonie van Leeuwenhoek,1998, 73:127-141.
    [51]Zoetendal, E.G., Akkermans. A. L., Devos. W.M.. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria[J]. Applied and Environmental Microbiology,1998.64:3854-3859.
    [52]Yu, Z., Morrision. M.. Comparisions of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-Denaturing Gradient Gel Electrophoresis[J]. Applied and Environmental Microbiology,2004,70:4800-4806.
    [53]Tannock, G.W., Munro, K., Harmsen, H.J.M., Welling, G. W., Smart, J., Gopal, P. K. Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20[J]. Applied and Environmental Microbiology,2000,60 (6):2578-2588.
    [54]McCracken, V.J., Simpson, J.M., Mackie, R.I., Gaskins, H. R.. Molecular ecological analysis of dietary and antibiotic-induced alterations of the mouse intestinal microbiota[J]. Nutrition,2001, (3):1862-1870.
    [55]Konstantinov, S. R., Zhu, W.Y., Williams, B.A., Tamminga, S., Vos, W. M, Akkermans, A. D. L.. Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA[J]. FEMS Microbiology Ecology.2003,43:225-235.
    [56]Kocherginskaya, S. A., Aminov, R.I., White, B. A..Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing, and statistical ecology approaches[J]. Anaerobe,2001,7:119-134.
    [57]Simpson, J. M., McCracken, V. J., White, B. A., Gaskin, H.R., Mackie, R.I.. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota[J]. Journal of Microbiological Methods,1999,36:167-179.
    [58]淡瑞芳.用Real time PCR和DGGE技术研究放牧藏系绵羊瘤胃微生物季节动态[D].甘肃:甘肃农业大学,2006.
    [59]姚文,朱伟云,韩正康.应用变性梯度凝胶电泳和16S rDNA序列分析对山羊瘤胃细菌多样性的研究[J].中国农业科学,2004,37(9):1374-1378.
    [60]王金全,蔡辉益,周岩华,刘国华,张姝,印遇龙.小麦日粮非淀粉多糖和木聚糖酶对肉仔鸡肠道微生物区系的影响[J].畜牧兽医学报,2005,36(10):1014-1020.
    [61]于卓腾.大豆黄酮对仔猪肠道微生物的影响和雌马酚产生菌的分离及其特性的研究[D].南京:南京农业大学,2007.
    [62]Gong, J.H., Forster, R.J., Yu. H., Chambers, J.R., Sabour. P.M., Wheatcroft, R., Chen, S., Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen[J]. FEMS Microbiology Letters,2002,208,1-7.
    [63]Lan, P.T., Sakamoto, M., Benno, Y., Effects of two probiotic Lactobacillus strains on jejunal and cecal microbiota of broiler chicken under acute heat stress condition as revealed by molecular analysis of 16S rRNA genes[J]. Microbiology and Immunology,2004,48(12):917-29.
    [64]詹銮峰16S rDNA T-RFLP快速分析慢性腹泻患者肠道菌群及其应用研究[D].大连:大连医科大学,2005.
    [65]Czerwinskia, J., H(?)jbergb, O., Smulikowskaa. S., Engberg,. R.M., Mieczkowskaa, A.. Influence of dietary peas and organic acids and probiotic supplementation on performance and caecal microbial ecology of broiler chickens[J]. British Poultry Science,2010,51(2):258-269.
    [66]刘雪姬,陈庆森,闫亚丽.高脂饮食对小鼠肠道菌群的影响[J].食品科学,2011,32(23):306-311.
    [67]奚晓琦,王加启,邓露芳,李旦,卜登攀,魏宏阳.荧光原位杂交技术在动物肠道微生物定量中的 应用[J].中国畜牧兽医,2008.12:40-45.
    [68]Moter, A., Gobel, U.B.. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms[J]. Journal of Microbiological Methods,2000,41 (2):852-112.
    [69]Zhu, X. Y., and Joerger, R. D.. Composition of Microbiota in Content and Mucus from Cecae of Broiler Chickens as Measured by Fluorescent In Situ Hybridization with Group-Specific.16S rRNA-Targeted Oligonucleotide Probes[J]. Poultry Science,2003,82:1242-1249.
    [70]Palma, D. G., Nadal, I., Collado, M. C., Sanz. Y..Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects[J]. The British Journal of Nutrition,2009,102 (8), 1154-1160.
    [71]Schena, M., Shalon, D., Davis, R.W., Brown, P.O.. Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J]. Science,1995,270:467-470.
    [72]苏勇.Comparison of faecal microbial diversity between Erhualian and Landrace pigs.微生物多样性国际研讨会
    [73]Regenbogenova, M., Pristas, P., Javorsky, P., Moon-van der Staay, S.Y., van der Staay, G.W., Hackstein, J.H., Newbold, C.J., McEwan, N.R.. Assessment of ciliates in the sheep rumen by DGGE[J]. Letters in Applied Microbiology,2004,39 (2):144-147.
    [74]Hume, M. E., Kubena, L.F., Edrington,T.S., Donskey, C.J., Moore, R.W., Ricke, S.C., Nisbet. D.J. Poultry digestive microflora biodiversity as indicated by denaturing gradient gel electrophoresis [J]. Poultry Science,2003,82:1100-1107.
    [75]Najdenski, H., Heyndrickx, M., Herman, L., Messens, W.. Fla-DGGE analysis of campylobacter jejuni and campylobacter coli in cecal samples of broilers without cultivation[J]. Veterinary Microbiology,2008,127: 196-20.
    [76]干.梦芝,詹爱军,高杨,徐爱秋,喻礼怀,王洪荣.利用实时定量PCR研究不同蛋白质饲料对嗜淀粉瘤胃杆菌生长参数的影响[J].动物营养学报,2010,22(2):327-334.
    [77]Metzler-Zebeli, B. U., Hooda, S., Pieper, R., Zijlstra. R.T., van Kessel, A G., Mosenthin, R., Ganzle, M.G.. Nonstarch Polysaccharides Modulate Bacterial Microbiota, Pathways for Butyrate Production, and Abundance of Pathogenic Escherichia coli in the Pig Gastrointestinal Tract[J]. Applied and environmental microbiology,2010,76(11):3692-3701
    [78]Wise, M.G., and Siragusa, G.R.. Quantitative analysis of the intestinal bacterial community in one-to three-week-old commercially reared broiler chickens fed conventional or antibiotic-free vegetable-based diets[J]. Journal of Applied Microbiology,2007,102:1138-1149.
    [79]Tajima, K., Aminov, R.I., Nagamine. T., Matsui, H., Nakamura, M., and Benno, Y.. Diet-dependent shifts in the bacterial population of the rumen revealed with Real-time PCR[J]. Applied environmental Microbiology. 2001.67:2766-2774.
    [80]李口.,王加启.卜登攀.杨舒黎.魏宏阳,周凌云.运用(?)Real-time PCR方法研究日粮添加豆油与胡麻油对肉牛瘤胃纤维分解菌数量的影响[J].动物营养学报,2008,20(3):256-260.
    [81]于萍.王加启,卜登攀,刘开朗.李旦,赵圣国,魏宏阳,周凌云.日粮添加纳豆芽孢杜菌对断奶后犊牛胃肠道纤维分解菌的影响[J].中国农业大学学报,2009,14(1):111-116.
