用户名: 密码: 验证码:
苦荞黄酮合成相关酶基因的克隆、芽期逆境胁迫中的应答及重组FtPAL和FtFLS的酶学活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苦荞是一种富含芦丁(槲皮素3-O-rutinoside)的药食两用小杂粮,因其具有降脂、降糖和抗氧化等保健作用而成为研究热点。现有研究集中在苦荞产品的开发、黄酮种类的鉴定和黄酮合成相关基因的克隆方面。但由于苦荞黄酮合成途径较为复杂,大多数参与黄酮(芦丁)合成相关基因在苦荞中并未得以克隆、生物学活性未得到验证、其参与逆境胁迫的研究较为薄弱。本研究通过同源克隆和RACE技术,克隆获得11个苦荞黄酮合成相关基因ORF序列;通过不同逆境胁迫,研究其黄酮合成相关基因表达与苦荞总黄酮含量的关系,分析影响苦荞总黄酮含量的关键基因;采用原核表达技术,重点分析了关键酶基因FtPAL和FtFLS编码蛋白的酶学特性。主要实验结果如下:
     1.以苦荞花总RNA为材料,采用同源克隆、RT-PCR和RACE技术克隆了苦荞11个黄酮合成相关酶基因的ORF序列和1个基因的保守片段:获得苯丙氨酸解氨酶基因(FtPAL)、肉桂酸4-羟化酶基因(FtC4H)、4-香豆酰CoA连接酶基因(Ft4CL)查尔酮合酶基因(FtCHS)、查尔酮异构酶基因(FtCHI)和黄烷酮3-羟化酶基因(FtF3H)等6个黄酮合成途径上游酶基因,类黄酮3'-羟化酶基因(FtF3'H)和黄酮醇合酶基因(FtFLS)等2个黄酮醇合成支路酶基因,以及二氢黄酮醇4-还原酶基因(FtDFR)和花青素合酶基因(FtANS)等2个花青素合成支路酶基因的ORF序列;获得参与黄酮转运的谷胱甘肽转移酶基因(FtGST)的ORF序列;获得类黄酮3-葡糖苷转移酶基因(3GT)的序列片段。
     2.序列分析表明,本研究所获得的11个苦荞黄酮合成相关基因分属于不同的酶蛋白家族,为典型的植物黄酮合成相关基因。而获得的3GT序列片段出现翻译提前终止的现象,可能为假基因。11个基因ORF编码的氨基酸序列与金荞和甜荞相应基因同源性均在90%以上,与其它植物同源性在38-95%之间。信号肽和亚细胞定位预测表明,所得序列均无信号肽:FtCHI定位于线粒体、FtC4H定位于内质网,其它9个酶定位于细胞质与黄酮在细胞中的合成部位一致。二级结构和三级结构预测表明,所得基因均具有相应酶蛋白典型的高级结构。
     3.以萌发12d的芽期苦荞为材料,分别采用UV-B、寒冷和干旱进行胁迫8h处理。半定量RT-PCR表明,经不同胁迫处理前后FtPAL、FtCHS、FtCHI、FtF3H、 FtFLS、FtDFR和FtANS均在子叶中表达;FtPAL、FtCHS、FtCHI、FtF3H、FtDFR和FtANS均在胚轴中表达,而未检测到FtFLS的表达。统计学分析结果显示,UV-B胁迫条件下,FtF3H在子叶中、FtCHI在胚轴中的表达与对照差异不显著(P>0.05);冷胁迫条件下,FtCHS在子叶中、FtF3H在胚轴中的表达与对照差异不显著(P>0.05);其它基因在不同条件下胁迫8h后,其表达均处于显著水平(P<0.05)。结果表明,不同的基因表达具有组织特异性且在不同胁迫条件下表达模式有所差异,其中寒冷胁迫可诱导多数基因在子叶和胚轴中的上调表达。
     4.总黄酮测定结果表明,苦荞总黄酮主要分布于子叶中,胚轴含量较低;因胁迫条件的不同,胁迫后总黄酮含量变化趋势有所差异。其中,UV-B胁迫能在短时间内(2h)引起芽期苦荞子叶和胚轴总黄酮含量的显著提高(P<0.05),且其差异随着诱导时间的延长而逐渐上升。寒冷胁迫则在长时间(8h)后引起子叶总黄酮的显著提高(P<0.05),在短时间内(2h)引起胚轴总黄酮的显著提高(P<0.05)。干旱胁迫对苦荞子叶总黄酮影响较小(P>0.05),但胚轴对该胁迫响应在处理4h后差异达到最大(P<0.05)。其中,苦荞子叶经寒冷胁迫后总黄酮含量最高可达7.40%,胚轴经干旱胁迫后总黄酮含量最高可达1.99%。
     5.分析不同胁迫处理前后以及处理过程中,苦荞子叶和胚轴中总黄酮含量和基因表达量变化的相关性表明,1)苦荞子叶在UV-B和寒冷胁迫下,总黄酮含量的升高可能主要由于芦丁的合成和积累;胚轴在3种不同胁迫条件下,总黄酮的升高可能是由于花青素的合成和积累所至。2)子叶和胚轴中,FtPAL可能由单独的调节因素所控制并作为芽期苦荞黄酮合成的初级开关,参与逆境胁迫响应,并从黄酮合成途径代谢流源头上调控其的合成。子叶总黄酮含量的提高与FtFLS的表达相关,胚轴中FtDFR和FtANS可能采用协同表达的方式,调控花青素的合成和积累并引起总黄酮含量的提高。
     6.Southern blot鉴定结果表明,FtPAL在苦荞基因组中为多拷贝。采用原核表达技术实现了FtPAL在大肠杆菌中的融合表达,并研究其催化特性。SDS-PAGE分析表明,重组FtPAL蛋白分子量约77KDa。酶活测定结果表明,诱导5h后FtPAL比活力达到35.7IU/g。薄层层析(TLC)结果表明,重组FtPAL具有将L-Phe转化为反式肉桂酸的催化活性。
     7.Southern blot鉴定结果表明,FtFLS在苦荞基因组中为多拷贝。采用原核表达技术实现了FtFLS在大肠杆菌中的融合表达,并研究其催化特性。SDS-PAGE分析表明,重组FtFLS蛋白分子量约40KDa。经His亲和层析纯化后,重组FtFLS蛋白浓度为1.93g/L。以二氢槲皮素为底物,FtFLS的总活力和比活力分别为36.55×10-3IU和18.94×10-3IU/mg;以二氢山奈酚为底物,FtFLS总活力和比活力分别为10.19×10-3IU和5.28×10-3IU/mg。可见,重组FtFLS具有催化二氢槲皮素转化为槲皮素的活性大于催化二氢山奈酚转化为山奈酚的特性。
Tartary buckwheat (Fagopyrum tataricum Garetn) is an excellent medicinal and nutrient-rich crop containing abundance of rutin, which is a kind of flavonol glycoside, and it has become one of the hottest research points for its health benefits of lipid-lowering, hypoglycemic and antioxidant activity. Nowadays, researchers have concentrated on three aspects about Tartary buckwheat:the development of flavonoids-rich products, the identification of flavonoids types, and the enzymes of flavonoids biosynthesis. However, the flavonoids biosynthetic pathway in Tartary buckwheat is more complex, and most of the flavonoids-related genes have not been cloned, biological activity has not been verified, and the stress research is relatively weak.
