用户名: 密码: 验证码:
巨桉耗水特性及其对干旱胁迫的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是淡水资源较贫乏的国家,人均占有量不足世界平均水平的1/4,且时空分布极不均匀,加之水资源污染严重,可利用的淡水资源就显得更为有限。一方面,水分是林木生存与生长发育必需的因子之一,另一方面,水资源缺乏地区林木耗水能力可能成为影响淡水资源可持续利用的因素之一。近年来,在全球气候变化的大背景下,干旱发生的频率、范围和持续时间均有增加的趋势,其对农林业生产造成的损失超过了其它自然灾害所造成损失的总和。
     巨桉有速生、丰产、优质及适应性强等特点,是我国南方短周期工业原料林的重要树种之一,在满足人们生产生活的木材需求和促进地方经济发展中发挥着重要作用。但巨桉是否具有很强的耗水能力,大面积发展是否影响区域水分平衡也引起了广泛的关注。同时,在干旱频繁发生的背景下,其耐旱能力也直接关系到其引种栽培和经营管理。因此,研究巨桉的耗水特性及其耐旱能力,乃至如何增强其耐旱能力都具有较强的现实意义。
     本文利用盆栽的试验方法,对巨桉幼树的耗水特性、耐旱特性及施氮对其耐旱性的影响进行了研究,主要内容包括:(1)巨桉与其它两个速生树种(竹柳和桤木)幼树的在不同土壤水分条件下的生长和耗水特性比较;(2)土壤水分充足条件下巨桉和桤木幼树对持续干旱的生长及生理响应;(3)不同土壤水分条件下生长的巨桉幼树对持续干旱的生理响应的差异;(4)施氮对巨桉幼树耐旱性的影响。旨在为巨桉的引种栽培及其人工林的水分和养分管理提供一定的理论依据与参考。本研究主要结果如下:
     1、同等环境条件下,与竹柳和桤木相比,巨桉具有相对较高的日耗水量及总耗水量。其中,在水分充足的条件下(W1),巨桉的日耗水量为竹柳的1.82倍(阴天)或2.06倍(晴天),为桤木的8.11倍(阴天)或13.35倍(晴天);在中度干旱下(W2),为竹柳的4.24倍(阴天)或6.29倍(晴天),为桤木的11.87倍(阴天)或16.94倍(晴天);在重度干旱下(W3),为竹柳的2.95倍(阴天)或3.22倍(晴天),为桤木的4.27倍(阴天)或5.03倍(晴天)。巨桉不仅具有较高的耗水量,且在一定的干旱程度内,也更不易受到影响而降低,这与其在干旱下继续维持较大的叶面积、较强的光合能力和较快的生长速率是密切相关的。在降雨充沛且季节分布均匀的地区可合理地发展巨桉林,在水分并不充裕或季节性干旱明显的地区,建议不要大面积种植巨桉,以免对当地水分平衡产生不良影响。
     2、巨桉在持续干旱条件下采取整株叶片萎蔫、卷曲的策略,尽可能地维持较高的光合有效面积和较快的生长速率,但也导致其土壤含水量较快地下降。从其渗透调节物质(如游离脯氨酸(Pro)、可溶性糖(SS))、活性氧(如过氧化氢(H202))、丙二醛(MDA)等的响应来看,其在持续干旱过程中经受着更为严重的活性氧伤害,若干旱时间延长,可能造成难以恢复的损伤。而桤木在干旱时采取落叶方式,降低了土壤水分消耗,保证了幼嫩叶片的水分供给,干旱解除或缓解之后可能较快地恢复生长。为保证两树种生长不至受到干旱的严重影响,土壤体积含水量不要低于10%。在水分充足且无长期持续干旱的地区,发展巨桉可获得较大的木材产量,而在持续干旱易发区,以桤木替代巨桉为宜。
     3、长期生长在水分条件较差环境中的巨桉,由于适应了水分不足的状况,对水分的渴求程度减小,在持续性干旱过程中,能更快地启动减少水分散失和减轻氧化伤害的内部调控(如提高超氧化物歧化酶(SOD)活性及抗坏血酸(AsA)、类胡萝卜素(Car)、Pro含量)和外部调控(如减小气孔开度而使气孔导度(Gs)、蒸腾速率(Tr)降低),因而其叶片内H202和MDA含量在持续干旱的过程中上升较为缓慢,受到的氧化伤害较小。实际生产中,是否可以考虑用适度的干旱对巨桉苗木进行一段时间的锻炼,使之对水分不足有预先的适应,以增强其在造林后对干旱的适应能力。对已经造林的苗木,在季节性干旱来临前,是否可以考虑适度减少对其的水分供应,这可能有利于其渡过短期的干旱。
     4、增施氮素能在一定程度上改善巨桉的水分状况(如提高叶片相对含水量(LRWC)和叶水势(LWp)),增加其代谢活力(如增强净光合速率(Pn)),减弱其叶表面被蜡质程度,促进气体交换,对一定程度的干旱起到缓解作用。但是正因如此,也加快了其在持续干旱下的水分亏缺,加之施氮使得巨桉根上生物量分配比例下降,而茎和枝上分配增加,这就加重了根系供水负担,因此,施氮的巨桉在干旱过程中所受到的氧化伤害加重,光合能力下降更快,这也不利于其生长。在营林过程中,巨桉幼林的施氮不要在季节性干旱前进行,若必须施用,需保证在干旱时节里能够通过人工灌溉等方式给予其充足的水分。
China is the relatively poor country in terms of the fresh water resource, where the fresh water per head doesn't reach a quarter of the world average level. It seems that the fresh water is more limited for its nonuniform distribution in time and space and being seriously polluted. On one hand, water is indispensable to the existence and growth of trees. And on the other hand, the water consumption capacity of trees may become an important factor that affects the sustainable supply of the fresh water in regions that lack water. In recent years, under the background of global climate change, the frequency, scope and duration time of drought all present an up trend. The losses in agriculture and forestry production caused by drought exceed that caused by other natural disasters.
     Eucalyptus grandis possesses many bright features such as fast growing, high yield, good adaptability and so on, which in southern China is one of the most preferred timber tree species in the construction of short-cycle plantations for industrial use, and plays an important role in meeting people's demand for timber and promoting local economy development. However, whether the water consumption capacity of E. grandis is strong, or whether its substantial spread impacts local water balance arouses much attention. Meanwhile, under the background of frequent appearance of drought, the drought tolerance of E. grandis is directly associated with its introduction and management. Therefore, researches involving the water consumption characteristics and drought tolerance of E. grandis, and even how to strengthen its drought tolerance own profound significance in reality.
     Pot experiments were conducted to study the water consumption characteristics and drought tolerance of E. grandis, and the effects of nitrogen application on the drought tolerance of which from the following four aspects:(1) The comparison study on the growth and water consumption characteristics between the saplings of E. grandis and another two fast-growing tree species (bamboo willow (Salix spp.) and Alnus cremastogyne) grown under different soil water conditions,(2) The growth and physiology responses of E. grandis and A. cremastogyne saplings supplied ample water to continuous drought stress,(3) The physiology responses of E. grandis saplings grown under different soil water conditions to continuous drought stress, and (4) The effects of nitrogen application on drought tolerance of E. grandis saplings. The aim of this study is to provide some theoretic reference and technological support for the introduction of E. grandis and the water and nutrient management of its plantations. The main results are as follows,
     1. Under the same condition, E. grandis had relatively higher daily water consumption and total water consumption compared with bamboo willow and A. cremastogyne. Under ample water supply (Wi), the daily water consumption of E. grandis was1.82times (cloudy day) or2.06times (sunny day) that of bamboo willow, and8.11times (cloudy day) or13.35times (sunny day) that of A. cremastogyne. Under moderate drought (W2), the daily water consumption of E. grandis was4.24times (cloudy day) or6.29times (sunny day) that of bamboo willow, and11.87times (cloudy day) or16.94times (sunny day) that of A. cremastogyne. Under serious drought (W3), the daily water consumption of E. grandis was2.95times (cloudy day) or3.22times (sunny day) that of bamboo willow, and4.27times (cloudy) or5.03times (sunny day) that of A. cremastogyne. In fact, the water consumption of E. grandis was not only higher, but also more difficult to be inhibited by moderate drought. That was closely correlated with its larger total leaf area, stronger photosynthetic capacity and faster growth, even in moderate drought. So we had better to develop E. grandis rationally in areas where ample and uniform precipitation is seen, otherwise, developing E. grandis extensively is not suggested in case that local water balance is impacted greatly.
     2. E. grandis preferred the strategy of leaf wilt or curl so that the higher available photosynthetic area and faster growth could be maintained during drought, however, which might lead to the faster descent of its soil water content. From the responses of its osmolytes (free proline (Pro) and soluble sugar (SS), etc.), reactive oxygen species (hydrogen peroxide (H2O2), etc.) and malondialdehyde (MDA), it suffered more serious damage caused by reactive oxygen species in continuous drought stress compared with A. cremastogyne. While, A. cremastogyne decreased water consumption and provided the last emerged leaves enough water by defoliation. It was likely that A. cremastogyne would recover more quickly when drought was relieved or eased. This study also showed that the soil volumetric water content should not be lower than10%in case that E. grandis saplings were seriously impacted by drought. Additionally, in regions that own sufficient water resource and have no long-period continuous drought, it's wiser to plant E. grandis for larger yield, while in regions where continuous drought is often seen, A. cremastogyne is more likely to be a suitable species.
     3. E. grandis grown in the situation that was short of water for a long period were less thirstier for water compared with those grown in ample water condition, probably because they were adaptable to water deficit. During the continuous drought, they were more active to initiate the mechanisms that help to decrease water loss and relieve oxidative damage, such as rising superoxide dismutase (SOD) activity, increasing the content of ascorbic acid (AsA), carotenoid (Car) and free proline (Pro), and regulating the stomas to reduce stomatal conductance (Gs) and transpiration rate (Tr). Therefore, the content of H2O2and MDA in their leaves increased relatively slower in continuous drought, indicating they suffered less oxidative damage. Maybe we could give a consideration to use moderate drought to make the saplings of E. grandis adaptable to water deficit for a period, so that its adaptability to drought could be strengthened after afforestation, or to reduce water supply of its young plantation moderately to help the saplings through the continuous drought.
     4. Nitrogen application was able to improve the water status of E. grandis (e.g., rising the leaf relative water content (LRWC) and leaf water potential (LWp)), stimulated its metabolism (e.g., enhancing the net photosynthetic rate (Pn)), avianized the wax covered on the leaf surface, promoted gas exchange, and eased the moderate drought stress it suffered. But it was for these reasons, E. grandis applicated with nitrogen in continuous drought lacked water more easily. In addition that the dry matter allocated to the root decreased accompanied with which allocated to the branch and stem increased, the burden on its root was heavier. As a result, nitrogen application made E. grandis suffer more serious oxidative damage, and the photosynthetic capacity of which decreased more sharply during drought. Obviously, it wouldn't be conducive to its growth. Thus, nitrogen application to the young plantation of E. grandis is not suggested before the continuous drought, only if it could receive sufficient water by irrigation or other ways.