    [82]杨会玲,高玉鹏,周利勇.许尧兴,李艳丽.许少春.合生素对肉仔鸡肠道微生物区系的影响[J].中国农业科学,2011.44(23):4882-4891.
    [83]Theander, O., Aman, P., Westerlund, E., Graham, H..Enzymatic/chemical analysis of dietary fiber[J]. Joural of AOAC International.1994,77(3):703-709.
    [84]Turner, N. D., and Lupton, J. R. Dietary fiber. Advances in Nutrition[J]. An International Review Journal, 2011,2(2):151-152.
    [85]马永喜.日粮纤维对仔猪生产性能的影响及其作用机理[D].中国农业大学博士学位论文,2001.
    [86]Annison G. The chemistry of dietary fibre[J]. Nutr Soci of Aus,1993,1:1-18.
    [87]廖玉华,李卫芬.日粮纤维的营养功能及其应用[J].饲料博览,2000,(2):20-22.
    [88]Abell, G. C., Cooke, C. M., Bennett, C. N., Conlon, M. A., McOrist, A. L.. Phylo-types related to Ruminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch[J]. FEMS Microbiology Ecology,2008,66(3):505-515.
    [89]Duncan, S. H., Belenguer, A., Holtrop, G., Johnstone, A. M., Flint, H. J., Lobley, G. E.. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces[J]. Applied and Environmental Microbiology,2007,73(4):1073-1078.
    [90]Middelbos,I. S., Vester Boler, B. M., Qu, A., White, B. A., Swanson, K. S., Fahey, G. C. Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing[J]. PloS One,2010,5(3):e9768.
    [91]Metzler-Zebeli, B. U., Hooda, S., Pieper, R., Zijlstra, R. T., van Kessel, A. G., Mosenthin, R.. Non-starch polysaccharides modulate bacterial microbiota, pathways for butyrate production, and abundance of pathogenic Escherichia coli in the gastrointestinal tract of pigs[J]. Applied and Environmental Microbiology, 2010,76(11):3692-3701.
    [92]Benus, R. F. J., van der Werf, T. S., Welling, G. W., Judd, P. A., Taylor, M. A., Harmsen, H. J.. Association between Faecalibacterium prausnitzii and dietary fibre in colonic fermentation in healthy human subjects[J]. The British Journal of Nutrition,2010,104 (5):693-700.
    [93]Filippo, C. D., Cavalieri, D., Paola, M. D., Ramazzotti, M., Poullet, J. B., Massart, S.. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa[J]. Proceedings of the National Academy of Sciences,2010,107 (33):14691-14696.
    [94]Castillo, M.. Skene, G., Roca, M., Anguita, M., Badiola, I., Duncan, S. H.. Application of 16S rRNA gene-targetted fluorescence in situ hybridization and restriction fragment length polymorphism to study porcine microbiota along the gastrointestinal tract in response to different sources of dietary fibrefJ]. FEMS Microbiology Ecology,2007.59(1):138-146.
    [95]Gong Joshua and Yang Chengbo. Advances in the methods for studying gut microbiota and their relevance to the research of dietary fiber functions[J].2012. Food research international
    [96]Jamroz, D., Wiliczkiewicz, A., Sharupinska, J.. The effect of diets containing different levels of structural substances on morphological changes in the intestinal walls and the digestibility of the crude fiber fractions in geese (part Ⅲ)[J]. Journal of Animal and Feed Sciences,2000,1:37-50.
    [97]Hollister, A.G.. Nakaue, H.S., and ArscottG, H.. Studies with Confinement-Reared Goslings.1. Effects of Feeding High Levels of Dehydrated Alfalfa and Kentucky Bluegrass to Growing Goslings[J]. Poultry science. 1992.63(3):532-537.
    [98]Lu, J.J., Hsu, A.. Studies on rice hull as feedstuffs for geese. Proc.5th AAAP Anim Sci Cong.1990.
    [99]Chen. Y.H., et al. Effect of level of dietary fibre on growth performance, intestinal fermentation and cellulose activity of goslings[J]. Journal of the Chinese Society of Animal Science.1992,21(1):15-28.
    [100]Timmler, R.. Incestigation into the digestibility of high fibre feedstuffs for geese. Proseedings 8th int. Symposium of young poultry scientists, Poland,1994.
    [101]景旭昌,麻晓菲.玉米秸粉喂饲成鹅效果观察[J].辽宁畜牧兽医,1999,(2):12-13.
    [102]王健.扬州鹅对日粮纤维利用的研究[D].扬州:扬州大学,2002.
    [103]张亚俊,杨海明,王志跃.不同纤维素添加量对扬州鹅生长性能和屠宰性能的影响[J].安徽农业科学,2008,36(13):5453-5454.
    [104]卢建,杨海明,王志跃,施寿荣,邹剑敏.稻壳稀释日粮对鹅肝脏和肌肉脂肪含量的影响[J].中国饲料,2009,21:8-10.
    [105]Yu, B., Tsai, C.C., Hsu, J.C., Chiou, P.W.S.. Effect of different sources of dietary fibre on growth performance, intestinal morphology and caecal carbohydraeses of domestic geese[J]. British poultry science, 1998,39:560-567.
    [106]Hsu, J.C., Chen, L.I., Yu, B.. The Development of Digestive Tract in White Roman and Chinese Geese at Finishing Period[J]. Asian-Australasian Journal of Animal Sciences,2000,13(10):1450-1454.
    [107]赵立.肉鹅对不同来源纤维利用的研究[D].长春:吉林农业大学,2003.
    [108]周秀丽,王志跃.肉用仔鹅对饲料纤维的利用[J].饲料博览,2003,1:23-24.
    [109]麻艳群.饲粮营养水平和纤维来源对鹅生长性能和纤维利用潜力的影响[D].广西壮族自治区:广西大学,2005.
    [110]苏秀侠,张源久.肉仔鹅日粮能量、蛋白和纤维水平的探讨[J].四川家禽,1997.7:41-44.
    [111]杨桂芹,王芬,韩国宝,刘亚超.纤维素酶制剂对雏鹅饲粮营养物质表观利用率的影响[J].畜牧与兽医,2005,37(3):21-23.
    [112]毛宗林,刘长忠,曹爱青,何瑞国.雏鹅日粮粗纤维和酶制剂添加量的研究[J].饲料工业,2007,5:21
    [113]王恬.太湖鹅对红三叶、白三叶草利用的研究[D].南京:南京农业大学,1985.
    [114]Hanson, H.C.. The giant Canada goose. Southern Illinois Univ. Press, Carbondale.1962.266pp.
    [115]邵彩梅.鹅的消化生理研究.[博士学位论文].南京:南京农业大学.1991.
    [116]周秀丽.日粮中苜蓿、黑麦草和小麦麸含量对仔鹅生产性能和消化生理影响的研究.[D].扬州:扬州大学,2004.
    [117]仲庆振.不同品种鹅对日粮纤维利用的研究[D].长春:吉林农业大学,2004
    [118]Mattocks, J.G.. Goose feeding and cellulose digestion[J]. Wildfowl,1971.22:107-113.
    [119]邵彩梅.韩正康.鹅盲肠对纤维类成分消化的研究[J].南京农业大学学报,1992,15(4):86-89.
    [120]Duke, G.E.. Gastric pressure and smooth muscle electrical potential changed in turkeys[J]. American Journal of Physics,1972.222:167.