     Due to the pivotal role of enzyme genes in flavonoids biosynthesis, our study focused on the cloning and molecular characterization of functional flavonoids-related genes from Tartary buckwheat. Thus,11ORF sequences of flavonoids-related genes were cloned from Tartary buckwheat. By analyzing the relationships between total flavonoids content and expression level of genes under different stress treatments, the key enzyme genes were found. Two key enzyme genes were expressed by prokaryotic expression, and their enzymatic characteristics were identified.
     1. Using the cDNA from flowers as template,11ORF sequences and a conserved fragment of flavonoid-related genes were isolated from Tartary buckwheat, including phenylalanine ammonia-lyase (FtPAL), cinnamate-4-hydroxylase (FtC4H),4-coumarate coenzyme A ligase (Ft4CL), chalcone synthase (FtCHS), chalcone isomerase (FtCHI), flavanone3-hydroxylase (FtF3H), flavonoid3'-hydroxylase (FtF3'H), flavonol synthase (FtFLS), dihydroflavonol-4-reductase (FtDFR), anthocyanidin synthase (FtANS), and glutathione S-transferases (FtGST), and a fragment sequence was flavonoid3-glucosyl transferase(3GT).
     2. Sequence analysis showed that the ORF sequences of11flavonoids-related genes encoded complete enzyme proteins, and the fragment of3GT might be a pseudogene, which appeared early termination in translation. The deduced amino acid sequence of11flavonoids-related genes showed a higher level of homology (more than90%) with the corresponded genes in Fagopyrum dibotrys and Fagopyrum esculentum, and a moderate level with other plants'genes, ranging from38-95%. Signal peptides and subcellular localization prediction showed that all the11sequences had no signal peptide existed; FtCHI located in the mitochondria, FtC4H located in the endoplasmic reticulum, and the other9genes located in the cytoplasm. Senior Structural analysis showed that the each flavonoids-related gene had similar secondary and tertiary structure with its own protein family.
     3. Three different stress treatments, including UV-B, cold and drought stress, were treated with the12days old sprouts for8hours. The expression levels of FtPAL, FtCHS, FtCHI, FtF3H, FtFLS, FtDFR, and FtANS were tested by semi-quantitative RT-PCR. Results showed that FtPAL, FtCHS, FtCHI, FtF3H, FtFLS, FtDFR and FtANS could be examined in the cotyledons before and after different stress treatments. FtPAL, FtCHS, FtCHI, FtF3H, FtDFR and FtANS could be examined in the hypocotyls before and after different stress treatments. However, the expression level of FtFLS could not be detected in the hypocotyls before and after stresses. The statistical analysis results showed that, in UV-B stress condition, the expression levels of FtF3H in cotyledons and FtCHI in hypocotyls showed no significant difference with control (P>0.05). In cold stress condition, the expression levels of FtCHS in cotyledons and FtF3H in hypocotyls showed no significant difference with control (P>0.05). The expression levels of other genes in3different stress conditions showed significant differences with control (P<0.05). Thus, our results suggested that each gene expression patterns vary in different stress conditions, with a certain degree of tissue specificity, and the cold stress could up-regulate most of the genes both in cotyledons and hypocotyls.
     4. Total flavonoids in Tartary buckwheat were mainly distributed in the cotyledons. The contents and change trends of total flavonoids in Tartary buckwheat showed different degrees, which were accorded to different stress treatments. Statistical analysis results show that, with in a short period of treatment's time (2h), the total flavonoids in cotyledons and hypocotyls could be induced and significantly increased by UV-B stress (P <0.05), and the significance were gradually increased along with the induction time. In cold stress, the total flavonoids in cotyledons were significantly increased after8hours' induction (P<0.05), and it was significantly increased in hypocotyls after2hours' induction (P<0.05). In drought stress condition, the total flavonoids in cotyledons could not show a certain significance after8hours' treatment (P>0.05), and it had a short response time (2h) in hypocotyls and showed a maximum after4hours'induction (P<0.05). In addition, the maximum of total flavonoids were detected in cotyledons by8hours'cold treatment and in hypocotyls by4hours'drought treatment.
     5. By analyzing the relationships among total flavonoids content and expression level of genes under different stress treatments, we speculated that:1) In UV-B and cold stresses, the increase of total flavonoids might due to the rutin biosynthesis in cotyledons, and in3different stresses, the increase of total flavonoids might contribute to the accumulation of anthocyanins in hypocotyls.2) FtPAL might be controlled by some separate adjustment factors in Tartary Buckwheat and be a primary switch in flavonoids biosynthetic pathway. Its expression level of response to different stress condition might control the starting of flavonoids biosynthesis and affect the accumulation patterns of total flavonoids both in cotyledons and hypocotyls. The expression level of FtFLS might correspond with the accumulation and increase of total flavonoids in cotyledons, and the potential co-expression of FtDFR and FtANS might control the biosynthesis of anthocyanins in hypocotyls and cause the rising trend of total flavonoids in hypocotyls.
     6. Southern blot analysis indicated that FtPAL was a multi-copy gene in Tartary buckwheat. A non-fusion expression vector (named pET-30b(+)-FtPAL) was successfully constructed to prokaryotic express the recombinant FtPAL protein in Escherichia coli BL21(DE3). Induced by IPTG for7hours, the SDS-PAGE result showed that the recombinant FtPAL was about77kDa. The enzymatic activity of recombinant FtPAL was tested and results showed that FtPAL reached maximum yield at5hours'cultivation and its specific activity up to35.7IU/g by using L-Phe as substrate. TLC results suggested that the recombinant FtPAL could conversion L-Phe to trans-cinnamate in vitro.