引文
[1]Akram N A, Shahbaz M, Ashraf M. Nutrient acquisition in differentially adapted populations of Cynodon dactylon (L.) Pers. and Cenchrus ciliaris L. under drought stress[J]. Pakistan Journal of Bottany,2008,40(4):1433-1440
    [2]Albaugh T J, Lee Allen H, Dougherty P M, et al. Long term growth responses of loblolly pine to optimal nutrient and water resource availability[J]. Forest Ecology and Management,2004,192(1):3-19
    [3]Alvarez S, Navarro A, Nicolas E, et al. Transpiration, photosynthetic responses, tissue water relations and dry mass partitioning in Callistemon plants during drought conditions[J]. Scientia Horticulturae,2011,129(2):306-312
    [4]Angelopoulos K, Dichio B, Xiloyannis C. Inhibition of photosynthesis in olive trees (Olea europaea L.) during water stress and rewatering[J]. Journal Experimental Botany,1996,47(8):1093-1100
    [5]Arndt S K, Clifford S C, Wanck W, et al. Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in the response to progressive drought stress[J]. Tree Physiology,2001,21(11):705-715
    [6]Babita M, Maheswan M, Rao L M, et al. Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) hybrids[J]. Environmental and Experimental Botany,2010,69(3):243-249
    [7]Bacon M A, Wilkinson S, Davies W J. PH-regulated leaf cell expansion in droughted plants is abscisic acid dependent[J]. Plant Physiology,1998,118(4):1507-1515
    [8]Bacso R, Janda T, Galiba G, et al. Restricted transpiration may not result in improved drought tolerance in a competitive environment for water[J]. Plant Science,2008,174(2):200-204
    [9]Bai J, Gong C M, Kang H M, et al. Examination of Antioxidative System's Responses in the Different Phases of Drought Stress and During Recovery in Desert Plant Reaumuria soongorica (Pall.) Maxim. Journal of Plant Biology, 2009,52(5):417-425
    [10]Begg J E. Morphological adaptations of leaves to water stress. In:Turner N C, Kramer P J (eds.). Adaptation of Plants to Water and High Temperature Stress[M]. New York:Wiley & Sons,1980
    [11]Bennett J M, Jones J W, Zur B, et al. Interactive effects of nitrogen and water stress on water relations of field-grown corn leaves[J]. Agronomy Journal,1986,78(2):273-280
    [12]Bergh J, Linder S, Lundmark T, et al. The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden[J]. Forest Ecology and Management,1999,119(1-3):51-62
    [13]Bernier P Y, Bartlett P, Black T A, et al. Drought constraints on transpiration and canopy conductance in mature aspen and jack pine stands[J]. Agricultural and Forest Meteorology,2006,140(1-4):64-78
    [14]Blum A. Crop responses to drought and the interpretation of adaptation[J]. Plant Growth Regulation.1996, 20(2):135-148
    [15]Bohnert H J, Nelson D E, Jensen R G. Adaptations to environmental stresses[J]. Plant Cell,1995,7(7):1099-1111
    [16]Bohnert H J, Jensen R G. Strategies for engineering water stress tolerance in plants[J]. Trends in Biotechnology, 1996,14(3):89-97
    [17]Boland D J, Brooker M I H, Chippendale G M, et al. Forest Trees of Australia[M]. Victoria:Nelson CSIRO,2006
    [18]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72(1-2):248-254
    [19]Bray E A. Molecular responses to water deficit[J]. Plant Physiology,1993,103(4):1035-1040
    [20]Campinbos E. Sustainable plantations of high-yield shape Eucalyptus trees for production of fiber:the Aracru case[J]. New Forests,1999,17(1-3):129-143
    [21]Casper B B, Forseth I N, Wait D A, et al. A stage-based study of drought response in Cryptantha flava (Boraginaceae) gas exchange, water use efficiency, and whole plant performance[J]. American Journal of Botany, 2006,93(7):977-987
    [22]Chaves M M, Pereira J S, Maroco J, et al. How plants cope with water stress in the field? Photosynthesis and growth[J]. Annals of Botany.2002,89(7):907-916
    [23]Chen S Y. Molecular mechanism and genetic engineering for drought and salt-tolerance[J].2000
    [24]Chippendale G M, Wolf L. The Natural Distribution of Eucalyptus in Australia[M]. CanberrA:Australian National Parks and Wildlife Service.1981
    [25]Clarke J M, Romagosa I, Jana S, et al. Relationship of excised-leaf water loss rate and yield of durum wheat in diverse environments[J]. Canadian Journal of Plant Science.1989,69(4):1075-1081
    [26]Cromer R N, Jarvis P G. Growth and biomass partitioning in Eucalyptus grandis seedlings in response to nitrogen supply[J]. Functional Plant Biology,1990,17(5):503-515
    [27]Crowan I R. Stomatal behavior and environment. In:Preston R D, Woolhouse H W (eds.). Advances in Botanical Research[M].1978
    [28]Danesh-Shahraki A, Nadian H, Bakhshandeh A, et al. Optimization of irrigation and nitrogen regimes for rapeseed production under drought stress[J]. Journal of Agronomy,2008,7(4):321-326
    [29]David T S, Henriques M O, Kurz-Besson C, et al. Water-use strategies in two co-occurring Mediterranean evergreen oaks surviving the summer drought[J]. Tree Physiology,2007,27(6):793-803
    [30]Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants[J]. The Plant Journal,1993, 4(2):215-223
    [31]DesRochers A, Van Den Driessche R, Thomas Barb R. The interaction between nitrogen source, soil pH, and drought in the growth and physiology of three poplar clones[J]. Canadian Journal of Botany,2007,85(11): 1046-1057
    [32]Dias M C, Bruggemann W. Water-use efficiency in Flaveria species under drought-stress conditions[J]. Photosynthetica,2010,48(3):469-473
    [33]Duursma R A, Kolari P, Peramaki M, et al. Predicting the decline in daily maximum transpiration rate of two pine stands during drought based on constant minimum leaf water potential and plant hydraulic conductance[J]. Tree Physiology,2008,28(2):265-276
    [34]Ebrahimi S T, Yarnia M, Benam M B K, et al. Effect of potassium fertilizer on corn yield (Jeta cv.) under drought stress condition[J]. American-Eurasian Journal Agriculture & Environmental Science,2011,10(2):257-263
    [35]Elstner E F. Oxygen activation and oxygen toxicity[J]. Annual Review of Plant Physiology,1982,33(1):73-96
    [36]Evans J R. Nitrogen and photosynthesis in flag leaf of wheat(Triticum aestivum L.)[J]. Plant Physiology,1983, 72(2):297-302
    [37]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982,33(1):317-345
    [38]Farquhar G D, O'leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercelluar carbon dioxide concentration in leaves[J]. Functional Plant Biology,1982,9(2):121-137
    [39]Feng J C, Hu X L, Mao X J, et al. Application of chlorophyll fluorescence dynamics to plant physiology in adverse circumstance[J]. Economic Forest Researches,2002,20(4):14-18
    [40]Finkel T. Oxygen radicals and signaling[J]. Current Opinion in Cell Biology.1998,10(2):248-253
    [41]Fukai S, Cooper M. Development of drought-resistant cultivars using physiomorphological traits in rice[J]. Field Crop Research,1995,40(2):67-86
    [42]Garcia-Plazaola J I, Faria T, Abadia J, et al. Seasonal changes in xanthophyll composition and photosynthesis of cork oak (Quercus suber L.) leaves under mediterranean climate[J]. Journal of Experimental Botany.1997, 48(9):1667-1674
    [43]Gheysari M, Mirlatifi S M, Bannayan Aval, M, et al. Interaction of water and nitrogen on maize grown for silage[J]. Agricultural Water Management,2009,96(5):809-821
    [44]Giannopolitis C N, Ries S K. Superoxide dismutases. I. Occurrence in high plants 1,2[J]. Plant Physiology,1977, 59(2):309-314
    [45]Gibson A, Hubick K T, Bachelard E P. Effects of abscisic acid on morphological and physiological responses to water stress in Eucalyptus camaldulensis seedlings[J]. Functional Plant Biology,1991,18(2):153-163
    [46]Gindaba J, Rozanov A, Negash L. Response of seedlings of two Eucalyptus and three deciduous tree species from Ethiopia to severe water stress[J]. Forest Ecology and Management,2004,201(1):119-129
    [47]Graciano C, Guiamet J J, Goya J F. Impact of nitrogen and phosphorus fertilization on drought responses in Eucalyptus grandis seedlings[J]. Forest Ecology and Management,2005,212(1-3):40-49
    [48]Greven M, Neal S, Green S, et al. The effects of drought on the water use, fruit development and oil yield from young olive trees[J]. Agricultural Water Management,2009,96(11):1525-1531
    [49]Haghighi B J, Yarmahmodi Z. Evaluation the effects of biological fertilizer on physiological characteristic and yield and its components of corn (Zea mays L.) under drought stress[J]. American Journal of Agricultural and Biological Science,2010,5(2):189-193
    [50]Heitholt J J. Water use efficiency and dry matter distribution in nitrogen- and water-stressed winter wheat[J]. Agronomy Journal.1989,81(3):464-469
    [51]Hillis W E, Brown A G. Wood quality and utilization. Eucalyptus for wood production[M]. Victoria:CSIRO,1984
    [52]Hsiao T C. Plant responses to water stress[J]. Annual Review Plant Physiology,1973,24(1):519-570
    [53]Jaleel C A, Gopi R, Sankar B, et al. Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress[J]. Comptes Rendus Biologies,2008,331(1):42-47
    [54]Jiang Y W, Huang B K. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation[J]. Crop Science,2001,41(2):436-442
