用户名: 密码: 验证码:
扁穗牛鞭草标记—性状关联分析及HcDREB转录因子基因克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扁穗牛鞭草(Hemarthria compressa)是禾本科牛鞭草属的多年生草,具有生长期长、生长速度快、再生力强、适应性强等特点,被广泛用于南方草地畜牧业,在水土保持、生态治理中也显示出广阔的应用前景。我国野生扁穗牛鞭草资源丰富,具有多样的生态类型。鉴于此,研究其遗传多样性、群体遗传关系及对重要农艺性状的QTL进行定位,对扁穗牛鞭草遗传改良具有重要的理论和实际意义。为此,本研究采用SRAP和EST-SSR两种分子标记,对来自我国西南区的40份野生扁穗牛鞭草及3个国审品种的遗传多样性和群体结构进行分析,利用关联分析检测与其重要农艺性状关联的分子标记。
     低温、干旱和盐碱是植物生长发育的主要限制因素。与单个功能基因的抗逆性不同,DREB转录因子可以同时调控下游多个逆境诱导基因的表达,参与胁迫信号的传导过程,实现对植物的抗逆性的综合改良,在植物的抗寒、抗旱和抗盐胁迫中发挥着重要作用。作为暖季型禾草,扁穗牛鞭草比较耐寒,能耐4℃左右的低温,但冬季停止生长,不耐旱,干旱条件会导致扁穗牛鞭草生长不良。本研究从“广益”扁穗牛鞭草中分离克隆DREB转录因子基因,并进行功能分析,为通过转基因技术在分子水平改良扁穗牛鞭草提供理论依据和技术支持。目前,本论文取得的主要结果如下:
     1、扁穗牛鞭草种质资源表型及相关分析结果表明:43份扁穗牛鞭草叶色、花期、花序性状、花药颜色等存在丰富变异;不同材料的茎部、叶部、分蘖、生物量、生殖性状等14个数量性状指标存在不同程度的变异,变异系数平均值为24.4%,变异程度最大的是花序数/生殖枝,变异系数达57.4%,表明扁穗牛鞭草种质具有较大的表型变异。
     2、遗传多样性分析结果表明,15对SRAP引物对43份牛鞭草种质资源共扩增得到315条扩增条带,其中多态性条带294条,多态性比例(PPB)为93.2%,平均每对引物扩增的多态性条带为19.6条,多态信息含量为0.340-0.500,29条SRAP特异性条带能鉴定24份无性系。23对EST-SSR引物共扩增出323条清晰可辨的条带,其中多态性条带260条,多态性条带比率(PPB)达80.4%,每对引物平均扩增多态性条带11.3条,多态信息含量(PIC)为0.354-0.500。34条EST-SSR特异性条带能鉴定20份材料。SRAP分子标记和EST-SSR分子标记遗传相似系数Gs分别为0.640~0.949和0.690~0.913,表明西南区扁穗牛鞭草种质间存在较为丰富的遗传变异,但3个国审品种有着较近的亲缘关系,遗传基础较窄。
     3、扁穗牛鞭草农艺性状与SRAP和EST-SSR分子标记关联分析结果表明,分子标记位点间存在连锁不平衡;基于SRAP标记和(?)EST-SSR标记的群体结构分析表明,43份扁穗牛鞭草无性系构成的自然群体存在群体结构;累计有43个SRAP标记位点和38个EST-SSR标记位点与扁穗牛鞭草性状关联。多个标记同时与2个及以上性状相关联,绝大部分性状与多个位点关联。
     4、采用RACE技术从扁穗牛鞭草中克隆到一个DREB2类转录因子,将其命名为HcDREB2。序列分析表明,该基因序列全长为1345bp,编码一个由264个氨基酸组成的蛋白,推测氨基酸序列中有1个高度保守的AP2结构域,及在AP2结构域的V14和E19间具有DREB2转录因子特有的AEIR序列;HcDREB2与其他已知的DREB2基因在保守的AP2/EREBP结构域处具有很高的同源性外,在其它区域同源性不高。
     5、实时荧光定量分析结果表明,HcDREB2基因的表达受低温、高盐、干旱的诱导,而不受ABA胁迫所诱导,其表达属非ABA依赖途径。在4℃、20%PEG和250mMNaCl处理1h,HcDREB2基因的表达量最高,处理4h,表达量最低,处理8h,HcDREB2基因的表达量再次达到峰值。
     6、利用酵母单杂交系统,对扁穗牛鞭草HcDREB2与DRE顺式作用元件的特异识别和结合能力进行检测,结果显示,HcDREB2能与顺式作用元件DRE特异结合,激活下游目的基因的转录。
Hemarthria compressa is a kind of perennial grass, with long growth period, fast growth, strong regeneration ability and well adaptability. So it is already widely used in animal husbandry in the south, and shows broad prospect of application in soil and water conservation and ecological management. There are rich wild H.compressa resources, which has the variety of ecological types. For that reason, it is very important to study its genetic diversity, colony genetic relationship, positioning of main gene for genetic improvement of H.compressa in theory and practice. In order to accelerate breeding process of H.compressa and explore the genetic diversity and genetic relationship among wild H.compressa resources, SRAP and EST-SSR molecular markers were used to study the genetic diversity and group structure among43H.compressa materials, and the association analysis method was used to detect the molecular marker associated with important agronomic traits.