     7. Southern blot analysis indicated that FtFLS was a multi-copy gene in Tartary buckwheat. A fusion expression vector (named pET-30b(+)-FtFLS) was successfully constructed to prokaryotic express the recombinant FtFLS protein in Escherichia coli BL21(DE3). After10hours of induction, the SDS-PAGE result showed that the recombinant FtFLS was about40kDa. His affinity chromatography results showed that the concentration of purified FtFLS was1.93g/L. Enzymatic activity of FtFLS showed that the total and specific activities of dihydroquercetin were36.55×10-3IU and18.94×10-3IU/mg, respectively, and the total and specific activities of dihydrokaempferol were10.19×10-3IU and5.28×10-3IU/mg. Thus, our study suggested that the recombinant FtFLS had a higher catalytic efficiency of dihydroquercetin than dihydrokaempferol in vitro.
引文
[1]Grotewold, E. The science of flavonoids. Springer Verlag,2007,
    [2]Harborne, J.B., Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry,2000,55(6): 481-504.
    [3]Dixon, R.A., Paiva, N.L. Stress-induced phenylpropanoid metabolism. The Plant Cell,1995,7(7): 1085-1097.
    [4]Schijlen, E.G.W.M., Ric De Vos, C, Van Tunen, A.J., et al. Modification of flavonoid biosynthesis in crop plants. Phytochemistry,2004,65(19):2631-2648.
    [5]Gonzali, S., Mazzucato, A., Perata, P. Purple as a tomato:towards high anthocyanin tomatoes. Trends in plant science,2009,14(5):237-241.
    [6]祁银燕,刘雅莉,李莉,等.风信子DFR基因全长cDNA的克隆及序列分析.中国农学通报,2009,25(24):62-67.
    [7]Farrant, J.M. A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecology,2000,151(1):29-39.
    [8]Primack, R.B. Ultraviolet patterns in flowers, or flowers as viewed by insects. Arnoldia,1982,42(3): 139-146.
    [9]Andersen, M., Markham, K.R. Flavonoids:chemistry, biochemistry, and applications. Boca Raton, CRC Press,2006,
    [10]Taylor, L., Jorgensen, R. Conditional male fertility in chalcone synthase-deficient petunia. Journal of Heredity,1992,83(1):11-17.
    [11]Shirley, B.W. Flavonoids in seeds and grains:physiological function, agronomic importance and the genetics of biosynthesis. Seed Science Research,1998,8(4):415-422.
    [12]Dombos, D.L.J., Spencer, G.F., Miller, R.W. Medicarpin delays alfalfa seed germination and seedling growth. Crop science. Jan/Feb,1990,30(1):162-166.
    [13]Jorgensen, R.A., Que, Q., Napoli, C.A. Research note:Maternally-controlled ovule abortion results from cosuppression of dihydroflavonol-4-reductase or flavonoid-3',5'-hydroxylase genes in Petunia hybrida. Functional plant biology,2002,29(12):1500-1506.
    [14]Roberts, E.H. Viability of seeds. London, Cambridge Univ Press,1972,100.
    [15]Page, J.E., Towers, N.G. Anthocyanins protect light-sensitive thiarubrine phototoxins. Planta,2002, 215(3):478-484.
    [16]Bernays, E.A. Tannins:an alternative viewpoint..Entomologia experimentalis et applicata,1978,24(3): 244-253.
    [17]Klocke, J.A., Chan, B.G. Effects of cotton condensed tannin on feeding and digestion in the cotton pest, Heliothis zea. Journal of Insect Physiology,1982,28(11):911-915.
    [18]Mallikarjuna, N., Kranthi, K.R., Jadhav, D.R., et al. Influence of foliar chemical compounds on the development of Spodoptera litura (Fab.) in interspecific derivatives of groundnut. Journal of Applied Entomology,2004,128(5):321-328.
    [19]Vierheilig, H., Bago, B., Albrecht, C., et al. Flavonoids and arbuscular-mycorrhizal fungi. Advances in Experimental Medicine and Biology,1998.439:9-34.
    [20]Schutt, C., Netzly, D. Effect of apiforol and apigeninidin on growth of selected fungi. Journal of chemical ecology,1991,17(11):2261-2266.
    [21]Coley, P.D., Aide, T.M. Red coloration of tropical young leaves:a possible antifungal defence? Journal of Tropical Ecology,1989,5(3):293-300.
    [22]Broughton, W.J., Zhang, F., Perret, X., et al. Signals exchanged between legumes and Rhizobium: Agricultural uses and perspectives. Plant and Soil,2003,252(1):129-137.
    [23]Cohen, M.F., Yamasaki, H. Flavonoid-induced expression of a symbiosis-related gene in the cyanobacterium Nostoc punctiforme. Journal of bacteriology,2000,182(16):4644-4646.
    [24]Chinnusamy, V., Zhu, J., Zhu, J.K. Cold stress regulation of gene expression in plants. Trends in plant science,2007,12(10):444-451.
    [25]Li, J., Ou-Lee, T.M., Raba, R., et al. Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. The Plant Cell Online,1993,5(2):171-179.
    [26]Tevini, M., Braun, J., Fieser, G. The protective function of the epidermal layer of rye seedlings against ultraviolet-B radiation. Photochemistry and Photobiology,1991,53(3):329-333.
    [27]Solovchenko, A., Schmitz - Eiberger, M. Significance of skin flavonoids for UV-B-protection in apple fruits. Journal of experimental botany,2003,54(389):1977-1984.
    [28]Foyer, C.H., Lelandais, M., Kunert, K.J. Photooxidative stress in plants. Physiologia Plantarum,1994, 92(4):696-717.
    [29]Coberly, L.C., Rausher, M.D. Analysis of a chalcone synthase mutant in Ipomoea purpurea reveals a novel function for flavonoids:amelioration of heat stress. Molecular Ecology,2003,12(5):1113-1124.
    [30]Kirakosyan, A., Seymour, E., Kaufman, P.B., et al. Antioxidant capacity of polyphenolic extracts from leaves of Crataegus laevigata and Crataegus monogyna (Hawthorn) subjected to drought and cold stress. Journal of agricultural and food chemistry,2003,51(14):3973-3976.
    [31]Kaplan, F., Kopka, J., Sung, D.Y., et al. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. The Plant Journal,2007,50(6):967-981.
    [32]Marczak, L., Kachlicki, P., Kozniewski, P., et al. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry monitoring of anthocyanins in extracts from Arabidopsis thaliana leaves. Rapid Communications in Mass Spectrometry,2008,22(23):3949-3956.
    [33]Hertog, M.G.L., Feskens, E.J.M., Kromhout, D., et al. Dietary antioxidant flavonoids and risk of coronary heart disease:the Zutphen Elderly Study. The Lancet,1993,342(8878):1007-1011.
    [34]Torel, J., Cillard, J., Cillard, P. Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry,1986,25(2):383-385.
    [35]宁添媛.大豆异黄酮防治慢性疾病的研究进展.现代中西医结合杂志.2011,20(32): 4162-4165.