    [121]Clemens. T. C., Stevens, C. E., and Southworth, M.. Sites of organic acid production and pattern of digesta movement in the gastrointestinal tract of geese[J]. Journal of Nutrition,1975,115:1341-1350.
    [122]Braun. E., and Duke, G.E. Function of the avian cecum[J]. Journal of Experimental Zoology,1989, Suppl.3:1-129.
    [123]Clench, M.H. and Mathias. J.R.. The avian cecum:a review[J]. Wilson Bull,1995,107:93-121.
    [124]DeGolier, T.F., Mahoney, S.A., and Duke, G.E.. Relationships of avian cecal lengths to food habits, taxonomic position, and intestinal lengths[J]. Condor,1999,101:622-634.
    [125]Jozefiak, D., Rutkowski, A., and Martin, S.A. Carbohydrate fermentation in the avian ceca:a review[J]. Animal Feed Science and Technology,2004,113:1-15.
    [126]Gasaway, W.C. Volatile fatty acids and metabolizable energy derived from cecal fermentation in the willow ptarmigan[J]. Comparative Biochemistry and Physiology part A,1976,53:115-121.
    [127]Goldstein, D.L. Absorption by the cecum of wild birds:is there interspecific variation[J]. Journal of Experimental Zoology,1989, Suppl.3,103-110.
    [128]Hsu, J.C., Lu, T.W., Chiou, P.W.S., Yu, B.. Effects of different sources of fibre on growth performance and apparent digestibility in geese[J]. Animal Feed Science and Technology,1996,60:93-102.
    [129]Clench, M.H. and Mathias, J.R.. The avian cecum:a review[J]. Wilson Bull,1995,107:93-121.
    [130]Yang, C. P., and Lin, C. S.. The available of fiber feed of domestic geese. Ⅱ.The function of caecum digest cellulose[J]. J. Chin. Soc. Anim. Sci.,1975,4:41-46 (in Chinese).
    [131]陈五湖.扬州鹅对来源不同的日粮纤维消化利用研究.[D].扬州:扬州大学,2006.
    [132]Garcia, D.M.. The role of the giant Canada goose (Branta Canadensis maxima) cecum in nutrition[D]. University of Missouri-Columbia,2006
    [133]Chious, P.W.S.. Effect of different sources of dietary fibre on growth performance, intestinal morphology and caecal carbohydraeses of domestic geese[J]. British Poultry Science,1998,39:560-567.
    [134]徐敏娟,陈五湖,张苗苗等.鹅盲肠微生物体外利用ADF/NDF的初步研究[J].畜牧与兽医,2006,38(6):17-19.
    [135]张桂山.吉林白鹅肠道纤维分解菌分离鉴定的研究[D].吉林:吉林农业大学,2007.
    [136]Guy, G., Rousselect-pailley, D., Rosi nski, A., Rouvier, R.. Comparison of meat geese performances fed with or without grass[J]. Arch. Geflugelk,1996,60:217-221.
    [137]崔秀艳,王长文.刘墨,刘冠廷,马训骏,刘晓娟.娄玉杰.鹅消化道正常菌群定植规律的研究[J].中国家禽,2008,30(28):17-24.
    [138]张名爱,王宝维,龙芳羽,王雷,杨志刚,张旭晖.刘光磊.日粮纤维水平对鹅肠道正常菌群的影响[J].福建农林大学学报,2007,36(2):1-4.
    [139]徐敏娟.鹅肠道细菌多样性的分子生态学初步研究[D].扬州:扬州大学,2007.
    [140]胡平.不同形态玉米日粮及日龄对鹅肠道微生物区系的影响[D].扬州:扬州大学,2010.
    [1]Chious, P.W.S.. Effect of different sources of dietary fibre on growth performance, intestinal morphology and caecal carbohydraeses of domestic geese[J]. British Poultry Science,1998.39:560-567.
    [2]周秀丽.日粮中苜蓿、黑麦草和小麦麸含量对仔鹅生产性能和消化生理影响的研究.[D].扬州:扬州大学.2004.
    [3]徐敏娟,陈五湖,张苗苗,陈亮亮,卢建,王志跃.鹅盲肠微生物体外利用ADF/NDF的初步研究[J].畜牧与兽医,2006,38(6):17-19.
    [4]Macy, J.M., Robert farrand, Land Montgomery, L.. Cellulolytic and Non-Cellulolytic Bacteria in Rat Gastrointestinal Tracts[J]. Applied and Environmental Microbiology,1982,44(6):1428-1434.
    [5]刘占英,绵羊瘤胃主要纤维降解细菌的分离鉴定及不同氮源对其纤维降解能力的影响[D].内蒙古:内蒙古农业大学,2008.
    [6]何力,郝勃,谢从新,罗晓松,张征,朱祥云.草鱼肠道纤维素酶产生菌主要种类的分离与鉴定[J]. 应用与环境生物学报,2009,15(3):414-418.
    [7]Stewart, C.S., Flint, H.J.. The rumen bacterial. In:The rumin microbial ecosystem[C], Hobson PN and Stewart CS. Eds.1997,10-72. Blackie, Melbourne.
    [8]Hall, E. R..1952. Investigations on the microbiology of cellulose utilization in domestic rabbits[J]. Journal of General Microbiology,7:350-357.
    [9]Davies, M. E..1964. Cellulolytic bacteria isolated from the large intestine of the horse[J]. Journal of Applied Bacteriology,27:373-378.
    [10]Dehority, B. A.. Cellulolytic Cocci isolated from the cecum of Guinea Pigs (Cavia porcellus)[J]. Applized and Environmental Microbiology,1977,33(6):1278-1283.
    [11]曹理想.动物共生放线菌研究展望[J].微生物学通报,2010,37(12):1811-1815.
    [12]Fall. S., Hamelin, J., Ndiaye. F., Assigbetse, K., Aragno, M., Chotte, J.L., Brauman,A.. Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds[J]. Applied and Environmental Microbiology,2007, (73):5199-5208.
    [13]Wienemanna, T., Schmitt-Wagnerb, D., Meusera, K., Segelbacherc, G., Schinkd, B., Brunea, A., Berthold, P.. The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds[J]. Systematic and Applied Microbiology,2011,34:542-551.
    [14]Haas, F., Konig, H.. Coriobacterium glomerans gen nov., sp. nov. from the intestinal tract of the red soldier bug[J]. International Journal of Systematic and Evolutionary Microbiology,1988,38:382-384.
    [15]Harmsen, H.J., Wildeboer-Veloo, A.C., Grijpstra, J., Knol, J., Degener, J.E., Welling, G.W.. Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups[J]. Applied and Environmental Microbiology,2000,66:4523-4527.
    [16]Scupham, A.J., Patton, T.G., Bent, E., Bayles, D.O.. Comparison of the cecal microbiota of domestic and wild turkeys[J]. Microbial Ecology,2008,56:322-331.
    [17]Matthies, A., Clavel, T., Gutschow, M., Engst, W., Haller, D., Blaut, M., Braune, A.. Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine[J]. Applied and Environment Microbiology,2008.74:4847-4852.
    [18]Matthies, A., Blaut, M., Braune, A.. Isolation of a human intestinal bacterium capable of daidzein and genistein conversion [J]. Applied and Environmental Microbiology,2009,75:1740-1744.
    [19]Horikoshi, K., Nakao, M., Kurono, Y., Sashihara, N.. Cellulases of an alkalophilic Bacillus strain isolated from soil[J]. Canadian Journal of Microbiology,1984,30:774-779.