    [55]Jorgensen S T, Ntundu W H, Ouedraogo M, et al. Effect of a short and severe intermittent drought on transpiration, seed yield, yield components, and harvest index in four landraces of bambara groundnut[J]. International Journal of Plant Production,2011,5(1):25-36
    [56]Jubany-Mari T, Munne-Bosch S, Alegre L. Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate[J]. Plant Physiology and Biochemistry,2010,48(5):351-358
    [57]Kaiser W M. Effect of water deficit on photosynthetic capacity[J]. Physiologia Plantarum,1987,71(1):142-149
    [58]Karunaratne A S, Crout N M J, Azam-Ali S N. Simulation of water use efficiency to tackle the drought[J].2010,4: 316-322
    [59]Kocher P, Gebauer T, Horna V, et al. Leaf water status and stem xylem flux in relation to soil drought in five temperate broad-leaved tree species with contrasting water use strategies[J]. Annals of Forest Science,2009,66(1): 101
    [60]Kramer P J, Boyer J S. Water Relation of Plants and Soils[M]. New York:Academic Press,1995
    [61]Kramer P J. Water Relations of Plant[M]. New York and London:Academic Press,1983
    [62]Krause G H, Weis E. Chlorophll fluorescence as a tool in plant physiology[J]. Photosynthesis Research,1984,5(2): 139-157
    [63]Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis:the basics[J]. Annual Review of Plant Physiology Molecular Biology,1991,42(1):313-349
    [64]Krcek M, Slamka P, Olsovska K, et al. Reduction of drought stress effect in spring barley (Hordeum vulgare L.) by nitrogen fertilization[J]. Plant, Soil and Environment,2008,54(1):7-13
    [65]Lauteri M, Scartazza A, Guido M C, et al. Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments[J]. Functional Ecology,1997, 11(6):675-683
    [66]Lenssen A W, Waddell J T, Johnson G D, et al. Diversified cropping systems in semiarid Montana Nitrogen use during drought[J]. Soil & Tillage Research,2007,94(2):362-375
    [67]Levitt J. Response of plants to environmental stresses (2nd ed)[M]. New York and London:Academic Press,1980
    [68]Li C Y, Yin C Y, Liu S R. Different responses of two contrasting Populus davidiana populations to exogenous abscisic acid application[J]. Environmental and Experimental Botany,2004,51(3):237-246
    [69]Li W L, Berlyn G P, Ashton P M S. Polyploids and their structural and physiological characteristics relative to water deficit in Betula papyrifera(Betulaceae)[J]. American Journal of Botany,1996,83(1):15-20
    [70]Liang Z S, Yang J W, Shao H B, et al. Investigation on water consumption characteristics and water use efficiency of poplar under soil water deficits on the Loess Plateau[J]. Colloids and Surfaces B:Biointerfaces,2006,53(1): 23-28
    [71]Ludlow M M. Adaptive significance of stomatal responses to water stress. In:Turner N C, Kramer P J (eds) Adaptation of Plants to Water and High Temperature Stress[M]. New York:John Wiley &Sons Inc.1980,123-138
    [72]Macarthur R H, Connell J H. The Biology of Populations[M]. New York:Wiley and Sons Press,1996
    [73]Mansfield T A. Chemical control of stomatal movements[J]. Philosophical Transactions of the Royal Society London B, Biological Sciences,1976.273(927):541-550
    [74]Marchin R, Zeng H N, Hoffmann W. Drought-deciduous behavior reduces nutrient losses from temperate deciduous trees under severe drought[J]. Oecologia,2010,163(4):845-854
    [75]Maruyama K, Toysma Y. Effects of water stress on photosynthesis and transpiration in three tall deciduous trees[J]. Journal of the Japanese Forestry Society,1987,69(5):165-170
    [76]Matsubara C, Nishikawa Y, Yoshida Y, et al. A spectrophotometric method for the determination of free fatty acid in serum using acyl-coenzyme A synthetase and acyl-coenzyme A oxidase[J]. Analytical Biochemistry,1983,130(1): 128-133
    [77]McNaughton K G, Jarvis P G. Predicting effects of vegetation changes on transpiration and evaporation. In Kozlowski T T (eds), Water Deficits and plant growth[M]. New York:Academic Press,1983
    [78]Midgley G F, Moll E J. Gas-exchange in arid-adapted shrubs:when is efficient water-use a disadvantage? [J]. South African Journal of Botany,1993,59(5):491-495
    [79]Monclus R, Dreyer E, Villar M, et al. Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides×Populus nigra[J]. New Phytologist,2006,169(4):765-777
    [80]Montanaro G, Dichio B, Xiloyannis C. Shade mitigates photoinhibition and enhances water use efficiency in kiwifruit under drought[J]. Photosynthetica,2009,47(3):363-371
    [81]Mukherjee S P, Choudhuri M A. Implications of water stress-induced change in levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings[J]. Physiologia Plantarum,1983,58(2):166-170
    [82]Nunes M A, Ramalho J D C, Dias M A. Effect to nitrogen supply on the photo synthetic performance leaves from coffee plants exposed to bright light[J]. Journal of Experimental Botany,1993,44:893-899
    [83]Paleg L G. Aspinall D. The Physiology and Biochemistry of Drought Resistance in Plants[M]. New York:Academic Press,1981,172-204
    [84]Papageogiou G C, Murata N. The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem Ⅱ complex[J]. Photosynthesis Research,1995, (44):243-252
    [85]Patterson B D, MacRae E A, Ferguson I B. Estimation of hydrogen peroxide in plant extracts using titanium(IV) [J]. Analytical Biochemistry,1984,139(2):487-492
    [86]Penuelas J, Filella I, Llusia J, et al. Comparative field study of spring and summer leaf gas exchange and photobiology of the mediterranean trees Quercusilex and Phillyrea latifolia[J]. Journal of Experiment Botany,1998, 49(319):229-238
    [87]Pinkard E A, Baillie C, Patel V, et al. Effects of fertilising with nitrogen and phosphorus on growth and crown condition of Eucalyptus globulus Labill. experiencing insect defoliation[J]. Forest Ecology and Management,2006, 231(1-3):131-137
    [88]Pita P, Pardos J A. Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit[J]. Tree Physiology,2001,21(9):599-607
    [89]Quero J L, Sterck F J, Martinez-Vilalta J, et al. Water-use strategies of six co-existing Mediterranean woody species during a summer drought[J]. Oecologia,2011,166(1):45-57
    [90]Ramirez Builes V H, Porch T G, Harmsen E W. Genotypic differences in water use efficiency of common bean under drought stress[J]. Agronomy Journal,2011,103(4):1206-1215
    [91]Rasyid B, Gyamfi J A, Ram T, et al. Development in soil-water-and nutrient management:A Study on drought tolerant of wheat genotypes using carbon isotopes discrimination[J].2011
    [92]Rathinasabapathi B. Metabolic engineering for stress tolerance:installing osmoprotectant synthesis pathways[J]. Annals of Botany.2000,86(4):709-716
    [93]Razavi F, De Keyser E, De Riek J, et al. A method for testing drought tolerance in Fragaria based on fast screening for water deficit response and use of associated AFLP and EST candidate gene markers[J]. Euphytica,2011,180(3): 385-409
    [94]Reddy A R, Chaitanya K V, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. Journal of Plant Physiology,2004,161(11):1189-1202
    [95]Rekika D, Nachit M M, Araus J L, et al. Effects of water deficit on photosynthetic rate and osmotic adjustment in tetraploid wheats[J]. Photosynthetica,1998,35(1):129-138.
    [96]Rose C W, Sharma M L. Summary and recommendations of the workshop on "Evapotranspiration from plant communities" [J]. Agricultural Water management,1984,8(1-3):325-342
    [97]Rubio M C, Gonzalez E M, Minchin F R, et al. Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases[J]. Physiologia Plantarum,2002, 115(4):531-540
    [98]Ruiz-Sinoga J D, Galeote M A G, Martinez Murillo J F, et al. Vegetation strategies for soil water consumption along a pluviometric gradient in southern Spain[J]. Catena,2011,84(1-2):12-20
    [99]Sakamoto H, Araki T, Meshi T, Iwabuchi M. Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress[J]. Gene,2000,248(1-2):23-32
    [100]Sardans J, Penuelas J. Drought changes nutrient sources, content and stoichiometry in the bryophyte Hypnum cupressiforme Hedw. growing in a Mediterranean forest[J]. Journal of Bryology,2008,30(1):59-65
    [101]Scandalios J G. Oxygen stress and superoxide dismutases[J]. Plant Physiology,1993,101(1):7-12
    [102]Schulze J, Merbach W. Nitrogen rhizodeposition of young wheat plants under elevated CO2 and drought stress[J]. Biology and Fertility of Soils,2008,44(3):417-423
    [103]Seel W E, Hendry G A F, Lee J A. The combined effects desiccation and irradiance on mosses from xeric and hydric habitats[J]. Journal Experimental Botany.,1992,43(8):1023-1030
    [104]Seiler J R, Johnson J D. Physiological morphological responses of three half-sib families of loblolly pine to water-stress conditioning[J]. Forest Science,1988,34(2):487-495
    [105]Sgherri C L M, Maffei M, Navari-Izzo F. Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering[J]. Journal of Plant Physiology,2000,157(3):273-279
    [106]Shahryari R, Gadimov A, Gurbanov E, et al. Wheat genotypes response to terminal drought at presence of a humic fertilizer using stress tolerance indices[J]. Advances in Environmental Biology,2011,5(1):166-168.