     Low temperature, drought and saline-alkali are main limiting factors. Unlike single functional genes, the DREB transcription factors can regulate multiple stress-inducible genes expression simultaneously, and participate in physiological and biochemical process involved stress tolerance, result in increasing in stress resistance. The DREB transcription factor is very important to resistet to low temperature, drought and saline-alkali. As the warm-season grass, H.compressa is cold-tolerant, it can keep green in such4℃, and stop growing in winter. H.compressa can not withstand drought, and it will fail to grow well on drought soils. In the study, DREB-like gene was isolated and cloned from H.compressa and its function was analysed.The main results were as followed:
     1Trait differences and correlation analysis showed that:there were rich variation among43H.compressa clones in qualitative traits, such leaf colour, flowering phase, inflorescence shape and anther color. Similarityly, there were abundant variation among43H.compressa clones showed in stem, leaf, tiller, biomass and panicle characteristic. The degree of variation of every trait was different. The mean coefficient of variation was24.4%. Coefficient of variation of number of inflorescence per fertile stem is the largest at57.4%. It indicated that there were abundant variation within the species.
     2The result of genetic diversity showed that315PCR bands were detected in total of15pairs of SRAP primers, among which,294bands were polymorphic, accounting for93.2%of the total. The amplified bands and polymorphic bands per pair primer were averagely20.9and19.6, respectively. The polymorphic information content was from0.340to0.500.24H.compressa clones were identified through29special bands. A total of323fragments were amplificated with23pairs of EST-SSR primers of poaceae, among which,260fragments were polymorphic, accounting for80.4%of the total. The polymorphic information content was from0.354to0.500.20clones could be identified through34special bands. The Genetic similarity coefficient of SRAP and EST-SSR was0.640-0.949and0.690-0.913. The result showed that there were rich genetic variance, but there was genetic relationship among three varieties.
     3The different degrees of LD were detected among molecular marker. Genetic structure analysis showed that the H.compressa population was composed of four subpopulations based on SRAP molecular marker and five subpopulations based on EST-SSR molecular marker. The association analysis between two molecular markers and14agronomic traits was performed by using TASSEL GLM (general linear model) program.43SRAP locis and38EST-SSR locis associated with traits were screened respectively. Some locis were found to associate with a same trait. There were a few locis associated with two or more traits simultaneously, which might be the genetic reason of correlation among traits or pleiotropic phenomena.
     4A DREB2like genes from H.compressa under the low temperature stress were cloned by RT-PCR and RACE methods, named HcDREB2. Nucleotide sequence analysis indicated that the HcDREB had an ORF encoding264amino acids with predicted molecular weight of28.8kD and a isoelectric point of5.13. The putative protein contains a highly conserved AP2domain, a nuclear localization signal and an acidic activation domain. There were a specific motif AEIR between V14and E19in AP2/ERBP domain, which confirmed the HcDREB gene belong to DREB2subfimily. No significant sequence similarity with those of other known DREBs except for the conserved AP2DNA-binding domain.
     5The expression of the HcDREB2gene was induced by low temperature, dehydration and high-salt conditions. No significant changes in the HcDREB expression were observed under ABA stress, which showed that the expression of HcDREB was unindependent on ABA. Its expression was changed following the inducible time. The expression of HcDREB was highest after1h under4℃,20%PEG and250mM NaCl treatment, then the expression amount was lowest after4h.
     6To investigate the DNA-binding specificity in vivo activity, the yeast hybrid system was carried out, and the results confirmed that the AP2domain of HcDREB2could specifically interact with DRE cis-acting element and activate down-stream responsive genes.