    [20]张桂山.吉林白鹅肠道纤维分解菌分离鉴定的研究[D].吉林:吉林农业大学,2007.
    [21]周亚文,张玉杰,林波,刘建新.瘤胃甲烷生成过程中微生物之间的相互关系[J].动物营养学报,2011,3(4):556-562.
    [22]周新萍,徐尔尼,汪金萍.高产纤维素酶生二素链霉菌的鉴定与选育研究[J].中国酿造.2007
    [23]石鹏君.山羊瘤胃和草鱼肠道微生物分子生态研究及葡萄糖苷酶基因的克隆[D].北京:中国农业科学院饲料研究所,2007.
    [24]Whitford, M.F.. Forster. R.J.. Beard, C.E., Gong, J. and Teather, R.M.. Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes[J]. Anaerobe.1998,4:153-163.
    [25]Lu, J., Santo Domingo, J.W., Lamendella, R., Edge, T.A, Hill, S.. Phylogenetic diversity and molecular detection of bacteria in gull feces[J]. Applied and Environmental Microbiology,2008,74:3969-3976.
    [26]Kocherginskaya, S. A., Aminov, R.l., White. B. A..Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing, and statistical ecology approaches[J]. Anaerobe,2001,7:119-134.
    [1]王恬.太湖鹅对红三叶、白三叶草利用的研究[D].南京:南京农业大学,1985.
    [2]王健.扬州鹅对日粮纤维利用的研究[D].扬州:扬州大学,2002.
    [3]McNab, J.M. The avian caeca: a review[J]. Worlds Poultry Science Journal,1973,29: 251-263.
    [4]Garcia, D.M.. The role of the giant Canada goose (Branta Canadensis maxima) cecum in nutrition[D]. University of Missouri-Columbia,2006.
    [5]Yang, H.M., Wang. Z.Y., Wang, J., Shi, S.R., Zhu, X.H. Effects of caecectomy on digestibility of crude protein, calcium, phosphorus, neutral detergent fibre and acid detergent fibre in geese[J]. Archiv Fur Geflugelkunde,2009,73:189-192.
    [6]黄萌,曹立军,李伟,李宏宇.鹅肠道内容物纤维素酶活性的分段比较[J].当代畜牧.2010,(1):27-28.
    [7]杨海明,王志跃,周秋艳,范莉,朱小惠.不同日粮对鹅消化酶活性的影响[J].江苏农业科学,2007,(6):199-202.
    [8]Ewing, W.N., and Cole D.J.A.. The Living Gut. Massey University, New Zealand,1994, 185-216.
    [9]Wang, Z.Y., Shi, S.R., Xu, M.J., and Yang, H.M..16S rRNA-based analysis of bacterial diversity in the microbial flora of the goose intestinal tract[J]. Journal of Animal and Feed Sciences,2009,18:531-540.
    [10]Tajima, K., Arai, S., Ogata, K., Nagamine, T. Matsui, H., Nakamura, M.. Aminov, R.I., Benno, Y.. Rumen bacterial community transition during adaptation to high-grain diet[J]. Anaerobe,2000,6:273-284.
    [11]Gong, J.H., Si, W.D., Forster, R.J., Huang, R.L., Yu, H., Yin, Y.L., Yang, C.B., Han, Y.M. 16S rRNAgene-based analysis of mucosa-associated bacterial communityand phylogeny in the chicken gastrointestinal tracts:from crops to ceca[J]. FEMS Microbiology Ecology,2007,59: 147-157.
    [12]Leser, T.D., Amenuvor, J.Z., Jensen, T.K., Lindecrona. R.H., Boye, M.. M(?)ller, K. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited[J]. Applied and Environmental Microbiology,2002,68:673-690.
    [13]Scupham, A. J..Succession in the intestinal microbiota of preadolescent turkeys[J]. FEMS Microbiology Ecology,2007,60:136-147.
    [14]Scupham, A.J., Jones, J., Wesley, I.V.. Comparison of DNA extraction methods for analysis of turkey cecal microbiota[J]. Journal of Applied Microbiology,2007,102:401-409.
    [15]Gong, J.H., Forster, R.J., Yu, H., Chambers, J.R., Wheatcroft, R., Sabour, P.M., Chen. S. Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum[J]. FEMS Microbiology Ecology,2002,41:171-179.
    [16]Tajima, K., Aminov, R.I., Nagamine, T., Ogata, K., Nakamura, M., Matsui, H., Benno, Y. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries[J]. FEMS Microbiology Ecology,1999,29:159-169.
    [17]Cole, J.R., Chai, B., Marsh, T.L., Farris, R.J., Wang, Q., Kulam, S.A., Chandra, S., McGarrell, D.M., Schmidt, T.M., Garrity, G.M., Tiedje, J.M.. The Ribosomal Database Project (RDP-Ⅱ): previewing a new autoaligenr that allows regular updates and a new prokaryotic taxonomy. Nucleic Acids Research,2003,31:442-443.
    [18]Schloss, P.D, Handelsman, J.. Introducing DOTUR. a computer program for defining operational taxonomic units and estimating species richness[J]. Applied and Environmental Microbiology,2005,71:1501-1506.
    [19]Daly, K., Stewart. C.S., Flint, H.J., Shirazi-Beechey, S.P.. Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes[J]. FEMS Microbiology Ecology,2001,38:141-151.
    [20]Tajima, K., Aminov, R.I., Nagamine, T., Matsui, H., Nakamura, M., Benno, Y. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR[J]. Applied and Environmental Microbiology,2001,67:2766-2774.
    [21]徐敏娟.鹅肠道细菌多样性的分子生态学初步研究[D].扬州:扬州大学,2007.
    [22]Lu, J., Idris, U., Harmon, B., Hofacre, C., Maurer, J..J., Lee, M.D.. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken[J]. Applied and Environmental Microbiology,2003,69:6816-6824.
    [23]Forsberg, C.W., Cheng, K.J., White, B.A. Polysaccharide degradation in the rumen and large intestine. In:Mackie RI, White BA (eds) Gastrointestinal microbiology. Chapman and Hall, New York,1997,319-379.
    [24]Matsui, H., Kato, Y., Chikaraishi, T., Moritani, M., Ban-Tokuda, T., Wakita, M.. Microbial diversity in ostrich ceca as revealed by 16S ribosomal RNA gene clone library and detection of novel Fibrobacter species[J]. Anaerobe,2010,16:83-93.
    [25]Bjerrum, L., Engberg, R.M., Leser, T.D., Jensen, B., Finster, K., Pedersen, K.. Microbial community composition of the ileum and cecum of broiler chicken as revealed by molecular and culture-based techniques[J]. Poultry science,2006,85:1151-1164.
    [26]Lan, P.T.N., Hayashi,H., Sakamoto, M., Benno, Y.. Phylogeneic analysis of cecal microbiota in chicken by the use of 16S rDNA clone libraries[J]. Microbiology and Immunology,2002,46: 371-382.
    [27]Zhu, X.Y., Zhong, T., Pandya, Y., Joerger, R.D..16S rRNA-based analysis of microbiota from the cecum of broiler chickens[J]. Applied and Environmental Microbiology,2002,68: 124-137.
    [28]Scupham, A.J., Patton. T.G., Bent, E., Bayles, D.O..Comparison of the cecal microbiota of domestic and wild turkeys[J]. Microbial Ecology,2008,56:322-331.