    [107]Shahryari R, Valizadeh M, Mollasadeghi V. Selection based on tolerance of wheat against terminal drought focus on grain yield at the presence of liquid humic fertilizer[J]. African Journal of Agricultural Research,2011,6(19): 4494-4500
    [108]Shvaleva A L, Silva F C E, Breia E, et al. Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity[J]. Tree Physiology,2006,26(2):239-248
    [109]Siahpoosh M R, Dehghanian E, Kamgar A. Drought tolerance evaluation of bread wheat genotypes using water use efficiency, evapotranspiration efficiency, and drought susceptibility index[J]. Crop Science,2011,51(3):1198-1204
    [110]Siddiqui M T, Shah A H, Tariq M A. Effects of fertilization and water stress on Eucalyptus camaldulensis seedlings[J]. Journal of Tropical Forest Science,2008,20(3):205-210
    [111]Silva F C E, Shvaleva A, Maroco J P, et al. Responses to water stress in two Eucalyptus globulus clones differing in drought tolerance[J]. Tree Physiology,2004,24(10):1165-1172
    [112]Singh S K, Raja Reddy K. Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought[J]. Journal of Photochemistry and Photobiology B:Biology,2011,105(1):40-50
    [113]Smirnoff N. Plant resistance to environmental stress[J]. Current Opinion in Biotechnology.1998,9(2):214-219
    [114]Smirnoff N, Colombe S V. Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system[J]. Journal of Experimental Botany,1988,39(8):1097-1108
    [115]Splittlehouse D L, Black T A. Evaluation of the Bowen ration/energy balance method for deterring forest evapotranspiration[J]. Atmosphere-ocean,1980,18:98-116
    [116]Teklehaimanot Z, Lanek J, Tomlinson H F. Provenance variation in morphology and leaflet anatomy of parkia biglobosa and its relation to drought tolerance[J]. Trees Structure and Function,1998,13(2):96-102
    [117]Turner N C, Framer P J. Adaptation of Plants to Water and Temperature Stress[M]. New York:John Wiley &Sons Inc.,1980
    [118]Turner N C, Jones M M. Turgor maintenance by omostic adjustment:review and evaluatiob. In:Turner N C, Kramer P J (eds) Adaptation of Plants to Water and High Temperature Stress[M]. New York:John Wiley &Sons Inc. 1980,87-103
    [119]Tyree M T, Hammel H T. The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique[J]. Journal of Experimental Botany,1972,23(1):267-282
    [120]Velasco R, Salamini F, Bartels D. Dehydration and ABA increase mRNA Levels and enzyme activity of cytosolic GAPDH in the resurrection plant Craterostigma plantagineum[J]. Plant Molecular Biology,1994,26(1):541-546
    [121]Vijayalakshmi C, Nagarajan M. Effect of rooting pattern on rice productivity under different water regimes[J]. Journal of Agronomy and Crop Science,1994,173(2):113-117
    [122]Villar-Salvador P, Puertolas J, Penuelas J L, et al. Effect of nitrogen fertilization in the nursery on the drought and frost resistance of Mediterranean forest species[J]. Forest Systems,2005,14(3):408-418
    [123]Wang S X, Xia S T, Peng K Q, et al. Effects of formulated fertilizer synergist on abscisic acid accumulation, proline content and photosynthetic characteristics of rice under drought[J]. Rice Science,2007,14(1):42-48
    [124]Willekens H, Van Camp W, M Van Montagu, et al. Ozone, sulfur dioxide, and ultraviolet-B have similar effects on mRNA accumulation of antioxidant genes in Nicotian plumbaginifolia L[J]. Plant Physiology,1994,106(3): 1007-1014
    [125]Xing G S, Cui K R, Li J, et al. Water stress and accumulation of β-N-oxalyl-L-a,β-diaminopionic acid in grass pea(Lathyrus sativus) [J]. Journal of Agricultural and Food Chemistry,2001,49(1):216-220
    [126]Xu Z Z, Zhou G S. Nitrogen metabolism and photosynthesis in Leymus chinensis in response to long-term soil drought[J]. Journal of Plant Growth Regulation,2006,25(3):252-266
    [127]Yang F, Xu X, Xiao X, et al. Responses to drought stress in two poplar species originating from different altitudes[J]. Biologia Plantarum,2009,53(3):511-516
    [128]Yin Z H, Raven J A. Influences of different nitrogen sources on nitrogen- and water- use efficiency, and carbon isotope discrimination, in C3 Triticun aestivum L. and C4 Zea mays L.[J]. Planta,1998,205(4):574-580
    [129]Yurekli K, Kurunc A. Simulating agricultural drought periods based on daily rainfall and crop water consumption[J]. Journal of Arid Environments,2006,67(4):629-640
    [130]Zhang J, Yao Y C, Streeter J G, et al. Influence of soil drought stress on photosynthesis, carbohydrates and the nitrogen and phophorus absorb in different section of leaves and stem of Fugi M.9EML, a young apple seedling[J]. African Journal of Biotechnology,2010,9(33):5320-5325
    [131]Zekri M R, Parsons L R. Water relations of grapefruit trees in response to drip microsprinkler and overhead sprinkler irrigation[J]. Journal of the American Society for Horticultural Science,1988,113(6):819-823
    [132]Zhang J H, Jia W S, Yang J C, et al. Role of ABA in integrating plant responses to drought and salt stresses[J]. Field Crops Research,2006,97(1):111-119
    [133]Zhang J X, Kirkham M B. Antioxidant responses to drought in sunflower and sorghum seedlings[J]. New Phytologist,1996,132(3):361-373
    [134]Zhang L X, Gao M, Li S Q, et al. Growth, water status and photosynthesis in two maize (Zea mays L.) cultivars as affected by supplied nitrogen from drought stress[J]. Pakistan Journal of Botany,2011,43(4):1995-2001
    [135]Zhang J X, Kirkham M B. Drought-stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species[J]. Plant and Cell Physiology,1994,35(5):785-791
    [136]安平,洪长福,蔡振坤.福建省引种的13种桉树叶片解剖结构分析[J].福建林业科技,1993,20(1):8-15