引文
[1]陈默君,贾慎修.中国饲用植物.中国北京,中国农业出版社,2002,167-168
    [2]DeWet J M. Chromosome number of a few South African grasses.Cytologia,1954,19: 97-103
    [3]Schank S C. Chromosome numbers in eleven new Hemartthria (Limpograss) introductions.Crop Science,1972,12(4):550-551
    [4]Quesenberry K H, Oakes A J, Jessop D S. Cytological and geographical characterization of Hemarthria. Euphytica,1982,31:409-416
    [5]Mehra P N, Sharma M L. Cytological studies in some centralan d eastern Himalayan grasses.The andropogoneae.Cytologia,1975,40(1):61-74
    [6]何凌斐,陈灵鸷,杨春华等.扁穗牛鞭草染色体数目及核型分析.中国草地学报,2011,33(4):89-93
    [7]顾荣申,洪汝兴.牛鞭草的栽植和利用,草与畜杂志,1991,(1):32-34
    [8]Davies L J, Hunt B J. Evaluation of five introduction of the subtropical grass H.altissima at a frost-prone site in Northland(New Zealand). New Zealand Journal of Agricultural Research,1989,32(4):469-476
    [9]王迅,张新全,刘金平.寒冷胁迫下野生扁穗牛鞭草应激发芽多样性分析.安徽农业科学,2006,34(1):45-46,48
    [10]Foy C D and Okaes A J, Tolerance of limpograss(PI364344)to excess manganese in acid soil and nutrient solution,Journal od Plant Nutrition,1984,7(6):953-960
    [11]Oakes A J, Foy C D. A winter hardy, aluminum tolerant perennial pasture grass for mine spoil reclamation. Agronomy Abstract.72nd annual meeting, Amerian Society of Agronomy,1980,103-104
    [12]刘影.扁穗牛鞭草和多花黑麦草对铝胁迫的生理响应[学位论文].雅安,四川农业大学,2011
    [13]傅鲜桃,杨春华,陈灵鸷等,’广益’扁穗牛鞭草花粉特性及结实性研究.草业学报,2008,17(2):61-67
    [14]陈灵鸷,杨春华,黄慧君等.扁穗牛鞭草花粉活力及柱头的可授性研究.中国草地学报,2009,31(6):59-63
    [15]陈灵鸷,杨春华,舒思敏等.扁穗牛鞭草花粉散布特征.草业科学,2010,28(6):974-977
    [16]刘金平,张新全,彭燕..AFLP分析西南区扁穗牛鞭草种质资源.安徽农学通报,2006,12:46-47
    [17]范彦,张新全,李芳.扁穗牛鞭草种质遗传多样性的ISSR分析.草业学报,2007,16:76-81
    [18]陈永霞,张新全,马啸等.扁穗牛鞭草种质资源的RAPD分析.西南农业学报,2010,23(3):866-871
    [19]文自翔.中国栽培和野生大豆的遗传多样性、群体分化和演化及其育种性状QTL的关联分析[学位论文].南京,南京农业大学,2008
    [20]杨小红,严建兵,郑艳萍等.植物数量性状关联分析研究进展.作物学报,2007,33(4):523-530
    [21]Salvi S, Tuberosa Rl To clone or not to clone plant QTLs:present and future challengesl Trends Plant Sci,2005,10:297-304
    [22]Lee M, Sharopova N, Beavis WD, et al. Expanding the genetic map of maize with the intermated B73£MO17 (IBM) population. Plant Mol Bio,2002,48:453-61
    [23]Holland JB. Genetic architecture of complex traits in plants. Curr Opin Plant Biol, 2007,10,156-161
    [24]Ruth E M. Gene mapping by linkage and association analys. Molecular Bioteehnolog, 1999,3(2):113-122
    [25]Flint-Garcia, S A, Thornsberry J M, and E S Buckler. Structure of linkage disequili-brium in plants. Annu Rev Plant Biol,2003,54:357-374
    [26]Flint-Garcia S A, Thuillet A C, Yu J M, et al. Maize association population:a high-resolution platform for quantitative trait locus dissection. Plant J,2005,44
    [27]Yu J M, Buckler E S.Genetic association mapping and genome organization of maize. Curr Opin Biotechnol,2006,17:1-6
    [28]Mather K A, Caicedo A L, Polato N R, et al. The extent of linkage disequilibrium in rice(Oryza sativa L.).The Genetics Society of America,2007,177,2223-2232
    [29]Xie CH X, Warbuton M, Li M SH, et al. An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol Breeding, 2008,21:401-418
    [30]Neumann K, Kobiljski B, Dencic S, et al. Genome-wide association mapping:a case sstudy in bread wheat(Triticum aestivum L.)Mol Breedin,2011,27:37-58
    [31]Price A H. Believe it or not, QTLs are accurate 1.Trends Plant Sci,2006,11:213-216
    [32]Abdallah JM, Gofinetb, Ciereo-ayrollesc, et al. Linkage disequilibrium fine mapping of quantitative trait loc:i a smiulation study. Genet Sel Evo,2003,35:513
    [33]Falconer DS, Mackay TF. Introduction to Quantitative Genetics. Essex, UK:Longman Group Ltd,1996,464