    [29]Frey, J.C., Rothman J.M., Pell, A.N., Nizeyi, J.B.. Cranfield. M.R., Angert, E.R..Fecal bacterial diversity in a wild gorilla[J]. Applied and Environmental Microbiology,2006,72: 3788-3792.
    [30]Whitford, M.F., Forster, R.J., Beard, C.E., Gong, J., Teather, R.M.. Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes[J]. Anaerobe,1998, 4:153-163.
    [31]Hungate, R. E..The anaerobic mesophilic cellulolytic bacteria[J]. Bacte-riol. Rev.1950. 14:1-49.
    [32]Hungate, R. E. The rumen and its microbes. Academic Press, New York, NY.1966.
    [33]司振书,江成.瘤胃微生物对纤维素的降解及其作用[J].微生物学杂志,2003,23(6):61-64.
    [34]An, D., Dong, X., Dong, Z.. Prokaryote diversity in the rumen of yak (Bos grunniens) and Jinnan cattle (Bos taurus) estimated by 16S rDNA homology analyses[J]. Anaerobe,2005,11: 207-215.
    [35]Matsui, H., Ban-Tokuda, T., Wakita, M.. Detection of fiber-digesting bacteria in the ceca of ostrich using specific primer sets[J]. Current Microbiology,2010,60:112-116.
    [36]Wienemann, T., Schmitt-Wagner, D., Meuser, K., Segelbacher, G., Schinkd, B., Brune, A., Berthol, P.. The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds[J]. Systematic and Applied Microbiology,2011,34:542-551.
    [37]Herlemann, D.P. R., Geissinger, O., and Brune, A.. The Termite Group Ⅰ Phylum Is Highly Diverse and Widespread in the Environment[J]. Applied and Environmental Microbiology,2007, 73(20):6682-6685.
    [38]Geissinger, O., Herlemann, D. P. R., Morschel, E., Maier, U.G., Brune, A.. The Ultramicrobacterium "Elusimicrobium minutum" gen. nov., sp. nov., the First Cultivated Representative of the Termite Group 1 Phylum[J]. Applied and Environmental Microbiology, 2009,75(9):2831-2840.
    [39]Gong, J.H., Forster, R.J., Yu, H., Chambers, J.R., Sabour, P.M., Wheatcroft, R., Chen, S.. Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen[J]. FEMS Microbiology Letters,2002,208:1-7.
    [40]Hollander. R.. The aerobic bacterial intestinal flora of various wintering geese species[J]. Zentralbl. Bakteriol. Mikrobiol. Hyg. A,1982,252:394-400. (In German.)
    [41]Gupta, A.K., Nayduch, D., Verma, P., Shah, B., Ghate, H.V., Patole, M.S., Shouche Y.S.. Phylogenetic characterization of bacteria in the gut of house flies (Musca domestica L.)[J]. FEMS Microbiol Ecol,2012,79:581-593.
    [42]徐敏娟,陈五湖,张苗苗,陈亮亮.卢建,王志跃.鹅盲肠微生物体外利用ADF/NDF的初步研究[J].畜牧与兽医,2006、38(6):17-19.
    [43]张桂山.吉林白鹅肠道纤维分解菌分离鉴定的研究[D].吉林:吉林农业大学,2007.
    [44]Lu, J., Santo Domingo, J.W., Hill, S., Edge, T.A.. Microbial diversity and host-specific sequences of Canada goose feces. Applied and environmental microbiology,2009,75:5919-5926.
    [45]Banks, J.C., Cary, S.C., Hogg, I.D.. The phylogeography of Adelie penguin faecal flora [J]. Environmental Microbiology,2009,11:577-588.
    [46]Lu, J., Santo Domingo, J.W.. Lamendella. R., Edge, T.A, Hill. S.. Phylogenelic diversity and molecular detection of bacteria in gull feces[J]. Applied and Environmental Microbiology,2008, 74:3969-3976.
    [47]Xenoulis, P.G., Gray, P.L., Brightsmith, D., Palculict, B., Hoppes. S., Steiner. J.M., Tizard, I., Suchodolski, J.S. Molecular characterization of the cloacal microbiota of wild and captive parrots [J]. Veterinary Microbiology,2010,146:320-325.
    [48]Kibe. R., Sakamoto, M., Hayashi, H., Yokota, H., Benno, Y.. Maturation of the murine cecal microbiota as revealed by terminal restriction fragment length polymorphism and 16S rRNA gene clone libraries[J]. FEMS Microbiol Letters.2004,235:139-146.
    [49]Monteils, V., Cauquil, L., Combes, S., Godon. J.J., Gidenne. T.. Potential core species and satellite species in the bacterial communitywithin the rabbit caecum[J]. FEMS Microbiology Ecology,2008,66:620-629.
    [50]Yamano, H., Koike, S., Kobayashi. Y., Hata, H.. Phylogenetic analysis of hindgut microbiota in Hokkaido native horses compared to light horses[J]. Animal Science Journal,2008,79: 234-242.
    [1]Guy, G., Rousselect-pailley, D., Rosi nski, A., Rouvier, R.. Comparison of meat geese performances fed with or without grass[J]. Arch. Geflugelk,1996,60:217-221.
    [2]王健.扬州鹅对日粮纤维利用的研究[D].扬州:扬州大学,2002.
    [3]Apajalahti, J.H., Kettunen, A., Bedford, M.R., and Holben. W.E.. Percent G+C profiling accurately reveals diet-related differences in the gastrointestinal microbial community of broiler chickens[J]. Applied and Environmental Microbiology,2001,67:5656-5667.
    [4]Amit-Romach, E., Sklan, D., and Unil, Z.. Microflora ecology of the chicken intestine using 16S ribosomal DNA primers[J]. Poultry Science,2004.83:1093-1098.
    [5]Lan, P.T.N., Hayashi, H., Sakamoto, M., and Benno, Y.. Phylogenetic analysis of cecal microbiota in chicken by the use of 16S rDNA clone libraries[J]. Microbiology and Immunology, 2002,46:371-382.
    [6]Lu, J., Idris, U., Harmon, B., Hofacre, C., Maurer, J.J., and Lee, M.D.. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken[J]. Applied and Environmental Microbiology,2003,69:6816-6824.
    [7]Tajima, K., Aminov, R.I., Nagamine, T., Ogata, K., Nakamura, M., Matsui, H., Benno, Y. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries[J]. FEMS Microbiology Ecology,1999,29:159-169.
    [8]Whitford, M.F., Forster, R.J., Beard, C.E., Gong, J.H., Teather, R.M.. Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes[J]. Anaerobe,1998, 4:153-163.
    [9]Godoy-Vitorino, F., Goldfarb, K. C., Brodie, E. L., Garcia-Amad, Maria. A., Michelangeli, F., Domiinguez-Bello, M.G.. Developmental microbial ecology of the crop of the folivorous hoatzin[J]. International Society for Microbial Ecology,2010,4(5):611-620.
    [10]Cole. J.R., Chai, B., Marsh, T.L.. Farris, R.J., Wang, Q., Kulam, S.A., Chandra, S., McGarrell, D.M., Schmidt, T.M., Garrity, G.M., Tiedje, J.M.. The Ribosomal Database Project (RDP-Ⅱ): previewing a new autoaligenr that allows regular updates and a new prokaryotic taxonomy[J]. Nucleic Acids Research,2003,31:442-443.