    [137]白娟,龚春梅,王刚,等.十旱胁迫下荒漠植物红砂叶片抗氧化特性[J].西北植物学报,2010,30(12):2444-2450
    [138]包俊江,刘芳.植物群落蒸散耗水量研究进展[J].内蒙古环境保护,2005,17(1):58-60
    [139]鲍思伟.水分胁迫对蚕豆(Vicia faba L.)光合作用及产量的影响[J].西南师范大学学报(自然科学版),2001,27(4):446-449
    [140]鲍思伟,谈锋,廖志华.土壤干旱对蚕豆叶片渗透调节能力的影响响[J].西南农业大学学报,2001,23(4):353-355-359
    [141]毕会涛,黄付强,邱林,等.干旱胁迫对灰枣保护性酶活性及膜脂过氧化的影响[J].中国农学通报,2007,23(2):151-155
    [142]蔡寒玉,汪耀富,李进平,等.土壤水分对烤烟形态和耗水特性的影响[J].灌溉排水学报,2005,24(3):38-41
    [143]蔡明科,魏晓妹,粟晓玲.灌区耗水量变化对地下水均衡影响研究[J].灌溉排水学报,2007,26(4):16-20,63
    [144]曹仪植,宋占午,植物生理学[M].兰州:兰州大学出版社,1998
    [145]常国梁,赵万启,贺康宁,等.青海大通退耕还林工程区的林木耗水特性[J].中国水土保持科学,2005,3(1):58-65
    [146]常志敏,吴旭红.不同形态氮素对甜菜生长发育的影响[J].中国糖料,2006,(2):50-51
    [147]车文瑞,马履一,王瑞辉,等.北京3个园林观赏树种苗木耗水特性初探[J].浙江林学院学报,2008,25(5):609-613
    [148]陈红兵,郭继虎,王金胜,等.水分胁迫时小麦生化指标与抗旱性的关系[J].山西农业大学学报.2000,20(2):129-131
    [149]陈丽,艾军,王振兴,等.干旱胁迫对山葡萄光合作用及光响应特性的影响[J].北方园艺,2011,(06):5-8
    [150]陈礼清.巨桉人工林物种多样性初步研究[D].雅安:四川农业大学硕士学位论文,2003
    [151]陈礼清,张丹菊,张健.巨桉人工林不同林龄阶段土壤微生物多样性特征[J].四川农业大学学报,2011,29(4):472-476
    [152]陈礼清,张健.巨桉人工林物种多样性研究(I)[J].四川农业大学学报,2003,21(4):308-312
    [153]陈立松,刘星辉.果树对水分胁迫的反应与适应性[J].干旱地区农业研究,1999,17(1):88-94
    [154]陈立松,刘星辉.水分胁迫对荔枝叶片呼吸代谢有关酶活性的影响[J].林业科学,2003,39(2):39-43
    [155]陈秋波.桉树人工林生物多样性研究进展[J].热带作物学报,2001,22(4):82-90
    [156]陈文友.巨桉人工林树高直径年生长分析研究[J].四川林业科技,2001,22(1):73-75
    [157]岑显超.不同品种(类型)楸树苗木对干旱胁迫的生理响应[D].南京:南京林业大学硕士学位论文.2008
    [158]陈小红,胡庭兴,李贤伟,等.四川省巨桉生长状况调查与发展前景分析[J].四川林业科技,2000,21(4):23-26
    [159]陈新红,刘凯,王志琴,等.水稻水氮互作效应与产量模型研究[J].西北农林科技大学学报(自然科学版),2006,34(9):141-148
    [160]陈永金,陈亚宁,薛燕.干旱区植物耗水量的研究与进展[J].干旱区资源与环境.2004,18(6):152-158
    [161]陈峪.我国的干旱[J].气象知识.2006,(2):24-27
    [162]崔晓阳,宋金凤,张艳华.不同土壤水势条件下水曲柳幼苗的光合作用特征[J].植物生态学报,2004,28(6):794-802
    [163]戴建良.侧柏种源抗旱性测定和选择[D].北京:北京林业大学硕士学位论文,1996
    [164]邓东周,范志平,王红,等.林木蒸腾作用测定和估算方法[J].生态学杂志,2008,27(6):1051-1058
    [165]邓世媛,陈建军.氮素营养对烤烟抗旱适应性的影响[J].干旱区研究,2007,24(4):499-503
    [166]邓世媛,陈建军.干旱胁迫下氮素营养对烤烟光合特性的影响[J].中国农学通报,2005,21(9):209-212
    [167]邓云,张磊,王冰,等.巨尾桉光合特征与水分消耗的季节适应[J].林业科学,2010,46(8):84-90
    [168]董然,王莹,赵国禹,等.长白山5种橐吾光合生理日变化及光响应特征研究[J].中南林业科技大学学报,2011,31(9):49-54
    [169]杜建雄,侯向阳,刘金荣.草地早熟禾对干旱及旱后复水的生理响应研究[J].草业科学,2010,19(2):31-38
    [170]段爱国,张建国,张俊佩,等.金沙江干热河谷植被恢复树种盆栽苗蒸腾耗水特性的研究[J].林业科学研究,2009,22(1):55-62
    [171]段建丽.干旱胁迫对桑树生理的影响[D].镇江:江苏科技大学硕士学位论文,2007
    [172]樊荣,孙慧彦,刘艳平,等.树木对水分胁迫响应机理研究进展[J].内蒙古农业大学学报,2009,30(3):281-286
    [173]范英杰.9个树种抗旱性的分析与评价[D].杨凌:西北农林科技大学硕士学位论文,2005
    [174]方红远,甘升伟,余莹莹.我国区域干旱特征及干旱灾害应对措施分析[J].水利水电科技进展,2005,25(5):16-19
    [175]冯健,张健.巨桉人工林地土壤微生物类群的生态分布规律[J].应用生态学报.2005,16(8):1422-1426
    [176]冯丽贞,刘玉宝,郭素枝,等.桉树叶片的解剖结构与其对焦枯病抗性的关系[J].电子显微学报,2008,27(3):229-234
    [177]冯茂松,张健,钟宇.巨桉短周期工业原料林养分平衡的矢量诊断[J].林业科学.2006,42(2):56-62
    [178]冯茂松,张健,钟宇.四川巨桉人工林DRIS诊断及养分标准研究[J].江西农业大学学报,2008,30(4):661-615,719
    [179]冯茂松,杨万勤,钟宇,等.四川巨桉人工林微量元素养分诊断[J].林业科学,2010,46(9):20-27
    [180]冯起,司建华,席海洋,等.极端干旱区天然植被耗水规律试验研究[J].中国沙漠,2008,28(6):1095-1103
    [181]冯愿楠,朱清科,毕华兴.晋西黄土区沙棘与冰草蒸腾耗水规律研究[J].水土保持研究,2008,15(2):180-183
    [182]付爱红,陈亚宁,李卫红,等.十旱、盐胁迫下的植物水势研究与进展[J].中国沙漠,2005,25(5):744-749
    [183]高丹,胡庭兴,万雪,等.巨桉枯落物化感物质的研究[J].浙江林学院学报,2008,25(2):191-194
    [184]高丹.胡庭兴.黄绍虎,等.巨桉主要器官浸提液对三种牧草的化感作用初步探讨[J].四川农业大学学报,2007,25(3):365-368,372
    [185]高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006
    [186]高清.植物生理学[M].台北:华冈出版社,1976,168-170
    [187]高秀萍,闫继耀,刘恩科.水分胁迫下梨、枣和葡萄叶片中甜菜碱含量的变化[J].园艺学报,2002,29(3):268-270
    [188]高艳玲.我国水资源可持续利用的思考[J].中国环境管理干部学院学报,2002,12(1):42-44
    [189]高迎旭,周毅,郭世伟,等.不同形态氮素营养对水稻抗旱性影响的研究[J].干旱区研究,2006,23(4):598-603
    [190]龚明.作物抗旱鉴定方法与指标及其综合评价[J].云南农业大学学报,1989,4(1):73-89
    [191]谷瑞升,郗荣庭,刘万生.水分胁迫对早实核桃生长和结果的影响[J].林业科学,1994,30(1):79-82
    [192]顾颖,刘静楠,林锦.近60年来我国干旱灾害特点和情势分析[J].水利水电技术,2010,41(1):71-74
    [193]顾振俞,文建雷,胡景江,等.应用P-V技术对元宝枫水分生理特点的研究[J].西北林学院学报,1999,14(4):17-22
    [194]关军锋,李广敏.干旱条件下施肥效应及其作用机理[J].中国生态农业学报,2002,10(1):59-61
    [195]关军锋,马春红,李广敏.干旱胁迫下小麦根冠生物量变化及其与抗旱性的关系[J].河北农业大学学报,2004,27(1):1-5
    [196]郭国华.再论桉树与环境问题[J].桉树科技,2001,(1):21-24
    [197]郭孟霞,毕华兴,刘鑫,等.树木蒸腾耗水研究进展[J].中国水土保持科学,2006,4(4):114-120
    [198]郭天财,冯伟,赵会杰,等.水氮运筹对干旱年型冬小麦旗叶生理性状及产量的交互效应[J]'应用生态学报,2004,15(3):453-457
    [199]郭卫华.水分胁迫对两种主要造林灌木生理生态特征的影响[D].济南:山东大学博士学位论文,2004
    [200]]郭小军.巨桉纸浆原料林造林密度效应研究[D].雅安:四川农业大学硕士学位论文,2005
    [201]韩锦峰,汪耀富,钱晓刚,等.烟草栽培生理[M].北京:中国农业出版社,2003
    [202]韩蕊莲,梁宗锁,侯庆春等.黄土高原适生树种苗木的耗水特性[J].应用生态学报,1994,5(2):210-213
    [203]何明,翟明普,曹帮华.水分胁迫下增施氮、磷对刺槐无性系苗木光合特性的影响[J].北京林业大学学报,2009,31(6):116-120
    [204]何茜,李吉跃,齐涛.“施丰乐”对国槐蒸腾耗水日变化的影响[J].福建林学院学报,2006,26(4):358-362
    [205]何茜,李吉跃,陈晓阳,等.毛白杨不同无性系苗木耗水量及其昼夜分配[J].华南农业大学学报,2010,31(1):47-54
    [206]何宗菊,张琳,田英.安宁河流域人工桉树林水分特征探讨[J].西昌学院学报(自然科学版),2009,23(2):11-13
    [207]胡景江,文建雷,王姝清.土壤干旱对元宝枫渗透调节能力的影响[J].西北植物学报,2004,24(10):1832-1836
    [208]胡天宇,李臣坤.巨桉种源引种选择研究[J].四川农业大学学报,1999,17(1):44-49
    [209]胡天宇.四川桉树引种及良种选育[J].四川林业科技,1998,19(2):7-13
    [210]胡天宇,李晓清.巨桉引种栽培及适生区域的研究[J].四川林业科技,1999,20(4):8-13
    [21]]胡新生,王世绩.树木水分胁迫生理与耐旱性研究进展及展望[J].林业科学.]998,34(2):77-89
    [212]胡学华.李、桃、杏和梨四种经济树木对干旱胁迫的生理响应及其抗旱性的研究[D].雅安:四川农业大学硕士学位论文,2005
    [213]华东师范大学.植物生理学实验指导[M].北京:高等教育出版社,1980
    [214]黄高峰,王丽慧,方云花,等.干旱胁迫对菊芋苗期叶片保护酶活性及膜脂过氧化作用的影响[J].西南农业学报,2011,24(2):552-555
    [215]黄韶承.水分胁迫对鹅掌楸属苗木生理影响的研究[D].南京:南京林业大学硕士学位论文.2006
    [216]黄玉梅,张健,杨万勤.巨桉人工林土壤动物群落结构特征[J].生态学报,2006,26(8):2502-2509
    [217]黄玉梅,张健,杨万勤.巨桉人工林中小型土壤动物类群分布规律[J].应用生态学报,2006,17(2):2327-2331
    [218]焦晋川,陈琳.钾肥对多年生黑麦草抗旱性的影响[J].草业学报,2008,25(8):139-143
    [219]巨关升,刘奉觉,郑世锴.选择树木蒸腾耗水测定方法的研究[J].林业科技通讯,1998,(10):12-14
    [220]康俊梅,杨青川,樊奋成.干旱对苜蓿叶片可溶性蛋白的影响[J].草地学报.2005,13(3):199-202
    [221]康玲玲,魏义长,张景略.水肥条件对冬小麦生理特性及产量影响的试验研究[J].干旱地区农业研究,1998,16(4):21-28
    [222]孔俊杰,贾黎明,李广德.影响树木蒸腾耗水的外部因子研究进展[J].世界林业研究,2007,20(1):16-21