    [36]Malhotra, B., Onyilagha, J.C., Bohm, B.A., et al. Inhibition of tomato ringspot virus by flavonoids. Phytochemistry,1996,43(6):1271-1276.
    [37]Atmani, D., Chaher, N., Berboucha, M., et al. Flavonoids in human health:from structure to biological activity. Current Nutrition & Food Scienc,2009,5(4):225-237.
    [38]Heim, K.E., Tagliaferro, A.R., Bobilya, D.J. Flavonoid antioxidants:chemistry, metabolism and structure-activity relationships. The Journal of nutritional biochemistry,2002,13(10):572-584.
    [39]Kim, S.J., Zaidul, I.S.M., Suzuki, T, et al. Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts. Food Chemistry,2008,110(4):814-820.
    [40]Tsimogiannis, D.I., Oreopoulou, V. Free radical scavenging and antioxidant activity of 5,7,3', 4'-hydroxy-substituted flavonoids. Innovative Food Science & Emerging Technologies,2004,5(4): 523-528.
    [41]Coward, L., Barnes, N.C., Setchell, K.D.R., et al. Genistein, daidzein, and their. beta-glycoside conjugates:antitumor isoflavones in soybean foods from American and Asian diets. Journal of agricultural and food chemistry,1993,41(11):1961-1967.
    [42]Lu, J., Papp, L.V., Fang, J., et al. Inhibition of mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin anticancer activity. Cancer research,2006,66(8):4410.
    [43]Murphy, B.T., Mackinnon, S.L., Yan, X., et al. Identification of triterpene hydroxycinnamates with in vitro antitumor activity from whole cranberry fruit (Vaccinium macrocarpon). Journal of agricultural and food chemistry,2003,51(12):3541-3545.
    [44]Tsimikas, M.D.S., Witztum, M.D.J.L. Measuring circulating oxidized low-density lipoprotein to evaluate coronary risk. Circulation,2001,103(15):1930-1932.
    [45]Gaby, A.R. Quercetin:A potentially useful, potentially harmful flavonoid. Townsend Lett Drs Pat, 1998,(178):102.
    [46]Cassidy, A. Phytoestrogens and women's health. Women's Health Medicine,2004,1(1):30-33.
    [47]Crouse Iii, J.R., Morgan, T., Terry, J.G., et al. A randomized trial comparing the effect of casein with that of soy protein containing varying amounts of isoflavones on plasma concentrations of lipids and lipoproteins. Archives of Internal Medicine,1999,159(17):2070-2076.
    [48]王慧.黄酮类化合物生物活性的研究进展.食品与药品.2010,12(9):347-350.
    [49]毛晓明,张家庆.中华内分泌代谢杂志.1994,10(1):44-45
    [50]Olthof, M.R. Bioavailability of flavonoids and cinnamic acids and their effect on plasma homocysteine in humans. Wageningen, Wageningen University,2001.
    [51]杨凤华,康成.黄芪水溶性黄酮类对小鼠细胞免疫功能的影响.时珍国医国药.2002,13(12):718-719.
    [52]Simmering, R., Kleessen, B., Blaut, M. Quantification of the Flavonoid-Degrading BacteriumEubacterium ramulus in Human Fecal Samples with a Species-Specific Oligonucleotide Hybridization Probe. Applied and environmental microbiology,1999,65(8):3705-3709.
    [53]汪银锋,李素平,高腾云,等.大豆异黄酮在动物生产中的应用.饲料研究.2009, (10): 10-12.
    [54]Di Carlo, G., Mascolo, N., Izzo, A.A., et al. Flavonoids:old and new aspects of a class of natural therapeutic drugs. Life sciences,1999,65(4):337-353.
    [55]张华峰,下瑛,黄宏文.黄酮类化合物生物合成途径的进化及其在淫羊藿中的研究展望.中草药,2006,37(11):1745-1751.
    [56]Havir, E.A. Phenylalanine ammonia-lyase:purification and characterization from soybean cell suspension cultures. Archives of biochemistry and biophysics,1981,211(2):556-563.
    [57]Schuster, B., Retey, J. The mechanism of action of phenylalanine ammonia-lyase:the role of prosthetic dehydroalanine. Proceedings of the National Academy of Sciences,1995,92(18):8433-8437.
    [58]Dixon, R.A., Lamb, C.J. Regulation of secondary metabolism at the biochemical and genetic levels. In Charlwood B.V., Rhodes M.J.C., eds, Secondary Products from Plant Tissue Culture. Clarendon Press, Oxford,1990,103-118.
    [59]Blount, J.W., Korth, K.L., Masoud, S.A., et al. Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant physiology,2000,122(1):107-116.
    [60]Gulick, A.M. Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS chemical biology,2009,4(10): 811-827.
    [61]Ferret, J.L., Jez, J.M., Bowman, M.E., et al. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nature structural biology,1999,6(8):775-784.
    [62]Farzad, M., Soria-Hernanz, D.F., Altura, M., et al. Molecular evolution of the chalcone synthase gene family and identification of the expressed copy in flower petal tissue of Viola cornuta. Plant Science, 2005,168(4):1127-1134.
    [63]Schroder, J. A family of plant-specific polyketide synthases:facts and predictions. Trends in plant science,1997,2(10):373-378.
    [64]Durbin, M.L., Learn, G.H., Huttley, G.A., et al. Evolution of the chalcone synthase gene family in the genus Ipomoea. Proceedings of the National Academy of Sciences,1995,92(8):3338.
    [65]Jez, J.M., Bowman, M.E., Dixon, R.A., et al. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nature structural biology,2000,7(9):786-791.
    [66]Turnbull, J.J., Nakajima, J., Welford, R.W.D., el al. Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis. Journal of Biological Chemistry, 2004,279(2):1206-1216.
    [67]Pelletier, M.K., Shirley, B.W. Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings (Coordinate regulation with chalcone synthase and chalcone isomerase). Plant physiology,1996, 111(1):339-345.
    [68]Forkmann, G., Heller, W., Grisebach, H. Anthocyanin biosynthesis in flowers of Matthiola incana flavanone 3- and flavonoid 3'-hydroxylases. Z. Naturforsch. C,1980,35:691-695
    [69]Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant physiology,2001,126(2):485-493.
    [70]Schuler, M.A. Plant cytochrome P450 monooxygenases. Critical reviews in plant sciences,1996,15(3): 235-284.
    [71]Kawasaki, S., Akasaka, M., Toda, K., et al. Structure of flavonoid 3'-hydroxylase gene for pubescence color in soybean. Crop science,2005,45(6):2212-2217.
    [72]Schoenbohm, C, Martens, S., Eder, C., et al. Identification of the Arabidopsis thaliana flavonoid 3'-hydroxylase gene and functional expression of the encoded P450 enzyme. Biological chemistry, 2005,381(8):749-753.