    [34]Nachman M W. Variation in recombination rate across the genome:evidence and implications. Current Opinion in Genetics & Development,2002,12:657-663
    [35]Nordborg M, Borevitz J O, Bergelson J, et al. The e xtent of linkage disequilibrium in Arabidopsis thaliana. Nature Genetics,2002,30 (2):190-193
    [36]Tenaillon M, Sawkins MC, Long AD, et al. Patterns of DNA sequenee polymorphism along chromosome of maize(Zea mays spp.mays L.). Proc Natl Acad Sci USA,2001, 98:9661-916
    [37]Jnanoo N, Grivet L, Dookun A, et al.Linkage disequilibrium among moden sugarcane cultivars.Theor Appl Genet,1999,99:1053-1060
    [38]Pritchard JK, Rosenberg NA.1999. Use of unlinked genetic markers to detect popula-tion stratification in association studies.Am J Hum Genet.65:220-28
    [39]Dunning AM, Durocher F, Healey CS, et al. The extent of linkage disequilibriumin four populations with distinct demographic histories.Am. J. Hum. Genet,2000,67: 1544-1554
    [40]Remington D L, Thornsberry J M, Matsuoka, et al.Structure of linkage disequilibrium and phenotypic association in the maize genome. Proceedings of the National Academy of Sciences of the United States of America,2001,98 (20):11479-11484
    [41]乔婷婷,姚明哲,周炎花等.植物关联分析的研究进展及其在茶树分子标记辅助育种上的应用前景,中国农学通报,2009,25(06):165-170
    [42]Hansen M, Kraft T, Ganestam S, et al. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markersl Genet Res,2001,77:61-66
    [43]Laurie C C, Chasalow S D, LeDeaux J, et al. The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics,2004,168, 2141-2155.
    [44]Breseghello F, and Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics,2006,172,1165-1177.
    [45]Jun T H, Van K, Kim M Y, et al. Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica,20066,62,179-191.
    [46]Aranzana MJ, Kim S, Zhao K Y, et al. Genome-wide association mapping in arabidopsis identifies previously known flowering time and pathogen resistance genes. Plos Genet,2005,1:531-539
    [47]Belo A, Zheng P, Luck S, et al.Whoke genome scan detects an allelic variant of fad2 associatied with increased oleic acid levels in maize. Moil Genet. Genomics,2008,279: 1-10
    [48]Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol,2002,5,94-100
    [49]Rostoks N, Ramsay L, MacKenzie K, et al. A recent history of artificial outcrossing facilitates whole genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA,2006,103,18656-18661
    [50]谭贤杰,吴子凯,程伟东.关联分析及其在植物遗传学中的应用.植物学报,2011,46(1):108-118
    [51]Thornsberry J M, Goodman MM, Doebley J, et al. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet,2001,28:286-289
    [52]Wilson L M, Whitt S R. Dissection of maize kernel composition and starch production by candidate associations. The Plant Cell,2004,16:2719-2733
    [53]Ye X D, Al-Babili S, KlEti A, et al. Engineering the provitamin A ((3-carotene) biosynthetic pathway into (carotenoid-free) rice endosperml Science,2000,287:303-305
    [54]Palaisa K A, Morgante M M, Williams M, et al. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase locil Plant Cell, 2003,15:1795-1806
    [55]KonishiS, IzawaT, LinSY, et al. An SNP caused loss of seed shattering during riee domestication. Scienee,2006,312:1392-1396
    [56]Aderson J R, Luberstedt T. Functional markers in plant. Trends plant Sci,2003, 8:554-560
    [57]王荣焕,关联分析在作物这种资源分子评价中的应用.植物遗传资源学报,2007,8(3):366-372
    [58]Shi W W, Chen S H, Xu M L.Diseovery of a new fragrance allele and the development of functional markers for the breeding of fragrant riee varieties. Mol Breeding,2008,22:185-192