    [223]雷志栋,胡和平,杨诗秀,等.塔里木盆地绿洲耗水分析[J].水力学报,2006,37(12):1470-1475
    [224]李博.当代生态学导论[M].北京:科学出版社,1992
    [225]李博等(译),Larcher W(箬).植物生理生态学[M].北京:科学出版社,1982
    [226]李春阳.桉树的抗旱性研究进展[J].世界林业研究,1998,1 1(3):22-27
    [227]李德军,莫江明,方运霆,等.氮沉降对森林植物的影响[J].生态学报,2003,23(9):1891-1900
    [228]李德明,张秀娟,邓丹凤.涝渍对小白菜生长季活性氧代谢的影响[J].长江蔬菜,2009,(24):35-38
    [229]李德全,邹琦,程炳嵩.植物水分状况研究方法概述[M].济南:山东科技出版社,1992
    [230]李得孝,郭月霞,员海燕,等.玉米叶绿素含量测定方法研究[J].中国农学通报,2005,2 1(6):153-155
    [231]李合生,孙群,赵世杰,等.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    [232]李合生.现代植物生理学(第2版)[M].北京:高等教育出版社,2006
    [233]李吉跃.植物耐旱性及其机理[J].北京林业大学学报,1991,13(3):92-100
    [234]李吉跃.太行山区主要造林耐旱特性的研究[D].北京:北京林业大学博士学位论文,1990
    [235]李吉跃.太行山主要造林树种耐旱特性的研究(Ⅰ-Ⅵ)[J].北京林业大学学报,1991,18(1-2):1-24:230-280
    [236]李吉跃,朱妍.干旱胁迫对北京城市绿化树种耗水特性的影响[J].北京林业大学学报,2006,28(zI):32-37
    [237]李吉跃,翟洪波.木本植物水力结构与抗旱性[J].应用生态学报,2000,11(2):301-305
    [238]李吉跃,Blake T J.多重复干旱循环对苗木气体交换和水分利用效率的影响[J].北京林业大学学报,1999,21(3):1-8
    [239]李静,李革,毛志泉.植物涝后恢复过程中抗氧化性能的影响[J].现代园艺,2011,(11):160
    [240]李娟.两种杜鹃花的土壤干旱胁迫研究[D].贵阳:贵州师范大学硕士学位论文.2009
    [241]李丽萍,马履一,王瑞辉.北京市3种园林绿化灌木树种的耗水特性[J].中南林业科技大学学报(自然科学版),2007,27(2):44-47,5 1
    [242]李黔湘,王华斌,白忠,等.卫星遥感监测蒸腾蒸发量(ET)精度校验——以北京市GEF海河项目为例[J].水利水电技术,2008,39(7):1-3
    [243]李庆梅,徐化成.油松P-V曲线主要水分参数随季节和种源的变化[J].植物生态学与地植物学学报,1992,16(4):326-335
    [244]李荣生,许煌灿,尹光天,等.植物水分利用效率的研究进展[J].林业科学研究,2003,16(3):366-371
    [245]李如亮.生物化学实验[M].武汉:武汉大学出版社,1998
    [246]李霞,阎秀峰,于涛.水分胁迫对黄檗幼苗保护酶活性及脂质过氧化作用的影响[J].应用生态学报,2005,16(12):2353-2356
    [247]李宪利,高东升,顾曼如,等.铵态和硝态氮对苹果植株SOD和POD活性的影响[J].植物生理学通讯,1997,33(4):245-255
    [248]李艳.不同密度巨桉林·草模式细根分布及其生长特性[D].雅安:四川农业大学硕十学位论文,2007
    [249]李燕,薛立,吴敏.树木抗旱生理及造林技术研究进展[J].山西林业科技,2005,(2):19-25
    [250]黎裕.植物的渗透调节与其它生理过程的关系及其在作物改良中的应用[J].植物生理学通讯,1994,30(5):377-385
    [251]李育程.对我国水资源保护及现状的探析[J].管理观察.2010,401(6):46-47
    [252]李予霞,崔百明,董新平,等.水分胁迫下葡萄叶片脯氨酸和可溶性总糖积累与叶龄的关系[J].果树学报,2004,21(2):170-172
    [253]李振东,王树忠,王倩.地面覆盖对日光温室黄瓜地温、耗水量和产量的影响[J].华北农学报,2009,24(B08):312-315
    [254]李正理.旱生植物的形态和结构[J].生物学通报,1981,(4):9-12
    [255]李志辉.巨桉引种栽培及遗传多样性研究[D].长沙:中南林学院博士学位论文,2001
    [256]李宗霆,周燮.植物激素及其免疫检测技术[M].南京:江苏科学技术出版社,1996
    [257]梁文斌,李志辉,许仲坤,等.桤木无性系叶片解剖结构特征与其耐旱性的研究[J].中南林业科技大学学报(自然科学版),2010,30(2):16-22
    [258]梁银丽.土壤水分和氮磷营养对冬小麦根系生长及水分利用的调节[J].生态学报,1996,16(3):258-264
    [259]廖观荣,钟继洪,郭庆荣,等.土壤水分对幼龄桉树蒸腾和生长的影响[J].土壤与环境,2001,10(4):285-288
    [260]林平,李吉跃,马达.北京山区油松林蒸腾耗水特性研究[J].北京林业大学学报,2006,28(zI):47-50
    [261]蔺文静,董华,王贵玲,等.河北平原区域蒸发蒸腾量遥感估算[J].国土资源遥感,2008,(1):86-90
    [262]蔺文静,董华,陈立,等.基于SEBAL模型的区域蒸发蒸腾遥感估算[J].遥感应用,2008,(5):50-54
    [263]林植芳,李双顺,林桂珠,等.衰老叶片和叶绿体中H202的累积与膜脂过氧化的关系[J].植物生理学报,1988,14(1):16-22
    [264]刘长利.甘草抗旱特性的初步研究[D].保定:河北农业大学硕士学位论文,2002
    [265]刘奉觉,郑世锴,巨关升,等.用热脉冲速度记录仪(1-IPVR)测定树干叶流[J].植物生理学通讯,1993,29(2):110-115
    [266]刘奉觉,郑世锴,巨关升,等.树木蒸腾耗水测算技术的比较研究[J].林业科学,1997,33(2):117-126
    [267]刘奉觉.使用稳态气孔计的几个技术问题[J].林业科技通讯.1988,(2):31-32
    [268]刘奉觉,Edwards W R N,郑世锴,等.杨树树干液流时空动态研究[J].林业科学研究.1993,6(4):368-372
    [269]刘广全,赖亚飞,李文华,等.4种针叶树抗旱性研究[J].西北林学院学报,2004,19(1):22-26
    [270]刘鸿洲,刘勇,段树生.不同水分条件下施肥对侧柏苗木生长及抗旱性的影响[J].北京林业大学学报,2002,24(5,6):56-60
    [271]刘慧佳.水分胁迫下白榆幼苗的生理形态反映[D].长春:东北师范大学硕士学位论文,2006
    [272]刘婧,王宝山,谢先芝.植物气孔发育及其调控研究[J].遗传,2011,33(2):131-137
    [273]刘俊,吕波,徐朗莱.植物叶片中过氧化氢含量测定方法的改进[J].生物化学与生物物理进展,2000,27(5):548-551
    [274]刘良友.植物水分逆境生理[M].北京:农业出版社,1992
    [275]刘瑞显,郭文琦,陈兵林,等.氮素对花铃期干旱及复水后棉花叶片保护酶活性和内源激素含量的影响[J].作物学报,2008,34(9):1598-1 607
    [276]刘瑞显,王友华,陈兵林,等.花铃期干旱胁迫下氮素水平对棉花光合作用与叶绿素荧光特性的影响[J].作物学报,2008,34(4):675-683
    [277]刘瑞显,郭文琦,陈兵林,等.棉花花铃期短期干旱下氮素对干物质及氮素累积分配的影响[J].西北植物学报,2008,28(6):1179-1187
    [278]刘世鹏.水分胁迫对枣树苗期生长及生理特性的影响[D].贵阳:贵州大学硕士学位论文.2006
    [279]刘伟玲,谢双喜,喻理飞.几种喀斯特森林树种幼苗对水分胁迫的生理响应[J].贵州科学,2003,21(3):51-55
    [280]刘晓云,刘速.短生植物重量的动态变化及其分析[J].植物生态学报,1996,20(2):177-183
    [281]刘学师,宋建伟,任小林,等.水分胁迫对果树光合作用及相关因素的影响[J].河南职业技术师范学院学报,2003,36(2):45-48
    [282]刘彦琴,张丰雪,杨敏生.电导率在白杨杂种无性系耐旱性鉴定中的应用[J].河北林果研究,1997,12(4):301-305
    [283]刘洋,张健,冯茂松.巨桉人工林凋落物数量、养分归还量及分解动态[J].林业科学,2006,42(7):1-10
    [284]刘志媛,党选民,曹振木.土壤水分对黄秋葵苗期生长及光合作用的影响[J].热带作物学报,2003,24(1):70-73
    [285]刘子会,郭秀林,王刚,等.干旱胁迫与AB A的信号转导[J].植物学通报,2004,21(2):228-234
    [286]刘祖琪,张石诚,植物抗逆生理学[M].北京:中国农业出版社,1994
    [287]卢从云,张其德,匡廷云.水分胁迫对小麦光系统II的影响[J].植物学报,1994,36(2):93-98
    [288]陆景陵.植物营养学[M].北京:中国农业大学出版社,1994
    [289]罗华建,刘星辉.水分胁迫对枇杷光合特性的影响[J].果树科学,1999,16(2):126
    [290]罗青红,李志军.树木水分生理生态特性及抗旱性研究进展[J].塔里木大学学报.2005,17(2):29-33
    [291]罗中岭.热量法茎流测定技术的发展及应用[J].中国农业气象,1997,18(3):52-56
    [292]吕剑,喻景权.植物生长素的作用机制[J].植物生理学通讯,2004,40(5):624-628
    [293]吕丽华,胡玉昆,李雁鸣.水分胁迫下不同抗旱性冬小麦脯氨酸积累动态[J].华北农学报,2006,21(2):75-78
    [294]马达,李吉跃,林平.北京山区造林树种耗水规律初探[J].山西农业大学学报(自然科学版),2006,26(1):48-51
    [295]马达,李吉跃,聂立水,等.不同坡向对栓皮栎耗水规律的影响[J].河北林果研究.2005,20(4):323-327
    [296]马飞,姬明飞,陈立同,等.油松幼苗对干旱胁迫的生理生态响应[J].西北植物学报,2009,29(3):548-554
    [297]马焕成McConchie J A,陈德强.元谋干热河谷相思树种和桉树类抗旱能力分析[J].林业科学研究,2002, 15(1):101-104
    [298]马李一,孙鹏森,马履一.油松、刺槐单木与林分水平耗水量的尺度转换[J].北京林业大学学报,2001,23(4):1-5
    [299]马忠明.有限灌溉条件下作物水分关系的研究[J].干旱地区农业研究,1998,16(2):75-79[300]
    [301]苗硕.中国淡水资源现状与保护措施探讨[J].现代商贸工业,2010,22(17):19-21
    [302]牟筱玲,鲍啸.土壤水分胁迫对棉花叶片水分状况及光合作用的影响[J].中国棉花,2003,30(9):9-10
    [303]潘东明,潘良镇.水分胁迫对龙眼幼苗多胺等生理生化指标的影响[J].福建农业大学学报,1997,26(3):277-282
    [304]潘洪杰,王晓燕,许革华,等.水分胁迫对树木生长和生理代谢的影响[J].内蒙古农业科技.2008,(4):66-67
    [305]彭立新,李德全,束怀瑞.植物在渗透胁迫下的渗透调节作用[J].天津农业科学,2002,8(1):40-43
    [306]彭伟秀,王文全,梁海永,等.水分胁迫对甘草营养器官解剖构造的影响[J].河北农业大学学报,2003,26(3):46-48
    [307]彭志红,彭克勤,胡家金,等.渗透胁迫植物脯氨酸积累的研究进展[.J].中国农学通报,2002,18(4):80-83
    [308]朴世领,刘丹,安金花,等.干旱胁迫及氮水平对烤烟生理特征的影响[J].河南农业科学,2006,(11):43-47
    [309]齐健,宋凤斌,刘胜群.苗期玉米根叶对干旱胁迫的生理响应[J].生态环境,2006,15(6):1264-1268
    [310]祁述雄.中国桉树(第二版)[M].北京:中国林业出版社,2002
    [311]齐伟,王空军,张吉旺,等.干旱对不同耐旱性玉米品种干物质及氮素积累分配的影响[J].山东农业科学,2009,(7):35-38