    [73]Britsch, L., Heller, W., Grisebach, H. Conversion of flavanone to flavone, dihydroflavonol and flavonol with an enzyme system from cell culture of parsley. Z. Naturforsch,1981,36(9/10):742-750.
    [74]Holton, T.A., Brugliera, F., Tanaka, Y. Cloning and expression of flavonol synthase from Petunia hybrida. The Plant Journal,1993,4(6):1003-1010.
    [75]刘光德,雷兴华,祝钦泷,等.金荞麦二氢黄酮醇4-还原酶基因(FdDFR1)的克隆及序列分析.中国农业科学,2009,42(1):55-63.
    [76]Johnson, E.T., Yi, H., Shin, B., et al. Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins. The Plant Journal,1999,19(1):81-85.
    [77]李春雷,崔国新,许志茹,等.植物二氢黄酮醉4-还原酶基因的研究进展.生物技术通讯,2009,20(3):442-445.
    [78]Suzuki, K., Xue, H., Tanaka, Y., et al. Flower color modifications of Torenia hybrida by cosuppression of anthocyanin biosynthesis genes. Molecular breeding,2000,6(3):239-246.
    [79]Rosati, C., Cadic, A., Duron, M., et al. Molecular characterization of the anthocyanidin synthase gene in Forsythia intermedia reveals organ-specific expression during flower development. Plant Science, 1999,149(1):73-79.
    [80]Springob, K., Nakajima, J., Yamazaki, M., et al. Recent advances in the biosynthesis and accumulation of anthocyanins. Nat. Prod. Rep.,2003,20(3):288-303.
    [81]Menssen, A., Hohmann, S., Martin, W., et al. The En/Spm transposable element of Zea mays contains splice sites at the temini generating a novel intron frodSpm element in the A2 gene. EMBO Journal, 1990,9:3051-3057.
    [82]田估,沈红香,张杰,等.苹果属观赏海棠McANS基因克隆与不同叶色品种间表达差异分析.园艺学报,2010,37(6):939-948.
    [83]Gong, Z., Yamazaki, M., Sugiyama, M., et al. Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens. Plant Molecular Biology,1997,35(6):915-927.
    [84]王克夷.糖基转移酶的研究进展.生物化学与生物物理进展,1994,21(1):9-10.
    [85]郑志亮.花卉作物的花色基因工程.北方园艺,1994,337-338.
    [86]Yazaki, K. ABC transporters involved in the transport of plant secondary metabolites. FEBS letters, 2006,580(4):1183-1191.
    [87]Marinova, K., Pourcel, L., Weder, B., et al. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. The Plant Cell Online,2007,19(6):2023-2038.
    [88]Grotewold, E. Subcellular trafficking of phytochemicals. Recent research developments in plant physiology,2001,2:31-48.
    [89]Alfenito, M.R., Souer, E., Goodman, C.D., et al. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. The Plant Cell Online, 1998,10(7):1135-1150.
    [90]Kitamura, S., Shikazono, N., Tanaka, A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. The Plant Journal,2004,37(1):104-114.
    [91]Marrs, K.A., Alfenito, M.R., Lloyd, A.M., et al. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature biotechnology,1995,375(6530):397-400.
    [92]Meyer, P., Heidmann, I., Forkmann, G., et al. A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature biotechnology,1987,330:677-678.
    [93]Nakamura, N., Fukuchi-Mizutani, M., Miyazaki, K., et al. RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant biotechnology,2006,23(1):13-17.
    [94]Muir, S.R., Collins, G.J., Robinson, S., et al. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature biotechnology,2001,19(5):470-474.
    [95]Li, F.X., Jin, Z.P., Zhao, D.X., et al. Overexpression of the Saussurea medusa chalcone isomerase gene in S. involucrata hairy root cultures enhances their biosynthesis of apigenin. Phytochemistry,2006, 67(6):553-560.
    [96]Schijlen, E.G.W.M., Ric De Vos, C.H., Jonker, H., et al. Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant biotechnology journal,2006,4(4):433-444.
    [97]牛天敏,马会勤,陈尚武.大豆查尔酮合成酶(CHS)基因的克隆,表达及其在雪莲提取液中的代谢产物分析.中国生物工程杂志,2007,27(2):58-63.
    [98]Liu, R.R., Hu, Y.L., Li, J., et al. Production of soybean isoflavone genistein in non-legume plants via genetically modified secondary metabolism pathway. Metabolic engineering,2007,9(1):1-7.
    [99]Park, N.I., Xu, H., Li, X.H., et al. Enhancement of flavone levels through overexpression of chalcone isomerase in hairy root cultures of Scutellaria baicalensis. Functional & integrative genomics,2011: 1-6.
    [100]李安仁.中国植物志(第四十七卷,第分册).北京,科学出版社,1998,108-116.
    [101]夏明忠,王安虎,蔡光泽,等.中国四川荞是属(蓼科)一新种——花叶野荞麦.西昌学院学报:自然科学版,2008,21(2):11-12.
    [102]刘建林,唐宇,夏明忠,等.中国荞麦属(蓼科)一新种——密毛野荞麦.植物研究年会,2008,28(5):530-533.
    [103]刘建林,唐宇,夏明忠,等.中国四川蓼科荞麦属一新种——皱叶野荞麦.植物分类学报,2008,46(6):929-932.
    [104]Tang, Y., Zhou, M.L., Bai, D.Q., et al. Fagopyrum pugense(Polygonaceae), a New Species from Sichuan, China. Novon:A Journal for Botanical Nomenclature,2010,20(2):239-242.
    [105]Shao, J.R., Zhou, M.L., Zhu, X.M., et al. Fagopyrum wenchuanense and Fagopyrum qiangcai, Two New Species of Polygonaceae from Sichuan, China. Novon:A Journal for Botanical Nomenclature, 2011,21(2):256-261.
    [106]柏大全.四川西部地区荞麦资源细胞学及遗传标记研究.四川雅安,四川农业大学,2009.
    [107]Ohsako, T., Ohnishi, O. New Fagopyrum species revealed by morphological and molecular analyses. Genes & genetic systems,1998,73(2):85-94.
    [108]Ohsako, T., Yamane, K., Ohnishi, O. Two new Fagopyrum (Polygonaceae) species, F. gracilipedoides and F.jinshaense from Yunnan, China. Genes & genetic systems,2002,77(6):399-408.
    [109]Ohnishi, O. Search for the wild ancestor of buckwheat. I. Description of new Fagopyrum (Polygonaceae) species and their distribution in China and Himalayan hills. Fagopyrum,1998,15: 18-28.