    [59]Andersen J R, SchragT, Melchinger AE, et al. Validation of Dwarf8 polymorphisms associatedwith flowering time in elite european inbred lines of maize(Zeamays L).Theor Appl Genet,2005,111:206-217
    [60]Bao J S, Crke H, and Sun M. Nucleotide diversity in starch synthase Ⅱ and varlidation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properities in rice(Oryza satica L.),Theor Appl Genet,2006,113(7): 1171-1183
    [61]Xu D, Duan X, Wang B, et al. Expression of a late embryogenesis abundant protein gene, HVAI, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol,1996,110(1):249-257
    [62]刘欣,李云.转录因子与植物抗逆性研究进展.中国农学通报.2006,22(4):61-65
    [63]Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in a Arabidopsis gene is involved inresponsiveness to drought, low-temperature, or high salt-stress. Plant Cell,1994, (6):251-264
    [64]Baker S S, Wilhelm K S, Thomasshow M F. The 5'-region of Arabdopsis cor15a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol Biod,1994,24:701-713
    [65]Iwasaki T, Kiyosue T, Yamaguchi-Shinozaki K. The dehydration-inducible rd17(cor47) gene and its promoter region in Aradopsis thaliana. Plant Physiol,1997,115:1287
    [66]Busk PK, Jensen AB, Pages M. Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rd 17 from maize. Plant J,1997,11(6):1285-1295
    [67]Jiang C, Lu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol,1996.30(3): 679-684
    [68]Ouellet F, Vazquez-Tello A, Sarhan F. The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Lett,1998,423(3):324-328
    [69]Stockinger E J, Gilmour S J, and Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl acad Sci USA,1997,94:1035-1040
    [70]Gilmour S J, Zarka D G, Stockinger E J, et al. Low temperature regulation of theArabidopsisCBF family of AP2 transcriptional activators as an early step in cold-inducedCORgene expression. Plant Joural,1998,16:433-442
    [71]Medina J, Bargues M, Terol J, et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain 2containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol,1999,119(2):463-469
    [72]Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2 with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temperature responsive gene expression, respectively, in Arabidopsis. Plant cell,1998,10:1391-1406
    [73]Haake V, Cook D, Riechmann J L, et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiology,2002,130:639-648
    [74]Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-binding specificity of the ERE/AP2 domain of Arabidosis DREBs, transcription factors involved in dehydration-and-inducible gene expression. Biochemical and Biophysical Research Communication,2002,290: 998-1009
    [75]张晗,信月芝,郭惠明等.CBF转录因子及其在植物抗冷反应中的作用.核农学报,2006,20(5):406-409
    [76]Okamuro JK, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding protein in Arabidopsis. Plant Biol.1997,94:7076-7081
    [77]Wang Q, Guan Y, Wu Y, et al. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol, 2008,67:589-602
    [78]Sakuma Y, Maruyama K, Osakabe Y, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought responsive gene expression.Plant Cell,2006,18:1292-1309
    [79]秦峰,李杰,张贵友等.玉米中与DRE顺式作用原件结合的转录因子克隆和结构分析.植物学报,2003,45(3):331-339
    [80]Dubouzet JG, Sakuma Y, Ito Y, et al.OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J,2003,33:751-763
    [81]Liu Y, Zhao TJ, Liu JM,et al. The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box. FEBS Lett,2006.580: 1303-1308
    [82]Allen M D, Yamasaki K, Ohme-Takagi M,et al. A novel mode of DNA recognition by a-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J,1998,17:5484-5496.