    [312]钱晓晴,顾竹英,周明耀,等.水分供应和氮素形态对水稻一些水分生理特征的影响[JJ.作物学报,2007,33(12):2016-2020
    [313]郄怡彬,赖娜娜,蔺艳.北京常用园林乔木耗水特性的研究[J].园林植物保护,2009,(7):14-17
    [314]曲桂敏,李兴国,赵飞,等.水分胁迫对苹果叶片和新根显微结构的影响[J].园艺学报,1999,26(3):147-151
    [315]屈艳萍,康绍忠,张晓涛,等.植物蒸发蒸腾量测定方法述评[J].水利水电科技进展,2006,26(3):72-77
    [316]任庆成,陈秀华,张生杰,等.不同烤烟品种抗旱生理特征比较研究[J].西北植物学报,2009,29(10):2019-2025
    [317]单长卷,刘遵春.土壤水分对嘎拉苹果幼苗水分生理特性和生长特征的影响[J].西北林学院学报,2006,21(2):42-44
    [318]沈淮东.氮素形态对水分胁迫下水稻部分生长生理指标的影响[D].扬州:扬州大学硕士学位论文.2008
    [319]申卫军,彭少麟.热脉冲(Heat Pulse)法原理及其应用[J].资源生态环境网络研究动态,2000,11(2):22-27
    [320]石青,余新晓,李文宇,等.水源涵养林林木耗水称重法试验研究[J].中国水土保持科学,2004,2(2):84-87
    [321]石青,景海涛,余新晓,等.小流域水源涵养林林木耗水基于3S技术的量化分析[J].水土保持通报,2005,25(1):71-74
    [322]舒钰,刘晓东.PEG模拟干旱胁迫下磷肥对2种草坪草苗期抗旱性的影响[J].东北林业大学学报,2010,38(12):43-45
    [323]宋海星,李生秀.玉米生长空问对根系吸收特性的影响[J].中国农业科学,2003,36(8):899-904
    [324]宋金洪,白莉萍,辛涛,等.条垛式堆肥污泥对杨树幼苗光合光响应特性的影响[J].东北林业大学学报,2011,39(12):39-43,46
    [325]宋庆安,章方平,易霭琴,等.刺槐光合生理生态特性日变化研究[J].中国农学通报,2008,24(9):156-160
    [326]苏建平,康博文.我国树木蒸腾耗水研究进展[J].水土保持研究,2004,11(2):177-179,186
    [327]宿庆瑞,迟凤琴,李茂松,等.大豆抗旱节水生理及水肥一体化栽培技术研究初报[J].中国农学通报,2006, 22(8):225-228
    [328]孙洪仁,关天复,孙建益,等.不同年限紫花苜蓿(生长)水分利用效率和耗水系数的差异[J].草业科学,2009,26(3):39-42
    [329]孙慧珍,周晓峰,康绍忠,应用热技术研究树干液流进展[J].应用生态学报.2004,15(6):1074-1078
    [330]孙继颖,高聚林,吕小红.施氮量对大豆抗旱生理特性及水分利用效率的影响[J].大豆科学,2007,26(4):517-522
    [331]孙立达,朱金兆.水土保持林体系综合效益研究与评价[M].北京:中国科学技术出版社,1995
    [332]孙鹏森,马履一.水源保护树种耗水特性研究与应用[M].北京:中国环境科学出版社,2002
    [333]孙权.我国淡水资源的现状与开发利用探析[J].黑龙江科技信息.2010,(7):209
    [334]孙永玉,李昆,崔永忠,等.干热河谷柠檬桉苗期抗旱生理特性[J].东北林业大学学报,2009,37(2):1-2
    [335]唐瑭.干旱和氮肥处理对灌浆期水稻茎鞘非结构性同化物积累的影响[J].湖北农业科学,2010,49(11):2686-2689
    [336]唐甜甜.滇润楠和香樟对水分胁迫的生理响应[D].昆明:西南林学院硕士学位论文.2007
    [337]唐玉霞,孟春香,贾树龙,等.干旱胁迫对冬小麦氮素营养效率的影响[.J].河北农业科学,2000,4(2):10-13
    [338]汤章城.植物对水分胁迫的反应和适应性[J].植物生理学通讯,1983,(2):21·29
    [339]汤章城.植物对渗透胁迫和淹水胁迫的适应机制.见:余叔文.植物生理与分子生物学[M],北京:科学出版社,1999
    [340]陶德生.巨桉引种与种源试验及其在浙江省适生范围研究[J].浙江林业科技,1990,10(1):13-22
    [341]田日昌,陈洪松,王克林.雨季红壤坡地油茶林土壤水势变化特征及耗水规律[J].生态与农村环境学报,2008,24(3):39-44
    [342]王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,26(6):55-57
    [343]王晨,左昆,柴琦,等.干旱条件下硅对草地早熟禾生长初期的影响[J].草业科学,2008,25(7):114-117
    [344]王斐.水分胁迫下樟子松苗木若干生理变化的研究[J].山东林业科技,1994,(3):23-26
    [345]王国骄,王嘉宁,燕雪飞,等.水氮配合对春小麦灌浆期旗叶生理特性的影响[J].湖北农业科学,2008,47(8):887-889
    [346]王晗光,张健,杨婉身,等.巨桉根系和根系土壤化感物质的研究[J].四川师范大学学报(自然科学版).2006,29(3):368-371
    [347]王晗光,张健,杨婉身,等.3种方法提取巨桉树根的化感成分分析报告[J].河北师范大学学报(自然科学版),2006,30(4):464-467,477
    [348]王晗光,张健,杨婉身,等.不同林地巨桉的化感物质比较研究[J].河北师范大学学报(自然科学版),2009,33(1):94-99
    [349]王海珍,梁宗锁,韩蕊莲,等.不同土壤水分条件下黄土高原乡土树种耗水规律研究[J].西北农林科技大学学报(自然科学版),2005,33(6):57-63
    [350]王华田.林木耗水性研究述评[J].世界林业研究,2003,16(2):23-27
    [351]王会肖,刘昌明.作物水分利用效率内涵及研究进展[J].水科学进展,2000,11(1):99-104
    [352]王豁然,阎洪,周文龙.巨桉种源试验及其在我国适生范围的研究[J].林业科学研究,1989,2(5):411-419
    [353]王豁然,郑勇奇,臧道群,等.单蒴盖亚属桉树引种及其生物地理学意义[J].林业科学,1999,35(2):2-6
    [354]王介民,刘少民,孙敏章,等.ET的遥感监测与流域尺度水资源管理[J].干旱气象,2005,23(2):]-7
    [355]汪金刚.巨桉人工林对蚯蚓生态毒理的研究[D].雅安:四川农业大学硕士学位论文,2007
    [356]汪金刚,张健,李贤伟.巨桉人工林土壤化感物质的空间分布特征的研究[J].2007,25(2):121-126
    [357]王金铃,张宪政,苏正淑.小麦对干旱的生理反应及抗性机理[J].国外农学——麦类作物.1994,(5):44-46
    [358]王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢[J].植物学通报,2001,18(4):459-465
    [359]王林和,董智,张国盛.毛乌素沙地天然臭柏群落新梢生长规律[J].内蒙古学院学报,1998,20(3):15-21
    [360]王清泉,陈云,谢虹,等.干旱与氮素交互作用对玉米叶片水势、气孔导度及根部ABA与CTK合成的影响[J].中国农学通报,2004,20(3):20-21,32
    [361]王瑞辉,奚如春,徐军亮,等.用热扩散式茎流计测定园林树木蒸腾耗水量[J].中南林学院学报.2006,26(2):7-12
    [362]王韶唐.植物抗旱的生理机理[M].北京:科学出版社,1983
    [363]王韶唐,邢家海,丁钟荣.植物生理学实验指导[M].西安:陕西科学技术出版社,1987
    [364]王世绩,闵曾琪,刘雅荣,等.10种杨树苗木水分关系的研究[J].林业科学,1982,18(1):6-14
    [365]王双.干旱条件下施氮水平对夏玉米生长及干旱阈值的影响[D].武汉:华中农业大学硕士学位论文,2008
    [366]王双,陈家宙,罗勇.施氮水平对不同干旱程度夏玉米生长的影响[J].植物营养与肥料学报,2008,14(4):646-651
    [367]王霞,尹林克.水分胁迫对柽柳植物可溶性物质的影响[J].干旱区研究,1999,16(2):6-11
    [368]王小兵,李明思,何春燕.膜下高频滴灌棉花田间耗水规律的试验研究[J].水资源与水工程学报,2008,19(1):39-42
    [369]王燕高,胡庭兴.我国引种巨桉及其研究进展[J].森林工程,2005,21(4):1-4,26
    [370]王彦辉,熊伟,于澎涛,等.干旱缺水地区森林植被蒸散耗水研究[J].中国水土保持科学,2006,4(4):19-25
    [371]王艳青,陈雪梅,李悦,等.植物抗逆中的渗透调节物质及其转基因工程进展[J].北京林业大学学报,2001,23(4):66-70
    [372]汪耀富,张福锁.干旱和氮用量对烤烟干物质和矿质养分积累的影响[J].中国烟草学报,2003,9(1):19-23,29
    [373]王颖.林木蒸腾耗水研究综述[J].河北林果研究,2007,22(1):39-43
    [374]王寅,鲁剑巍,李小坤,等.越冬期干旱胁迫对油菜施肥效果的影响[J].植物营养与肥料学报,2010,16(5):1203-1208.
    [375]王玉涛,李吉跃,刘平,等.不同种源沙柳(Salix psammophila)苗木蒸腾耗水特性的研究[J].干旱区资源与环境,2008,22(10):183-187
    [376]王震洪,段昌群,起连春,等.我国桉树林发展中的生态问题探讨[J].生态学杂志,1998,17(6):64-68
    [377]王振镒,郭蔼光,罗淑萍.水分胁迫对玉米SOD和POD活力及同工酶的影响[J].西北农业大学学报,1989,17(1):45-49
    [378]王忠华,李旭晨,夏英武.作物抗旱的作用机制及其基因工程改良研究进展[J].生物技术通报,2002,(1):16-19
    [379]魏天兴,朱金兆,张学培.林分蒸散耗水量测定方法述评[J].北京林业大学学报,1999,21(3):85-91
    [380]韦小丽.喀斯特的确与3个榆科树种整体抗旱性研究[D].南京:南京林业大学博士学位论文.2005
    [381]文建雷,刘志龙,王姝清.水分胁迫条件下元宝枫的光合特征及水分利用效率[J].西北林学院学报,2003,18(2):1-3
    [382]温远光.桉树生态、社会问题与科学发展[M].中国林业出版社,2008
    [383]翁白莎,严登华.变化环境下我国干旱灾害的综合应对[J].中国水利,2010,(7):4-7,3
    [384]武吉华.植物地理学[M].北京:高等教育出版社.2011
    [385]吴晓丽.浙北夏季干旱对不同土壤上桤木生长和结瘤固氮的影响[J].林业科学研究,1992,5(2):225-230
    [386]奚如春,马履一,王瑞辉,等.林木耗水调控机理研究进展[J].生态学杂志,2006,25(6):692-697
    [387]奚如春,马履一,樊敏,等.油松枝干水容特征及其对蒸腾耗水的影响[J].北京林业大学学报.2007,29(1):160-165
    [388]夏桂敏,康绍忠,杜太生,等.甘肃石羊河流域干旱荒漠区花棒蒸腾耗水量[J].应用生态学报,2007,18(6):1194-1202
    [389]鲜骏仁,黄从德,胡庭兴,等.我国巨桉引种及经营技术研究进展[J].四川林业科技.2005,26(1):43-48
    [390]项东云.华南地区桉树人工林生态问题的评价[J].广西林业科学.2000,29(2):57-64,86
    [391]肖玖金,张健,杨万勤,等.巨桉(Eucalyptus grandis)人工林土壤动物群落对采伐干扰的初期响应[J].生态学报,2008,28(9):4531-4539
    [392]萧浪涛,王三根.植物生理学[M].北京:中国农业出版社,2004
    [393]谢深喜.水分胁迫下柑橘超微结构及生理特性研究[D].长沙:湖南农业大学博士学位论文,2006
    [394]谢贤健,张健,冯茂松.巨桉主要养分元素积累与分布研究[J].四川林业科技,2005,26(2):1-6
    [395]谢贤健,张健,赖挺,等.短轮伐期巨桉人工林地上部分生物量和生产力研究[J].四川农业大学学报.2005,23(1):66-74