    [110]Chen, Q.F.U. A study of resources of Fagopyrum(Polygonaceae) native to China. Botanical journal of the Linnean Society,1999,130(1):53-64.
    [111]李毓芳.陕西咸阳马泉西汉墓.考古,1979,(2):125-135.
    [112]Kim, Y.K., Li, X., Xu, H., et al. Production of phenolic compounds in hairy root culture of tartary buckwheat(Fagopyrum tataricum Gaertn). Journal of Crop Science and Biotechnology,2009,12(1): 53-57.
    [113]俣野敏子,孙小军.世界荞麦研究动向.世界农业,1992,(1):25-26.
    [114]张玉金,叶俊,张智勇,等.苦荞育种现状与探讨.内蒙古农业科技,2008,(3):90-91.
    [115]林汝法.中国荞麦.北京,中国农业出版社,1994,1-251.
    [116]Ohnishi, O. Cultivated buckwheat species and their relatives in the Himalaya and southern China. Proc.4th Intl, Symp. on Buckwheat. Orel,1989,562-571.
    [117]赵佐成,周明德,工中仁,等.中国苦荞麦及其近缘种的遗传多样性研究.遗传学报,2002,29(8):723-734.
    [118]Tsuji, K., Ohnishi, O. Phylogenetic relationships among wild and cultivated Tartary buckwheat (Fagopyrum tataricum Gaert.) populations revealed by AFLP analyses. Genes & genetic systems, 2001,76(1):47-52.
    [119]Murai, M., Ohnishi, O. Population genetics of cultivated common buckwheat, Fagopyrum esculentum Moench. X. Diffusion routes revealed by RAPD markers. Genes & genetic systems,1996,71(4): 211-218.
    [120]Campbell, C.G. Evolution of Crop plants. London, Longman,1976,235-237.
    [121]Ye, N.G., Gou, G.Q. Classification, origin and evolution of genus Fagopyrum in China. Buckwheat Trend,1993,18(1):3-12.
    [122]王安虎,夏明忠,蔡光泽,等.栽培苦荞麦的起源及其近缘种亲缘分析.西南农业学报,2008,21(002):282-285.
    [123]赵钢,唐宇,王安虎.发展中国的苦荞生产.作物杂志,2002,4:11-12.
    [124]Woo, S.H., Adachi, T., Jong, S.K., et al. Inheritance of self-compatibility and flower morphology in an inter-specific buckwheat hybrid. Canadian Journal of Plant Science,1999,79(4):483-490.
    [125]Wang, Y.J., Scarth, R., Campbell, C. Chromosome Variations in Interspecific Hybrids between F. esculentum (2n= 2x= 16) and F. homotropicum (2n= 4x= 32). Advances in Buckwheat Research (Ham S.S., Choi, Y.S., Kim N.S., Park, C.H., eds).2001,301-307.
    [126]王安虎,夏明忠,蔡光泽,等.高产优质苦荞新品种西荞2号.种子,2009,28(10):110-112.
    [127]赵钢,唐宇.苦荞的成分功能研究与开发应用.四川农业大学学报,2001,19(4):355-358.
    [128]Bonafaccia, G., Marocchini, M., Kreft, I. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chemistry,2003,80(1):9-15.
    [129]Fabjan, N., Rode, J., Kosir, I.J., et al. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. Journal of agricultural and food chemistry,2003,51(22):6452-6455.
    [130]Steadman, K.J., Burgoon, M.S., Lewis, B.A., et al. Minerals, phytic acid, tannin and rutin in buckwheat seed milling fractions. Journal of the Science of Food and Agriculture,2001,81(11): 1094-1100.
    [131]Ikeda, K. Buckwheat composition, chemistry, and processing. Advances in food and nutrition research,2002,44:395-434.
    [132]Kreft, I., Skrabanja, V. Nutritional properties of starch in buckwheat noodles. Journal of nutritional science and vitaminology,2002,48(1):47-50.
    [133]Li, D., Li, X., Ding, X. Composition and antioxidative properties of the flavonoid-rich fractions from tartary buckwheat grains. Food Science and Biotechnology,2010,19(3):711-716.
    [134]李丹.苦荞麦营养生物活性和加工利用的研究[学位论文].无锡,无锡轻工大学,2000.
    [135]徐宝才,肖刚,丁霄霖,等.液质联用分析测定苦荞黄酮.食品科学,2003,6:113-117.
    [136]Wu, Y.Q., Sun, B.H., Huang, J., et al. A new flavonoid glycoside from the seeds of Fagopyrum tataricum. Asian J. Trad. Med,2007,2:202-205.
    [137]Kim, S.J., Maeda, T., Sarker, M.Z.I., et al. Identification of anthocyanins in the sprouts of buckwheat. Journal of agricultural and food chemistry,2007,55(15):6314-6318.
    [138]Jiang, P., Burczynski, F., Campbell, C., et al. Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation. Food research international,2007,40(3):356-364.
    [139]李成磊.苦荞苯丙氨酸解氨酶基因(Pal)和查尔酮合酶基因(Chs)的DNA和cDNA克隆及序列分析.四川雅安,四川农业大学,2009.
    [140]祝婷,李成磊,吴琦,等.苦荞和甜荞二氢黄酮醇4-还原酶基因(dfr)的克隆及序列分析.食品科学,2010,31(13):219-223.
    [141]蒙华.苦荞MYB转录因子基因的克隆及转录激活功能鉴定.四川雅安,四川农业大学,2011.
    [142]吴琦,李成磊,陈惠,等.苦荞查尔酮合酶基因CHS的结构及花期不同组织表达量分析.中国生物化学与分子生物学报,2011(12):1151-1160.
    [143]赵海霞,吴小峰,白悦辰,等.苦荞芽期黄酮合成关键酶和MYB转录因子基因的表达分析.农业生物技术学报,2012,(2):121-128.
    [144]张艳,柴岩,冯佰利,等.苦荞和甜荞查尔酮合成酶基因的克隆及序列比较.西北植物学报,2008,28(3):447-451.
    [145]Logacheva, M.D., Kasianov, A.S., Vinogradov, D.V., et al. De novo sequencing and characterization of floral transcriptome in two species of buckwheat(Fagopyrum). BMC genomics,2011,12(30):3-17.
    [146]Gupta, N., Sharma, S.K., Rana, J.C., et al. Expression of flavonoid biosynthesis genes vis-a-vis rutin content variation in different growth stages of Fagopyrum species. Journal of plant physiology,2011, 168(17):2117-2123.
    [147]Suzuki, T., Honda, Y., Mukasa, Y. Effects of UV-B radiation, cold and desiccation stress on rutin concentration and rutin glucosidase activity in tartary buckwheat(Fagopyrum tataricum) leaves. Plant Science,2005,168(5):1303-1307.