    [11]Schloss P.D, Handelsman J. (2005):Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness[J]. Applied and Environmental Microbiology,71,1501-1506.
    [12]许栋.日粮中添加稻谷及不同形态糙米、稻壳对鹅肠道微生物区系的影响[D].扬州:扬州大学,2011.
    [13]Gong, J. H., Forster Robert,J., Yu, H., Chambers James, R., Wheatcroft. R., Sabour Parviz. M., Chen, S.. Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum[J]. FEMS Microbiology Ecology,2002,41:171-179.
    [14]徐敏娟.鹅肠道细菌多样性的分子生态学初步研究[D].扬州:扬州大学,2007.
    [15]胡平.不同形态玉米日粮及日龄对鹅肠道微生物区系的影响[D].扬州:扬州大学.2010.
    [16]Lu. J., Santo Domingo, J.W., Hill, S., Edge, T.A.. Microbial diversity and host-specific sequences of Canada goose feces[J]. Applied and Environmental Microbiology,2009,75: 5919-5926.
    [17]Egert, M., Wagner, B., Lemke, T., Brune, A., Friedrich, M.W.. Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae)[J]. Applied and Environmental Microbiology,2003,69:6659-6668.
    [18]Thongaram, T., Hongoh, Y., Kosono, S., Ohkuma, M., Trakulnaleamsai, S., Noparatnaraporn, N., Kudo, T.. Comparison of bacterial communities in the alkaline gut segment among various species of higher termites[J], Extremophiles,2005,9:229-238.
    [19]McGarvey, J. A., Miller, W. G., Zhang, R., Ma, Y., Mitloehner, F.. Bacterial population dynamics in dairy waste during aerobic and anaerobic treatment and subsequent storage[J], Applied and Environmental Microbiology,2007,73:193-202.
    [20]Delbes, C, Ali-Mandjee, L., and Montel, M. C.. Monitoring bacterial communities in raw milk and cheese by culture-dependent and-independent 16S rRNA gene-based analyses[J]. Applied and Environmental Microbiology,2007,73:1882-1891.
    [1]Kohl, K.D.. Diversity and function of the avian gut microbiota[J]. Journal of Comparative Physiology B,2012,1-12.
    [2]Lan. P.T.N., Hayashi. H., Sakamoto, M., Benno, Y.. Phylogenetic analysis of cecal microbiota in chicken by the use of 16S rDNA clone Iibraries[J]. Microbiology and Immunology, 2002.46:371-382.
    [3]Whitford. M.F., Forster, R.J., Beard, C.E., Gong, J., Teather, R.M.. Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes[J]. Anaerobe.1998, 4:153-163.
    [4]Wang, H.F., Zhu, W.Y., Yao, W., Liu, J.X.. DGGE and 16Sr DNA. Sequencing analysis of bacterial communities in colon content and feces of pigs fed whole crop rice[J]. Anaerobe,2007, 13:127-133.
    [5]姚文,朱伟云,韩正康等.应用变性梯度凝胶电泳和I16S rDNA序列分析对山羊瘤胃细菌多样性的研究[J].中国农业科学,2004,37(9):1374-1378.
    [6]倪学勤,Joshua Gong, Hai Yu, Shayan Sharif,曾东PCR-DGGE技术分析蛋鸡MHC基因对肠道细菌种群结构的影响[J].中国农业科学,2009,42(7):2564-2571.
    [7]Santos Jr, A. A., Ferket, P. R., Santos, F. B. O., Nakamura, N., Collie, C. Change in the ileal bacterial population of turkeys fed different diets and after infection with salmonella as determined with denaturing gradient gel electrophoresis of amplified 16S ribosomal DNA[J]. Poultry Science,2008,87:1415-1427.
    [8]Hume, M.E., Kubena, L.F., Edrington, T.S., Donskey, C.J., Moore, R.W., Ricke, S.C., Nisbet, D. J.. Poultry digestive microflora biodiversity as indicated by denaturing gradient gel electrophoresis[J]. Poultry Science,2003.82:1100-1107.
    [9]郭贵海,王崇文.肠道菌群调节剂的研究进展[J].临床内科杂志,2002,19(2):88-90.
    [10]Pedroso, A.A., Menten, J.F.M., Lambais, M.R., Racanicci, A.M.C, Longo, F.A., Sorbara, J.O. B.. Intestinal bacterial community and growth performance of chickens fed diets[J]. Poultry Science,2006,85:747-752.
    [11]Lumpkins, B. S., Batal, A. B., and Lee, M.. The effect of gender on the bacterial community in the gastrointestinal tract of broilers[J]. Poultry Science,2008,87:964-967.
    [12]McCracken. V.J., Simpson. J.M, Mackie, R.I., Rex Gaskins, H.. Molecular ecological analysis of dietary and antibiotic-induced alterations of the mouse intestinal microbiota[J]. Journal of Nutrition.2001,131:1862-1870.
    [13]倪学勤,Joshua Gong, Hai Yu,曾东,Shayan Sharif,周小秋.采用PCR-DGGE技术分析蛋鸡肠道细菌种群结构及多样性[J].畜牧兽医学报,2008,39(7):955-961.
    [14]Lu. J.U., Idris. U., Harmon, D., Hofacre, C. Maurer, J.J., Lee, M.D.. Diversity and succession of the intestinal bacterial community of maturing broiler chicken[J]. Applied and Environmental Microbiology,2003,69:6816-6824.
    [15]Wang, Z.Y. Shi, S. R., Xu. M J., Yang, H.M..16S rRNA-based analysis of bacterial diversity in the microbial flora of the goose intestinal tract[J]. Journal of Animal and Feed Sciences,2009,18:531-540.
    [16]Muyzer. G.. de Waal, E.C., and Uitterlinden. A.G.. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology.1993,59:695-700.
    [17]胡平.不同形态玉米日粮及日龄对鹅肠道微生物区系的影响[D].扬州:扬州大学,2010.
    [18]Janczyk, P., Halle. B., and Souffrant, W. B.. Microbial community composition of the crop and ceca contents of laying hens fed diets supplemented with Chlorella vulgaris[J]. Poultry Science,2009,88:2324-2332.
    [19]Cole, J.R., Chai, B., Marsh, T.L., Farris, R.J., Wang, Q., Kulam. S.A., Chandra, S., McGarrell, D.M., Schmidt, T.M., Garrity, G.M., Tiedje, J.M.The Ribosomal Database Project (RDP-Ⅱ): previewing a new autoaligenr that allows regular updates and a new prokaryotic taxonomy[J]. Nucleic Acids Research,2003,31:442-443.
    [20]许栋.日粮中添加稻谷及不同形态糙米、稻壳对鹅肠道微生物区系的影响[D].扬州:扬州大学,2011.
    [21]Apajalahti, J.H. A., Sarkilahti, L.K., Maki, B. R. E., Pekka Heikkinen, J., Nurminen, P. H., Holben, W. E. Effective Recovery of Bacterial DNA and Percent-Guanine-Plus-Cytosine-Based Analysis of Community Structure in the Gastrointestinal Tract of Broiler Chickens[J]. Applied and Environmental Microbiology,1998,64 (10):4084-4088.
    [22]柳洪洁.鸡消化道正常菌群生态平衡的研究[D].泰安:山东农业大学,2005.