    [396]谢亚军,王兵,梁新华,等.干旱胁迫对甘草幼苗活性氧代谢及保护酶活性的影响[J].农业科学研究,2008,29(4):19-22
    [397]谢寅峰,沈惠娟,罗珍,等.南方7个造林树种幼苗抗旱生理指标的比较[J].南京林业大学学报,1999,23(4):13-16
    [398]谢祝捷,姜东,曹卫星,等.花后干旱和渍水条件下生长调节物质对冬小麦光合特性和物质运转的影响[J].作物学报,2004,30(10):1047-1052
    [399]熊庆娥.植物生理学实验教程[M].成都:四川科学技术出版社,2003
    [400]熊伟.六盘山北侧主要造林树种耗水特性研究[D].北京:中国林业科学研究院博士学位论文.2003
    [401]熊伟,王彦辉,徐德应.宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应[J].林业科学,2003,39(2):1-7
    [402]徐德聪,吕芳德,潘晓杰.叶绿素荧光分析技术在果树研究中的应用[J].经济林研究,2003,21(3):88-91
    [403]许浩,张希明,王永东,等.塔里木沙漠公路防护林乔木状沙拐枣耗水特性[J].干旱区研究,2006,23(2):216-222
    [404]许浩,张希明,闫海龙,等.塔克拉玛干沙漠腹地多枝柽柳茎干液流及耗水量[J].应用生态学报,2007,18(4):735-741
    [405]徐建华,于健龙,伍国强,等.钠复合肥增强荒漠区梭梭抗旱性的研究[J].草业科学,2011,28(6):1025-1029
    [406]徐庆华,刘勇,马履一,等.长白落叶松幼苗耗水速率与气象因子的关系[J].西北林学院学报,2010,25(3):12-14
    [407]徐为根,申双和,姚克敏,等.7个水分等级下棉花耗水量特征及其模拟[J].南京气象学院学报,2002,25(2):221-225
    [408]薛崧,吴小平,冯彩平,等.不同氮素对旱地小麦叶片叶绿素和糖含量的影响及其与产量的关系[J].干旱地区农业研究,1997,15(1):79-84
    [409]杨承栋.人工林地力衰退研究.森林与土壤(第六次全国森林土壤学术讨论会论文选编)[M].北京:中国科学技术出版社,1997
    [410]杨洪强,接玉玲.多胺与果树生长发育的关系[J].山东农业大学学报,1996,27(4):514-520
    [411]杨洪强,接玉玲,李军.植物根源逆境信使及其产生和传输[J].植物学通报,2002,19(1):56-62
    [412]杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J].中国农业科学,1996,29(4):58-66
    [413]杨建伟,韩蕊莲,魏宇昆,等.不同土壤水分状况对杨树、沙棘水分关系及生长的影响[J].西北植物学报,2002,22(3):579-586
    [414]杨婕.不同水氮条件下旱稻水分与氮素利用特征研究[D].北京:中国农业大学博士学位论文,2004
    [415]杨鲁,张健,倪彬,等.采伐干扰对巨桉人工林土壤养分和酶活性的影响[J].四川农业大学学报,2008,26(2):154-157
    [416]杨敏生,黄选瑞,李彦慧.水分胁迫对白杨杂种无性系生理和生长的影响[J].河北林果研究,1998,13(2):99-102
    [417]杨敏生,粱海永,王进茂,等.水分胁迫下白杨双交杂种无性系苗木生长研究[J].河北农业大学学报,2002,25(4):1-6
    [418]杨期选,焦国利,王新峰,等.干早过程中桃树茎和叶水势的变化[J].果树科学,1999,16(4):267-271
    [419]杨世丽,张凤路,贾秀领,等.水氮耦合对冬小麦叶片叶绿素含量和光合速率的影响[J].华北农学报,2008,23(5):161-164
    [420]尹光华,刘作薪,李桂芳,等.水肥耦合对春小麦水分利用效率的影响[J].水_土保持学报,2004,18(6):156-162
    [421]尹丽,胡庭兴,刘永安,等.干旱胁迫对不同施氮水平麻疯树幼苗光合特性及生长的影响[J].应用生态学报,2010,21(3):569-576
    [422]郁慧,刘中亮,胡宏亮,等.干旱胁迫对5种植物叶绿体和线粒体超微结构的影响[J].植物研究.2011,31(2):152-158
    [423]余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,1998
    [424]于同泉,谷建田逆境中植物体内甜菜碱的积累及其生物学意义[J].北京农学院学报,1994,9(2):161-167
    [425]于显枫,郭天文,张仁陟,等.水氮互作对春小麦叶片气体交换和叶绿素荧光参数的作用机制[J].西北农业学报,2008,17(3):117-123
    [426]俞新妥,卢建煌.不同种源马尾松光合能力的比较研究[J].福建林学院学报,1991,11(2):131-135
    [427]袁龙飞,李文娆.植物水分的吸收及其利用效率的研究进展[J].开封大学学报,2008,22(4):90-94
    [428]岳广阳,赵哈林,张铜会,等.不同天气条件下小叶锦鸡儿茎流及耗水特性[J].应用生态学报,2007,18(10):2173-2178
    [429]翟志席,郭玉海,马永泽,等.植物生态生理学[M].北京:中国农业大学出版社,1997
    [430]张爱慧,朱士农,刘广勤,等.模拟干旱胁迫对黄瓜幼苗生长及生理特性影响的研究[J].江苏农业科学,2009,(6):200-202
    [431]章崇玲,曾国平,陈建勋.干旱胁迫对菜苔叶片保护酶活性和膜脂过氧化的影响[J].植物资源与环境学报,2000,9(4):23-26
    [432]张殿忠,汪沛洪.水分胁迫与植物氮代谢的关系、水分胁迫时氮素对小麦叶片氮代谢的影响[J].西北农业大学学报(自然科学版),1988,16(4):15-21
    [433]张国盛.干旱、半干旱地区乔灌木树种耐旱性及林地水分动态研究进展[J].中国沙漠.2000,20(4):363-368
    [434]张健,杨万勤.短轮伐期巨桉人工林生态系统[M].成都:四川科学技术出版社,2008
    [435]张劲松,孟平,尹昌君.植物蒸散耗水量计算方法综述[J].世界林业研究,2001,14(2):23-28
    [436]张木清,陈如凯,余松烈.水分胁迫下蔗叶多胺代谢变化及其同抗旱性的关系[J].植物生理学报,1996,22(3):327-332
    [437]张木清,陈如凯.作物抗旱分子机理与遗传改良[M].北京:科学出版社,2005
    [438]张士功,刘国栋,刘更另.植物营养与作物抗旱性[J].植物学通报,2001,18(1):64-69
    [439]张顺恒,陈辉.桉树人工林的水源涵养功能[J].福建林学院学报,2010,30(4):300-303
    [440]张岁岐,李秧秧.施肥促进作物水分利用机理及对产量的影响研究[J].水土保持研究,1996,3(1):185-191
    [441]张岁岐,山仑.土壤干旱条件下氮素营养对玉米内源激素含量影响[J].应用生态学报,2003,14(9):1503-1506
    [442]张孝仁,徐先英.沙拐枣属种间抗干旱抗风蚀性比较试验研究[J].干旱区资源与环境,1992,6(4):55-62
    [443]张晓珊,刘延惠.贵州喀斯特山地主要造林树种生长耗水量研究[J].贵州林业科技,2005,33(4):25-27,40
    [444]张晓松,孙广玉.锰对干旱胁迫下大豆根瘤固氮的促进效应[J].中国沙漠,2010,30(3):560-563
    [445]张晓涛,康绍忠,王鹏新,等.估算区域蒸发蒸腾量的遥感模型对比分析[J].农业工程学报,2006,22(7):6-13
    [446]张小由,康尔泗,司建华,等.胡杨蒸腾耗水的单木测定与林分转换研究[J].林业科学,2006,42(7):28-32
    [447]张雪海,李吉跃,刘娟娟,等.C02倍增与干旱胁迫交互作用对幼树蒸腾耗水日变化的影响[J].广东林业科技,2009,25(2):1-9
    [448]张艳,张洋,陈冲,等.水分胁迫条件下施氮对不同水氮效率基因型冬小麦苗期生长发育的影响[J].麦类作物学报,2009,29(5):844-848
    [449]张永平,刘小菊.浅析我国局部地区干旱成因及抗旱战略问题[J].水科学与工程技术,2005,(B12):33-35
    [450]张友焱,周泽福,党宏忠,等.利用TDP茎流计研究沙地樟子松的树干液流[J].水土保持研究,2006,13(4):78-80
    [451]张治安,张美善,蔚荣海.植物生理学实验指导[M].北京:中国农业大学技术出版社,2004
    [452]张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2003
    [453]张志良.植物生理学实验指导(第2版)[M].北京:高等教育出版社,1993
    [454]张志亮,张富仓,郑彩霞,等.不同水氮处理对果树幼苗生长和耗水特性的影响[J].干旱地区农业研究,2009,27(6):50-57
    [455]张志强,王盛萍,贾宝全,等.甘肃民勤地区不同地下水埋深花棒蒸腾耗水研究[J].生态学报,2004,24(4):736-742
    [456]赵立新,荆家海,王韶唐.旱地冬小麦施肥效应研究[J].干旱地区农业研究,1991,4(3):46-51
    [457]赵明,郭志中,王耀琳,等.不同地下水位植物蒸腾耗水特性研究[J].干旱区研究,2003,20(4):286-291
    [458]赵明,李爱德,王耀琳,等.沙生植物的蒸腾耗水与气象因素的关系研究[J].干旱区资源与环境,2003,1 7(6):131-137
    [459]赵欣楠,黄鹏,路喆,等.施钾对兰州百合叶片抗旱性生理指标的影响[J].甘肃农业大学学报,2009,44(1):98-101
    [460]赵勋,李因刚,柳新红,等.白花树不同种源苗期光响应特性研究[J].浙江林业科技,2011,31(1):1-6
    [461]赵勋,李因刚,柳新红,等.白花树不同种源苗木光合-CO2响应[J].西北农业大学学报,2011,33(6):1128-1133
    [462]钟宇,张健,杨万勤,等.巨桉人工林草本层优势种的种间关系及生态种组的划分[J].草业学报,2010,19(3):56-62
    [463]钟宇,张健,刘泉波,等.巨桉人工林草本层主要种群的生态位分析[J].草业学报,2010,19(4):16-21
    [464]钟宇,张健,杨万勤,等.巨桉人工林灌木层优势种的种间联结性分析[J].生态环境学报,2010,19(3):631-636
    [465]周剑.浅谈水资源缺乏现状及解决对策[J].绿色科技.2010,(10):89-91
    [466]邹丽伟,王瑞辉.长沙市4种园林植物蒸腾耗水特性研究[J].湖南林业科技,2011,38[3):24-27
    [467]邹丽伟,王瑞辉,董方平,等.翅荚木苗期蒸腾耗水特性研究[J].中国农学通报,2009,25(5):116-120
    [468]周平,李吉跃,招礼军.北方主要造林树种苗木蒸腾耗水特性研究[J].北京林业大学学报.2002,24(5/6):50-55
    [469]周巧兰,刘晓燕.我国南方干旱成因对策[J].上海师范大学学报(自然科学版),2005,34(3):80-86
    [470]周瑞莲,王刚.水分胁迫下豌豆保护酶活力变化及脯氨酸积累在其抗旱中的作用[J].草业学报,1997,6(4):39-43
    [471]周晓阳,张辉.不同耐旱性杨树气孔保卫细胞对水分胁迫的差异性反映[J].北京林业大学学报,1999,21(5):1-6
    [472]周小玲,田大伦,张旭东,等.桤木不同品系蒸腾特性与水分利用效率的研究[J].中南林业科技大学学报(自然科学版),2008,28(1):1-7
    [473]周白云,梁宗锁,刘启明.不同土壤水分条件对酸枣生物量与耗水特性的影响[J].西北农林科技大学学报(自然科学版),2010,38(8):90-96,103
    [474]朱广廉.植物生理学实验[M].北京:北京大学出版社,1990
    [475]朱维琴,吴良欢,陶勤南.不同氮营养对干旱逆境下水稻生长及抗氧化性能的影响研究[J].植物营养与肥料学报,2006,12(4):506-510
    [476]朱维琴,吴良欢,陶勤南.氮营养对干旱逆境下水稻体内可溶性渗透调节物质的影响[J].浙江大学学报(农业与生命科学版),2003,29(5):479-484

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700