    [148]Han, M.H., Kamal, A.H.M., Huh. Y.S., et al. Regeneration of Plantlet Via Somatic Embryogenesis from Hypocotyls of Tartary Buckwheat(Fagopyrum tataricum). Australian Journal of Crop Science, 2011,5(7):865-869.
    [149]Yao, Y., Xuan, Z., Li, Y., et al. Effects of ultraviolet-B radiation on crop growth, development, yield and leaf pigment concentration of tartary buckwheat(Fagopyrum tataricum) under field conditions. European journal of agronomy,2006,25(3):215-222.
    [150]蔡娜,淡荣,陈鹏.水分胁迫对苦荞幼苗黄酮类物质含量的影响.西北农业学报,2008,17(4):91-93.
    [151]Capell, T., Christou, P. Progress in plant metabolic engineering. Current opinion in biotechnology, 2004,15(2):148-154.
    [152]Dixon, R.A., Paiva, N.L. Stress-induced phenylpropanoid metabolism. The Plant Cell,1995,7(7): 1085.
    [153]Koes, R.E., Quattrocchio, F., Mol, J.N.M. The flavonoid biosynthetic pathway in plants:function and evolution. BioEssays,1994,16(2):123-132.
    [154]Savolainen, V., Chase, M.W. A decade of progress in plant molecular phylogenetics. Trends in Genetics,2003,19(12):717-724.
    [1551Li, X.H., Park, N.I., Xu, H., et al. Differential expression of flavonoid biosynthesis genes and accumulation of phenolic compounds in common buckwheat(Fagopyrum esculentum). Journal of agricultural and food chemistry,2010,58(23):12176-12181.
    [156]Park, N.I., Li, X.H., Suzuki, T., et al. Differential Expression of Anthocyanin Biosynthetic Genes and Anthocyanin Accumulation in Tartary Buckwheat Cultivars'Hokkai T8'and'Hokkai T10'. Journal of agricultural and food chemistry,2011,59(6):2356-2361.
    [157]Zhao, J., Dixon, R.A. The 'ins' and 'outs' of flavonoid transport. Trends in plant science,2010,15(2): 72-80.
    [158]Arnold, K., Bordoli, L., Kopp, J., et al. The SWISS-MODEL workspace:a web-based environment for protein structure homology modelling. Bioinformatics,2006,22(2):195-201.
    [159]Calabrese, J.C., Jordan, D.B., Boodhoo, A., et al. Crystal structure of phenylalanine ammonia lyase: multiple helix dipoles implicated in catalysis. Biochemistry,2004,43(36):11403-11416.
    [160]Yano, J.K., Blasco, F., Li, H., et al. Preliminary characterization and crystal structure of a thermostable cytochrome P450 from Thermus thermophilus. Journal of Biological Chemistry,2003, 278(1):608-616.
    [161]Jiang, C., Schommer, C.K., Kim, S.Y., et al. Cloning and characterization of chalcone synthase from the moss, Physcomitrella patens. Phytochemistry,2006,67(23):2531-2540.
    [162]Niesbach-Klosgen, U., Barzen, E., Bernhardt, J., et al. Chalcone synthase genes in plants:a tool to study evolutionary relationships. Journal of molecular evolution,1987,26(3):213-225.
    [163]Debeaujon, I., Leon-Kloosterziel, K.M., Koornneef, M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant physiology,2000,122(2):403-414.
    [164]Kim, S.J., Kawaharada, C., Suzuki, T., et al. Effect of natural light periods on rutin, free amino acid and vitamin C contents in the sprouts of common(Fagopyrum esculentum Moench) and tartary (F. tataricum Gaertn.) buckwheats. Food Science and Technology Research,2006,12(3):199-205.
    [165]Suzuki, T., Honda, Y., Funatsuki, W., et al. Purification and characterization of flavonol 3-glucosidase, and its activity during ripening in tartary buckwheat seeds. Plant Science,2002,163(3):417-423.
    [166]K.rahl, M., Back, W., Zarnkow, M., et al. Determination of Optimised Malting Conditions for the Enrichment of Rutin, Vitexin and Orientin in Common Buckwheat(Fagopyrum esculentum Moench). Journal of the Institute of Brewing.2008,114(4):294-299.
    [167]杨文杰,吴燕民,唐益雄.大豆转录因子基因GmMYBJ6的表达及功能分析HEREDITAS (Beijing),2009,31(6):645-653.
    [168]陈鹏,张德玖,李玉红,等.水分胁迫对苦荞幼苗生理生化特性的影响.西北农业学报,2008, 17(5):204-207.
    [169]Liu, B., Zhu, Y. Extraction of flavonoids from flavonoid-rich parts in tartary buckwheat and identification of the main flavonoids. Journal of food engineering,2007,78(2):584-587.
    [170]K.reft, S., Strukelj, B., Gaberscik, A., et al. Rutin in buckwheat herbs grown at different UV-B radiation levels:comparison of two UV spectrophotometric and an HPLC method. Journal of experimental botany,2002,53(375):1801-1804.
    [171]梁滨,周青.UV-B辐射对植物类黄酮影响的研究进展.中国生态农业学报,2007,15(3):191-194.
    [172]彭坷珊,徐宣斌.干旱是西部地区生态系统受损的关键因素.石家庄经济学院学报,2002,25(3):257-261.
    [173]林植芳,林桂珠,彭长连,等.亚热带植物叶片UV-B吸收化合物的积累.生态学报,1998,18(1)90-95.
    [174]Yao, Y., Xuan, Z., He, Y., et al. Principal component analysis of intraspecific responses of tartary buckwheat to UV-B radiation under field conditions. Environmental and Experimental Botany,2007, 61(3):237-245.
    [175]战伟龑,邱念伟,赵方贵,等.盐和水分胁迫对不同荞麦品种生理特性的影响.中国农学通报,2009,25(17):129-132.
    [176]Lachmann, S., Adachi, T. Studies on the influence of photoperiod and temperature on floral traits in buckwheat(Fagopyrum esculentum Moench) under controlled stress conditions. Plant breeding,1990, 105(3):248-253.
    [177]强维亚,汤红官,侯宗东,等.增强UV-B辐射对大豆胚轴DNA损伤,修复和蛋白质含量的影响.生态学报,2004,24(4):852-856.
    [178]Janska, A., Marsik, P., Zelenkova, S., et al. Cold stress and acclimation-what is important for metabolic adjustment?. Plant Biology,2010,12(3):395-405.
    [179]Kakani, V.G., Reddy, K.R., Zhao, D., et al. Field crop responses to ultraviolet-B radiation:a review. Agricultural and Forest Meteorology,2003,120(1):191-218.