    [23]Tanikawa, T., Shoji, N., Sonohara, N., Saito, S., Shimura, Y., Fukushima, J.,Inamoto, T. Aging transition of the bacterial community structure in the chick ceca[J]. Poultry Science,2011, 90:1004-1008.
    [24]Wise, M.G., and Siragusa, G.R.. Quantitative analysis of the intestinal bacterial community in one- to three-week-old commercially reared broiler chickens fed conventional or antibiotic-free vegetable-based diets[J]. Journal of Applied Microbiology,2007,102:1138-1149.
    [25]刘记强.口粮纤维对固始鸡生长发育、消化生理和盲肠微生物定植规律的影响[D].郑州:河南农业大学,2009.
    [26]Godoy-Vitorino, F., Goldfarb, K.C., Brodie, E.L., Garcia-Amado, M.A., Michelangeli, F., Dominguez-Bello, M.G.. Developmental microbial ecology of the crop of the folivorous hoatzin[J]. SME J,2010,4(5):611-620.
    [27]崔秀艳.王长文,刘墨,刘冠廷,马训骏,刘晓娟,娄玉杰.鹅消化道正常菌群定植规律的研究[J].中国家禽,2008,30(28):17-24.
    [28]王爱萍,邓瑞广,张书杰,申效诚,李建科.健康成年鸡盲肠正常菌群的研究[J].河南农业科学,2004,11:86-88.
    [29]张名爱,王宝维,龙芳羽,王雷,杨志刚,张旭晖,刘光磊.口粮纤维水平对鹅肠道正菌群的影响[J].福建农林大学学报,2007,36(2):1-4.
    [30]徐敏娟.鹅肠道细菌多样性的分子生态学初步研究[D].扬州:扬州大学,2007.
    [1]杨曙明,杨忠源.张甫山,时建中.生长豁鹅对富含纤维饲料利用率的研究[J].中国农业科学,1995,28(增刊):171-176.
    [2]张亚俊,杨海明,王志跃.不同纤维素添加量对扬州鹅生长性能和屠宰性能的影响[J].安徽农业科学,2008,36(13):5453-5456.
    [3]王健.扬州鹅对日粮纤维利用的研究[D].扬州:扬州大学,2002.
    [4]卢建,杨海明,王志跃,施寿荣,邹建敏.稻壳稀释日粮对鹅肝脏和肌肉脂肪含量的影响[J].中国饲料,2009,21:8-10.
    [5]薛丰,刘大程,干洪荣,卢德勋,高民.16S rRNA定量分析技术对绵羊瘤胃固相纤维降解菌的研究[J].中国饲料,2007,(1):38-41.
    [6]Varel, V.H., Yen, J.T.. Microbial perspective on fibre utilization by swine[J]. Journal of Animal Science, 1997,75:2715-2722.
    [8]陈五湖.扬州鹅对来源不同的日粮纤维消化利用研究[D].扬州:扬州大学,2006.
    [9]Barnes, E.M.. The avian intestinal flora with particular reference to the possible ecological significance of the caecal anaerobic bacteria[J]. America Journal of Clinical Nutrition,1972,25:1475-1479.
    [10]Hume, M.E., Kubena, L.F., Edrington, T.S., Donskey, C.J., Moore, R.W., Ricke, S.C., Nisbet, D.J.. Poultry digestive microflora biodiversity as indicated by denaturing gradient gel electrophoresis[J]. Poultry Science,2003,82:1100-1107.
    [11]姚文,朱伟云,韩正康,Akkermans, A.D.L., Williams, B., Tamminga,S..应用变性梯度凝胶电泳和16S rDNA序列分析对山羊瘤胃细菌多样性的研究[J].中国农业科学,2004,37(9):1374-1378.
    [12]倪学勤,Gong, J.H., Yu, H.,曾东.PCR-DGGE技术分析蛋鸡MHC基因对肠道细菌种群结构的影响[J].中国农业科学,2009,42(7):2564-2571.
    [13]Santos Jr, A.A., Ferket, P. R., Santos, F. B. O., Nakamura, N., Collie, C.. Change in the ileal bacterial population of turkeys fed different diets and after infection with salmonella as determined with denaturing gradient gel electrophoresis of amplified 16S Ribosomal DNA[J]. Poultry Science,2008,87:1415-1427.
    114] Wise, M.G., and Siragusa, G.R.. Quantitative analysis of the intestinal bacterial community in one-to three-week-old commercially reared broiler chickens fed conventional or antibiotic-free vegetable-based diets[J]. Journal of Applied Microbiology,2007,102:1138-1149.
    [15]王梦芝,詹爱军,高杨,徐爱秋,喻礼怀,王洪荣.利用实时定量PCR研究不同蛋白质饲料对嗜淀粉瘤胃杆菌生长参数的影响[J].动物营养学报,2010.22(2):327-334.
    [16]Fu, C.J., Carter, J.N., Li, Y., Porter, J.H., Kerley, M. S... Comparison of agar plate and real-time PCR on enumeration of Lactobacillus, Clostridium perfringens and total anaerobic bacteria in dog faeces[J]. Letters in Applied Microbiology,2006,42:490-494.
    [17]陈小连,王佳堃,刘建新.实时荧光定量PCR对瘤胃纤维分解菌定量方法的构建[J].中国畜牧杂志,2008,44(11):36-40.
    [18]于萍,王加启,卜登攀登.日粮添加纳豆芽孢杆菌对断奶后犊牛胃肠道纤维分解菌的影响[J].中国 农业大学学报.2009,14(1):111-116.
    [19]Wang, H.F., Zhu, W.Y., Yao. W., Liu, J.X.. DGGE and 16S rDNA sequencing analysis of bacterial communities in colon content and feces of pigs fed whole crop rice[J]. Anaerobe,2007,13:127-133.
    [20]胡平.不同形态玉米日粮及日龄对鹅肠道微生物区系的影响[D].扬州:扬州大学.2010.
    [21]Lee, D.H., Zo, Y.G.. and Kim, S.J.. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism[J]. Applied and Environment Microbiology, 1996,62:3112-3120.
    [22]van der Wielen, P.W., Keuzenkamp, D.A., Lipman, L.J., van Knapen, F., Biesterveld, S.. Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth[J]. Microbial Ecology,2002,44:286-293.
    [23]Matsuki, T., Watanabe, K., Fujimoto, J., Miyamoto, Y., Takada, T., Matsumoto, K., Oyaizu, H., Tanaka, R.. Development of 16S rRN A-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces[J]. Applied and Environment Microbiology,2002,68:5445-5451.
    [24]Huusdens, X.W., Linskens, R. K., Mak, M., Meuwissen, S.G.M., Vandenbroucke-grauls, C.M.J.E., Savelkoul, P.H.M.. Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR[J]. Journal of Clinical Microbiology,2002,40:4423-4427.
    [25]Kok, R.G., De Waal, A., Schut, F., Welling, G.W., Weenk, G., Hellingwerf, K. J.. Specific detection and analysis of a probiotic Bifidobacterium strain in infant feces[J]. Applied and Environmental Microbiology, 1996,62:3668-3672.
    [26]Fu, C.J., Carter, J.N., Li, Y., Porter, J.H., Kerley, M. S... Comparison of agar plate and real-time PCR on enumeration of Lactobacillus, Clostridium perfringens and total anaerobic bacteria in dog faeces[J]. Letters in Applied Microbiology.2006,42:490-494.