    [83]Agarwal M, Hao Y J, Kapoor A, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance.The Journal of Biological Chemistry,2006,281(49):37636-37645
    [84]Xiong Y W, Fei SH ZH. Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta,2006,224(4):878-888
    [85]Dubouzet JG, Sakuma Y, Ito Y, et al. A Combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol,2004,45(3):346-350
    [86]Agarwal PK, Agarwal P, Reddy MK,et al. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep,2006,25:1263-1274
    [87]Jaglo K R, Kleff S, Amundsen K L, et al. Components of the Arabidopsis C-repeat/Dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiology,2001,127:910-917
    [88]Agarwal P, Agarwal P K, Nair S, et al. Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Molecular Genetics and Genomics,2007,277:189-198
    [89]Shen Y G, Zhang W K, He J S. A AP2P EREBP type protein in Triticum aestivum was a DRE2 transcription factors induced by cold, dehydration and ABA stress. Theor Appl Genet,2003,106 (5):923-930
    [90]Kume S, Kobayashi F, Ishibashi M, et al. Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cuhivars showing distinct levels of freezing tolerance. Genes & Genetic Systems,2005,80:185-197
    [91]Liu L, Zhu K, Yang Y, el al. Molecular cloning, expression profiling and transactivation property studies of a DREB2-like gene from chrysanthemum (Dendranthema vestitum). Journal of Plant Research,2008,121:215-226
    [92]Diaz-Martin J, Almoguera C, Prieto-Dapena P,et al.Functional interaction between two transcription factors involved in the developmental regulation of a small heat stress protein gene promoter. Plant Physiol,2005,139:1483-1494
    [93]Qin F, Kakimoto M, Sakuma Y, et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J,2007,50: 54-69.
    [94]Chen H, Hwang JE, Lim CJ, et al. Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochem Biophys Res. Commun,2010, 401:238-244
    [95]Kim Y H, Yang K S, Ryu S H, et al. Molecular characterization of a cDNA encoding DRE-binding transcription factorfrom dehydration-treated fibrous roots of sweetpotato. Plant Physiology et Biochemistry,2008,46:196-204
    [96]Liu N, Zhong N Q, Wang G I,et al. Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens. Planta,2007,226:827-838
    [97]Chinnusamy V, Ohta M, Kanrar S, et al. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev.2003,17:1043-1054
    [98]Liu DC, He LG, Wang HL, et al. Molecular clong, characterization and expression analysis of ptrHOS1, a novel gene of cold responses from trifoliate orange [Poncirus trifoliate(L.)Raf.]. Acta Physol Plant,2010,32(2):271-279
    [99]Miura K, Jin JB, Hasegawa PM. Sumolyation, a post-translational regulatory process in plants, Curr Opin Plant Biol,2007,10:495-502
    [100]Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activatiors in abscisic acid signaling. Plant Cell,2003,15:63-78
    [101]Novillo F, Alonso J M, Ecker J R, et al. CBF2/DREB1C is a negatively regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proceeding of the National Academy of science of the USA,2004,101: 3985-3990
    [102]Lee H, Xiong L M, Ishitani M, et al. Cold-regulated gene expression and freezing tolerance in an Arabidopsis thaliana mutant. Plant J.1999,17:301-308
    [103]Xiong L, Lee H, Ishitani M, et al. Responsion of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. Proc Natl Acad Sci USA,2002, 99(16):10899-10904
    [104]Dong CH, Hu XY, Tang WP, et al. A putative Arabidopsis nucleoporin, AtuNUP, is a critical for RNA export and required for plant tolerance to cold stress. Mol Cell Biol,2006, 26(24):9533-9543
    [105]Gong Z Z, Dong C H, Lee H, et al. A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell,2005,17:256-267
    [106]Zhu JK, Shi H, Lee BH, et al. An Arabidopsis homedomain trandcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natk Acad Sci USA,2004,101:9873-9887