    [180]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展.海南大学学报:自然科学版,2003,21(2):177-182.
    [181]Scheidt, H.A., Pampel, A., Nissler, L., et al. Investigation of the membrane localization and distribution of flavonoids by high-resolution magic angle spinning NMR spectroscopy. Biochimica et Biophysica Acta (BBA)-Biomembranes,2004,1663(1):97-107.
    [182]Shohael, A.M., Ali, M.B., Yu, K.W., et al. Effect of temperature on secondary metabolites production and antioxidant enzyme activities in Eleutherococcus senticosus somatic embryos. Plant cell, tissue and organ culture,2006,85(2):219-228.
    [183]Martens, S., PreuB, A., Matern, U. Multifunctional flavonoid dioxygenases:Flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L. Phytochemistry,2010,71(10):1040-1049.
    [184]Irani, N.G., Hernandez, J.M., Grotewold, E. Chapter three Regulation of anthocyanin pigmentation. Recent Advances in Phytochemistry,2003,37:59-78.
    [185]Singh, K., Kumar, S., Rani, A., et al. Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Functional & integrative genomics,2009,9(1):125-134.
    [186]Ferreyra, M.L.F., Rius, S., Emiliani, J., et al. Cloning and characterization of a UV-B-inducible maize flavonol synthase. The Plant Journal,2010,62(1):77-91.
    [187]Shvarts, M., Borochov, A., Weiss, D. Low temperature enhances petunia flower pigmentation and induces chalcone synthase gene expression. Physiologia Plantarum,1997,99(1):67-72.
    [188]Agarwal, M., Hao, Y., Kapoor, A., et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. Journal of Biological Chemistry, 2006,281(49):37636-37645.
    [189]Zhu, J., Verslues, P.E., Zheng, X., et al. HOSI0 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proceedings of the National Academy of Sciences of the United States of America,2005,102(28):9966-9971.
    [190]Sheen, J. Feedback control of gene expression. Photosynthesis Research,1994,39(3):427-438.
    [191]荀琳,单志.生物化学实验.成都,西南交通大学出版社,2010.
    [192]Havir, E.A., Reid, P.D., Marsh Jr, H.V. L-Phenylalanine Ammonia-Lyase(Maize):Evidence for a Common Catalytic Site for L-Phenylalanine and L-Tyrosine 1. Plant physiology,1971,48(2):130-136.
    [193]Wellmann, F., Lukacin, R., Moriguchi, T., et al. Functional expression and mutational analysis of flavonol synthase from Citrus unshiu. European Journal of Biochemistry,2002,269(16):4134-4142.
    [194]Chua, C.S., Biermann, D., Goo, K.S., et al. Elucidation of active site residues of Arabidopsis thaliana flavonol synthase provides a molecular platform for engineering flavonols. Phytochemistry,2008, 69(1):66-75.
    [195]Macdonald, M.J., Dcunha, G.B. A modern view of phenylalanine ammonia lyase. Biochemistry and cell biology,2007,85(3):273-282.
    [196]Preuβ, A., Stracke, R., Weisshaar, B., et al. Arabidopsis thaliana expresses a second functional flavonol synthase. FEBS letters,2009,583(12):1981-1986.
    [197]Langer, B., Langer, M., Retey, J. Methylidene-imidazolone (MIO) from histidine and phenylalanine ammonia-lyase. Advances in protein chemistry,2001,58:175-214.
    [198]Owens, D.K., Alerding, A.B., Crosby, K.C., et al. Functional analysis of a predicted flavonol synthase gene family in Arabidopsis. Plant physiology,2008,147(3):1046-1061.
    [199]Wilmouth, R.C., Turnbull, J.J., Welford, R.W.D., et al. Structure and Mechanism of Anthocyanidin Synthase from Arabidopsis thaliana. Structure,2002,10(1):93-103.
    [200]Lu, B.B., Du, Z., Ding, R.X., et al. Cloning and Characterization of a Differentially Expressed Phenylalanine Ammonialyase Gene (liPAL) After Genome Duplication from Tetraploid Isatis indigotica Fort. Journal of Integrative Plant Biology,2006,48(12):1439-1449.
    [201]Bremer, B., Bremer, K., Heidari, N., et al. Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Molecular Phylogenetics and Evolution,2002,24(2):274-301.
    [202]Wang, Y., Chen, J.Y., Jiang, Y.M., et al. Cloning and expression analysis of phenylalanine ammonia-lyase in relation to chilling tolerance in harvested banana fruit. Postharvest biology and technology,2007,44(1):34-41.
    [203]Huang, J., Gu, M., Lai, Z., et al. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant physiology,2010,153(4): 1526-1538.
    [204]Butland, S.L., Chow, M.L., Ellis, B.E. A diverse family of phenylalanine ammonia-lyase genes expressed in pine trees and cell cultures. Plant Molecular Biology,1998,37(1):15-24.
    [205]Wanner, L.A., Li, G., Ware, D., et al. The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Molecular Biology,1995,27(2):327-338.
    [206]Xu, F., Cai, R., Cheng, S., et al. Molecular cloning, characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba. African Journal of Biotechnology,2010,7(6):721-729.
    [207]Sawant, S.V., Kiran, K., Singh, P.K., et al. Sequence architecture downstream of the initiator codon enhances gene expression and protein stability in plants. Plant physiology,2001,126(4):1630-1636.
    [208]Lutcke, H.A., Chow, K.C., Mickel, F.S., et al. Selection of AUG initiation codons differs in plants and animals. The EMBO journal,1987.6(1):43-48.
    [209]Khan, W., Prithiviraj, B., Smith, D.L. Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. Journal of plant physiology, 2003,160(8):859-863.
    [210]Rosler, J., Krekel, F., Amrhein, N., et al. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant physiology,1997,113(1):175-179.
    [211]李成磊,冯争艳,白悦辰,等.金荞麦苯丙氨酸解氨酶基因FdPAL的克隆及原核表达.中国中药杂志,2011,36(23):3238-3243.
    [212]Lukacin, R., Britsch, L. Identification of Strictly Conserved Histidine and Arginine Residues as Part of the Active Site in Petunia hybrida Flavanone 3β-Hydroxylase. European Journal of Biochemistry, 1997,249(3):748-757.
    [213]Pelletier, M.K., Burbulis, I.E., Winkel-Shirley, B. Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and end-products in Arabidopsis seedlings. Plant Molecular Biology,1999,40(1):45-54.
    [214]]Kim, B.G., Joe, E.J., Ahn, J.H. Molecular characterization of flavonol synthase from poplar and its application to the synthesis of 3-O-methylkaempferol. Biotechnology letters,2010,32(4):579-584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700