    [27]Bartosch, S., Fite, A., Macfarlane, G.T. McMurdo, M.E.T.. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota[J]. Applied and Environment Microbiology,2004,70:3575-3581.
    [28]Rinttila, T., Kassinen, A., Malinen, E., Krogius, L., Palva, A.. Development of an extensive set of 16S rDNAtargeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR[J]. Journal of Applied Microbiology,2004,97:1166-1177.
    [29]Malinen, E., Kassinen, A., Rinttila, T.. Palva, A.. Comparison of real-time PCR with SYBR Green I or 5'-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria[J]. Microbiology,2003,149(1):269-77.
    [30]Louis. P., and Flint, H. J.. Development of a semiquantitative degenerate real-time PCR-based assay for estimation of numbers of butyryl-coenzyme A (CoA) CoA transferase genes in complex bacterial samp!es[J]. Applied and Environment Microbiology,2007,73:2009-2012.
    [31]Louis. P., Duncan. S. H., McCrae. S. I., Millar, J., Jackson. M. S., Flint, H. J.. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon[J]. Journal of Bacteriology,2004.186:2099-2106.
    [32]刘记强.日粮纤维对固始鸡生长发育、消化生理和盲肠微生物定植规律的影响[D].郑州:河南农业大学,2009.
    [33]Lan,Y., Williams, B.A., Tamminga, S., Boer. H., Akkermans, A., Erdi. G., Verstegen. M.W.A., In vitro fermentation kinetics of some non-digestible carbohydrates by the caecal microbial community of broilers[J]. Animal Feed Science and Technology,2005,123-124:687-702.
    [34]邵彩梅,韩正康.鹅盲肠对纤维类成分消化的研究[J].南京农业大学学报,1992,15(4):86-89.
    [35]Lin, B., Gong, J., Wang, Q., Cui, S., Yu, H., Huang, B.. In-vitro assessment of the effects of dietary fibers on microbial fermentation and communities from large intestinal digesta of pigs[J]. Food Hydrocolloids,2011. 25(2):180-188.
    [36]党国华,王恬.鹅对富含纤维类饲料的利用[J].中国家禽,2005,25(3):26-28.
    [37]Yu, B., Tsai, C.C., Hsu, J.C., Chiou, P.W.. Effect of different sources of dietary fibre on growth performance, intestinal morphology and caecal carbohydrases of domestic geese[J]. British Poultry Science, 1998,39(4):560-567.
    [38]徐敏娟,陈五湖,张苗苗,陈亮亮,卢建,王志跃.鹅盲肠微生物体外利用ADF/NDF的初步研究[J].畜牧与兽医,2006,38(6):17-19.
    [39]Varel, V.H., Pond, W.G.. Enumeration and activity of cellulolytic bacteria from gestation swine fed various levels of dietary fibre[J]. Applied and Environmental Microbiology,1985,49(4):858-862.
    [40]Bedbury, H.P., Duck, G.E.. Cecal microflora of turkeys fed low or high fibre diets:enumeration, identification, and determination of cellulolytic activiry[J]. Poultry Science.1983,62:675-682.
    [41]张柏林,秦贵信,孙泽威,刘宁,赵元,王涛.仔猪胃肠道微生物菌群定植规律及其功能的研究进展[J].中国畜牧杂志,2009,49(19):66-69.
    [42]Lin, B., Gong, J.H., Wang, Q., Cui, S., Yu, H., Huang, B.. In-vitro assessment of the effects of dietary fibers on microbial fermentation and communities from large intestinal digesta of pigs[J]. Food Hydrocolloids, 2011,25:180-188.
    [43]Kisidayova, S., Varadyova, Z., Pristas, P., Piknova, M., Nigutova, K., Petrzelkova, K.J., Profousova, I., Schovancova, K., Kamler, J., Modry, D.. Effects of high-and low-fiber diets on fecal fermentation and fecal microbial populations of captive chimpanzees[J]. America Journal of Primatology,2009,71(7):548-57.
    [44]Shen Q, Zhao L, Tuohy KM. High-level dietary fibre up-regulates colonic fermentation and relative abundance of saccharoiytic bacteria within the human faecal microbiota in vitro[J]. European Journal of Nutrition,2011. Sep 28.
    [45]杨红,彭建新,刘凯于,洪华珠.低等白蚁肠道共生微生物的多样性及其功能[J].微生物学报,2006,46(3):496-499.
    [46]Ziolecki, A., and Wojciechowicz, M.. Small pectinolytic spirochetes from the rumen[J]. Applied and Environmental Microbiology,1980,39:919-922.
    [47]Hopkins, M.J., and Macfarlane, G.T. Nondigestible oligosaccharides enhance bacterial colonization resistance against Clostridium difficile in vitro[J]. Applied and Environmental Microbiology.2003,69: 1920-1927.
    [48]Warnecke, F., Luginbuhl, P., Ivanova, N., Ghassemian, M., Richardson. T.H.. Stege, J.T.. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite[J]. Nature,2007.450:560-565.
    [49]Scupham. A.J., Patton, T.G., Bent, E.. Bayles, D.O..Comparison of the cecal microbiota of domestic and wild turkeys[J]. Microbial Ecology,2008,56:322-331.
    [50]Salanitro, J.P., Blake, I.G., Muirhead, P.A.. Studies on the cecal microflora of commercial broiler chickens[J]. Appl Microbiol,1974,28:439-447.
    [51]Harmsen, H.J.,Wildeboer-Veloo, A.C.,Grijpstra, J., Knol, J., Degener, J.E., Welling,G.W.. Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups[J]. Appl. Environ. Microbiol,2000,66:4523-4527.
    [52]Haas, F., Konig, H.Coriobacterium glomerans gen nov., sp. nov. from the intestinal tract of the red soldier bug[J]. Int. J Syst Bacteriol,1988,38:382-384.
    [53]Matthies, A., Clavel, T., Gutschow, M., Engst, W., Haller, D., Blaut, M., Braune, A.. Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine[J]. Appl. Environ. Microbiol,2008,74:4847-4852.
    [54]Matthies, A., Blaut, M., Braune, A. Isolation of a human intestinal bacterium capable of daidzein and genistein conversion[J]. Appl. Environ. Microbiol,2009,75:1740-1744.
    [55]Wienemann, T., Schmitt-Wagner, D., Meuser, K., Segelbacher, G., Schinkd, B., Brune, A., Berthol, P.. The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds[J]. Systematic and Applied Microbiology,2011,34:542-551.
    [56]谷子林,李江,张玉华,陈宝江,葛剑,黄玉亭,董兵.日粮粗纤维水平对断乳力克斯兔腹泻率、消化道pH和盲肠菌群的影响[J].中国农学通报,2008,24:21-24.
    [57]张名爱,王宝维,龙芳羽,王雷,杨志刚,张旭晖,刘光磊.五龙鹅肠道正常菌群的研究.学术年会.2006.
    [58]Kaplan, H., and Hutkins, R.W.. Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria[J]. Applied and Environmental Microbiology,2000,66:2682-2684.
    [59]Dunkley, K. D., Dunkley, C. S., Njongmeta, N. L., Callaway, T. R., Hume, M. E., Kubena, L. F., Nisbet, D. J., Ricke, S. C.. Comparison of In Vitro Fermentation and Molecular Microbial Profiles of High-Fiber Feed Substrates Incubated with Chicken Cecal Inocula[J]. Poultry Science,2007,86:801-810.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700