    [107]Knight H, Veale EK, Warren GJ, et al. The sfr6 mutation in Arabifopsis suppresses low-tempreature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell,1999,11:875-886
    [108]Bao Y, Jm CE, Knight H, et al. The sfr6 mutant of Arabidopsis is defective in transcripttional activation via CBF/SREB1 and DREB2 and shows sentivity to osmotic stress. Plant J,2003,34(4):385-406
    [109]Lee H, Guo Y, Ohta M. LOS2, a genetic locus requires for cold-respondive gene transcritin encodes a bi-functional enolase. EMBO J,2002,21:2692-2702
    [110]Fowler S G, Gook D, Thomashow M F. Low temperature induction of Arabidopsis CBF1,2, and 3 is gated by the circadian clock. Plant Physiol,2005,137(3):961-968
    [111]Xiong L Z, Yang Y N. Disease restistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitrogen-activated protein kinase. Plangt Cell,2003,15:745-759
    [112]Kasuga M, Miura S, Shinozaki K, et al. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant and Cell Physiology,2004,45(3):346-350
    [113]Shan D P, Huang J G, Yang Y T, et al. Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gihberellic acid. New Phytologist,2007, 176(1):70-81
    [114]Maruyama K, Sauma M, Ito Y, et al. Identification of cold-inducible down-stream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarry systems. Plant J,2004,38(6):982-993
    [115]Pellegrineschi A, Reynolds M, Pacheco M, et al. Stress-in-duced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under green-house conditions. Genome,2004,42:493-500
    [116]荣红颖,张立全等DREB1B基因在转基因小麦后代的稳定表达.分子植物育种,2009,7(3):437-443
    [117]杨凤萍,梁荣奇,张立全等.抗逆调节转录因子DREB1B基因转化多年生黑麦草的研究.西北植物学报,2006,26(7):1309-1315
    [118]廖世纯,韦桥现等.4种植物的耐淹耐旱性及在消落带中的应用.中国水土保持,2009.5:13-14
    [119]龙忠富,唐成斌,刘秀峰等.喀斯特地区高等级公路边坡等侵蚀劣地草种筛选研究.公路,2006,(11):187-193
    [120]伊艳杰,胡楠,刘红彦等.小麦抗白粉病基因SRAP标记的鉴定及序列分析.河南农业科学,2007,(3):60-62
    [121]Li G, Quiros CF. Sequence related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:Its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics,2001,103:455-461
    [122]伊艳杰,胡楠,刘红彦等.小麦抗白粉病基因SRAP标记的鉴定及序列分析.河南农业科学,2007,(3):60-62
    [123]Li G, Gao M, Yang B, Quiros CF. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping.Theoretical and Applied Genetics, 2003,107:168-180
    [124]王刚,潘俊松,李效尊.黄瓜SRAP遗传连锁图的构建及侧枝基因定位.中国科学C辑,2004,34(6):510-516
    [125]金梦阳,刘列钊,付福友等.甘蓝型油菜SRAP、SSR、AFLP和TRAP标记遗传图谱构建.分子植物育种,2006,4(4):520-526
    [126]Ferriol M, Pioo B, Nuez F. Morphological and molecular diversity of a collection of Cucurbita maxima landraces. Journal of the American Society for Horticultural Science, 2004,129(1):60-69
    [127]Gupta P K, Balyan H S, Sharma P C. Microsatellite in plants:a new class of molecular markers. Current Science,1996,70:45-54.
    [128]朱振东,贾继增.小麦SSR标记的发展与应用.遗传,2003,25(3):355-360
    [129]Holton T A, John T. Identification and mapping of polymorphie SSR markers from expresed gene sequences of barley and wheat. Molecular Breeding,2002,9:63-71
    [130]Gutierrez M V, Vaz Patto M C, Huguet T, et al. Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theoretical and Applied Genetics,2005,110(7):1210-1217
    [131]Wang M L, Barkley N A, Yu J K, et al. Transfer of simple sequence repeat (SSR) markers from major cereal crops to minor grass species for germplasm characterization and evaluation. Plant Genetic Resources:Characterization and Utilization,2005,3:45-57
    [132]Sim S C, Yu J K, Jo Y K, et al. Transferability of cereal EST-SSR markers to ryegrass. Genome,2009,52:431-437
    [133]Xie, W G, Cai H W, et al, Genetic diversity analysis and transferability of cereal EST-SSR markers to orchardgrass (Dactylis glomerata L.). Biochememical Systematics and Ecology,2010,6(9)
    [134]Narasimhamoorthy, Saha B, Swaller M C T, et al, Genetic diversity in switchgrass collections assessed by EST-SSR markers. Bioenerg Research,2008,1:136-146
    [135]Barkley N A, Newman M L,Wang M L, et al. Assement of the genetic diversity and phylogenetic relationships of a temperate bamboo collection by using transferred EST-SSR markers. Genome,2005,48:731-737
    [136]Roldan-Ruiz I, Dendauw J, Van Bockstaele E. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding,2000,6:125-134
    [137]陈永霞,张新全,杨春华等.野生扁穗牛鞭草种质资源形态多样性研究,中国草地,2005(1):77-79
    [138]Gupta P K, Rustgi S, Sharma S, et al. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Molecular Genetics and Genomics, 2003,270(4):315-323
    [139]凌瑶,张新全,齐晓芳.西南五省区及非洲野生狗牙根种质基于SRAP标记的遗传多样性分析.草业学报,2010,19(2):196-203
    [140]齐晓芳,张新全,凌瑶.野生狗牙根种质资源的AFLP遗传多样性分析.草业学报,2010,19(3):155-161
    [141]范彦.扁穗牛鞭草种质资源组合评价及分子遗传多样性研究[学位论文].雅安,四川农业大学,2009
    [142]谭祖猛,李云昌,胡琼等SSR和SRAP标记研究油菜杂交种骨干亲本的遗传多样性.农业生物技术学报,2009,17(5):882-890
    [143]Scott K D, Eggler P, Seaton G, et al, Analysis of SSRs derived from grape ESTs. Theoretical and Applied Genetics,2000,100:723-726
    [144]李小白,张明龙,崔海瑞.油菜EST资源的SSR信息分析.中国油料作物学报,2007,29(1):20-25
    [145]袁力行,傅骏骅,Warburton等.利用RFLP、SSR、AFLP、和RAPD标记分析玉米自交系遗传多样性的比较研究.遗传学报.2000,27(8):725-733
    [146]宋伟,王凤格,易红梅等.功能标记及在品种鉴定和辅助育种中的应用前景,分子植物育种,2009,7(3):612-618
    [147]沈国伟.中加燕麦种质遗传多样性及燕麦重要农艺性状位点的关联分析[学位论文].西安.西北农林科技大学,2010
    [148]Pritehard J K, Stephen M, Donnelly P. Inference on population structure using multilocus genotype data. Genetics,2000,155:945-959
    [149]文自翔,赵团结,郑永战等.中国栽培和野生大豆农艺品质性状与SSR标记的关联分析I.群体结构及关联标记.作物学报,2008,34(7):1169-1178
    [150]Lander E, Kruglyak L. Genetic dissection of com-plex traits:guidelines for interpreting and reporting linkage results. Nat Genet,1995,11,241-247
    [151]Zhu CH S, Michael Gore, Edward S, et al. Status and prospects of aaaociation mapping in plants. The plant genome,2008,1(1):5-20
    [152]Gupta PK, Rustgi S, Kulwal PL. Linkage disequilibrium and association studies in higher plants:Present status and future prospects.Plant Molecular Biology,2005,57:461-485
    [153]Manenti G, Galvan A, PettinieehioA, et al.Mouse genome-wide association mapping needs linkage analysis to avoid false-positive loci.Plos Genetics,2009,5(1)
    [154]Xu G P. The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature.The plant journal,2003,32(2):373-38
    [155]Gao SH Q, Xu H J, Cheng X G, et al. Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factor Gm DREB of soybean (Glycine max). Chinese Science Bulletin,2005,50:2714-2723
    [156]Latini A, Rasi C, Sperandei, et al. Identification of a DREB-related gene in Triticum durum and its expression under water stress conditions. Annals of applied biology,2007, 150(2):187-195
    [157]阳文龙,刘敬梅,刘强等.高羊茅DREB类转录因子基因的分离及鉴定分析.核农学报.2004
    [158]Niu Y D, Hu T M, Zhou Y G, et al. Isolation and characterization of two Medicago falcate AP2/EREBP family transcription factor cDNA, MfDREB1 and MfDREB1s. Plant Physiology and Biochemistry,2010,48(2):971-976
    [159]Sun Y, Li Y, Hu X, et al. Molecular Cloning and Characterization of a Novel Gene Encoding DREB Protein from Buchloe dactyloides (Nutt.) Engelm. Journal of Agricultural Science,2012,4(1):12-22
    [160]谢永丽,王自章,刘强等.草坪草狗牙根中抗逆基因BeDREB的克隆及功能鉴定.中国生物化学与分子生物学报,2005,21,(4):521-527
    [161]Riechmann JL, Heard J, Martin G, et al.2000. Arabidopsis transcriptional factors: genome-wide comparative analysis among eukaryotes. Science,290:2105-2109
    [162]LivakK J. Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods,2001,25:402-408
    [163]Nakashima K, Shinwari Z K, Sakuma Y, et al. Organization and expression of two Arabidopsis DREB2 genes encoding DRE 2binding proteins involved in dehydration 2 and high-salinity-responsive gene expression. Plant Mol Biol,2000,42 (4):657-665
    [164]Xue G P, Loveridge C W. HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT 2rich element.Plant J,2004,37(3):326-339
    [165]付晓燕,彭日荷,章镇等.八棱海棠中转录因子MrDREBA6的克隆及表达分析.果树学报,2009,26(6):761-768
    [166]Hayati M I, Robert S S, Rosanne E C,et al.Comparision of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Molecular Biology Reporter,2004,22:325-337
    [167]孙静文.构树DREB转录因子及木质素合成代谢相关基因的克隆及功能分析[学位论文].北京,中国科学院,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700