用户名: 密码: 验证码:
超级稻超高产的生理、形态特征及其途径
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以最新认定的超级杂交中籼稻品种为试验材料,一般产量的杂交中籼稻为对照,布点于江苏、安徽两省的不同生态区,研究超级稻的产量潜力、库容特征以及形态生理特性,在此基础上探索超高产栽培途径,旨在阐明超级稻超高产形成规律及其生理、形态基础,揭示超高产本质,提出超高产栽培途径,并明确进一步高产的调控方向,以期为超级稻育种与超高产栽培提供理论依据与实践指导。主要结果如下:
     1、超级稻最大库容可达870kg/667m2以上,实际产量可达750kg/667m2以上。超级稻群体颖花量增加直接导致产量的提升,超高产对应的群体颖花量为3500×104/667m2左右;穗、粒共同作用促进了群体颖花量的扩增,但对于不同产量等级,两者的贡献是不同的,从中产→高产,靠穗数和粒数的协同贡献(穗数的贡献率为47%、粒数为53%),从高产→超高产,主要依赖于穗型增大(粒数的贡献率78.8%,穗数为21.1%)。培育大穗是通过两种途径协调实现的:一是增加一次枝梗数及其上的平均着粒数;二是增加二次枝梗数并稳定二次枝梗上的平均着粒数,以后者为主。超级稻具有极强的颖花形成能力,同时还具有充实度高的优势,并集中体现在单穗重上(超级稻单穗重≥4.0g,比对照增加10.9%)。大穗和单穗重高是超级稻库容构成特点。
     2、超级稻干物质生长与积累具有明显优势,产量随成熟期物质积累量的增加而提高(r=0.886*,r0.05=0.811),而收获指数相对稳定在0.50-0.55的范围。超级稻的物质生长优势始于拔节期,并随生育进程而逐渐增强,开花以后群体生长率(CGR)明显提高,使得花后的干物质积累极显著提高;超级稻中后期群体叶面积指数(LAI)下降慢,显著提高了群体光合势(LAD);超级稻的叶面积指数(LAI)及群体光合势(LAD)的提高促进群体生长率(CGR)的显著提高,大田期平均群体生长率(CGR)比对照高出302.8g m-2·d-1。
     3、超级稻剑叶硝酸还原酶活性(NR)高,具有明显的N素吸收利用的优势,大田期N素吸收积累总量较对照增加11.3%。超级稻N素吸收利用优势始于拔节期,并随着生育进程而扩大,抽穗以后吸收N素能力显著高于对照,穗后25d以后仍具有一定的吸收能力(24g N·667m-2·d-1)。超级稻拔节~孕穗阶段对N吸收速率最强,平均为245.3gN·667m-2·d-1。花后吸收利用N素能力增强,提高了花后功能叶的含N率,减缓了叶面积的衰减,延长了的叶片光合功能期和高值持续期。适应超级稻后期氮代谢活跃、吸收量大的这种特性,超高产栽培更应注意增加其后期的N素供应。
     4、超级稻孕穗期群体最大叶面积指数达7.5—8.0,比对照提高3.4%,而且花后叶面积衰减慢,比较优势扩大,灌浆中期和成熟期分别比对照提高13.8%和16.9%。抽穗后功能叶光合色素含量提高,这可能与超级稻后期N吸收能力较强有关;整个灌浆期叶绿素Chla+b的含量均高于对照,而且Chla/b的值在灌浆早期明显低于对照,这是超级稻光合生理的一个明显特征指标。生育后期超级稻叶片超氧化物歧化酶(SOD)活性较高,清除氧自由基能力增强,减缓了叶片表面有害物质(MDA)的积累而延缓了叶片早衰。功能叶后期的净光合效率(Pn)有所提高,因而超级稻生育后期的叶源量(LSC)显著提高,群体光合生产能力也得以显著提高。
     5、超级稻具有与生理特性相协调的形态特征—理想的株形、优化的冠层结构及强劲稳健的支撑系
     (1)超级稻具有较为理想的株型剑叶适中短偏、倒2叶、倒3叶加长,功能叶叶长排列有序,宽而内卷,上三叶叶基角和披垂角小;叶干重和比叶重也明显提高,保证了叶形和叶姿的稳定;叶片形态指标随时间后移而与对照的比较优势扩大;良好的株型提高群体内部叶层透光率,降低了群体消光系数。据此提出了超级稻更高产的理性株型指标。
     (2)超级稻的冠层结构优化超级稻单茎最大叶面积达330—350cm2(比对照高出10%),其中高效叶面积占70%:基部叶片因为株型的改善,寿命延长,光合功能期增加26.6%。叶面积和干重均高于对照,花后下降平缓,与对照的比较优势随着时间而扩大,灌浆中后期比叶重(SLW)提高。茎秆基部节间短、而穗下节长,株高适度增加,为群体生物学产量的提高奠定形态基础,并优化了叶系配置。鞘包茎度高、鞘壁增厚,增粗了茎秆,且比较优势随时间的后移而扩大。明确了超级稻更高产的冠层形态指标。
     (3)超级稻具有结构与功能相协调的稳健支撑系抽穗期以后超级稻鞘和茎的干重均明显高于对照;花前储藏在茎、鞘中的干物质在灌浆过程中的输出以鞘为主,茎较稳定,鞘和茎的表观输出率分别为44.9%和14.3%,同比对照降低6个和5个百分点;但鞘输出量的绝对量超级稻高于对照。超级稻鞘和茎的充实度高,基部节间的充实度显著高于对照,且随着时间的后移比较优势加大;鞘的充实度高,有利于其上叶系面积和光合功能的稳定,也增强了包茎壮秆作用,是支撑系一个更为重要的构件。灌浆后期鞘的充实度及包茎度可以作为更高产超级稻选择的形态依据之一。稳健的支撑系既增强了承重、抗倒伏能力,又有利于后期光合功能的稳定提高,是超级稻最重要的形态生理特征。
     6、比较分析了不同栽培模式对产量形成及群体质量的影响,提出了“补偿”途径,并系统分析了补偿途径的栽培原理及增产机理。
     (1)通过基本苗和氮肥试验,探明了超级稻超高产的适宜群体起点结构为稀植适苗、适宜施氮量为17.5kg/667m2;通过途径试验并经示范验证,比较不同栽培途径对超级稻产量形成及群体质量的影响,提出了补偿超高产栽培途径。
     (2)阐述了补偿途径的栽培原理,揭示了补偿途径的增产机理,明确了“补偿”的核心意义在于“提高后期功能—补偿花后群体光合势”。
     对第三期超级稻(目标产量900kg/667m2)的产量构成、形态生理基础以及更高产的途径进行了讨论。
This research take middle-season indica super hybrid rice of new determination as experiment materials, and general yield level of middle-season hybrid rice as control, studied on the yield potential, characteristics of storage capacity, physiological and morphological characteristics in Anhui and Jiangsu province, further exploration of approaches for more higher grain yield, aimed at elucidating the physiological and morphological basis of formation regularity of super high-yielding, revealing the approaches for super high-yielding, discussing the regulating directions for more higher yield, provide theoretical basis for super rice breeding and super-high-yielding cultivation, and the results showed that:
     1. The gross storage capacity of super hybrid rice is above870kg/667m2,and the actual yield could reach over750kg/667m2.The higher number of population spikelets was a major and direct factor resulting in higher yield, and its corresponding population spikelets is about3500×104/667m2; Combined action of panicle and grain lead to increasing of population spikelets, however, the contribution of this two characters were different in different stage. From middle yield to high yield, panicles and grain numbers contribution were47%and53%, respectively, while, from high yield to super high yield is benefit from larger panicles based on enough panicle number, and the contribution of grain number and panicle number were78.8%and21.1%, respectively. The large panicle was constructed by means of two ways:the first increased the number of primary branches(PB) and its number of grain-setting per PB. The other, the number of secondary branch(SB) was enhanced based on the stable number of grain-setting per SB, in which, the increment of number of SB and total number of grain-setting per plant was a key measure. Super hybrid rice have higher spikelets forming ability, meanwhile, higher glumness is superiority, the centralized reflection is higher single panicle weight; The single panicle weight could be over4.0g,10.9%higher than control; Large panicle and higher single panicle weight are structure peculiarities of storage capacity of super hybrid rice.
     2. Super hybrid rice have significant superiority of dry matter accumulation, grain yield increased with increase of dry matter accumulation at maturity stage(r=0.886*, r0.05=0.811), while the range of harvest index is about0.5-0.55. Super hybrid rice have higher dry matter accumulation after jointing stage, and the growth rate(CGR) is increasing with the plant growth. After flowering stage, significant higher dry matter accumulated because of higher CGR than control. At the middle and later growth stage, leaf area index(LAI) decreased slowly, which lead to significant higher population leaf area duration(LAD). With the increasing of LAI and LAD, CGR increased significantly, the CGR is302.8g m-2·d-1higher than control in field period.
     3. Super hybrid rice had high activity of nitrate reductase(NR) and obvious advantages of nitrogen accumulation and utilization, the total amount of nitrogen absorption and accumulation was11.3%more than control. The advantages of nitrogen absorption and utilization of super hybrid rice started from jointing stage and enlarged with growing process, the nitrogen absorption ability of super hybrid rice after heading stage was significantly higher than control, after heading for25d, the rice plant still had certain ability of nitrogen absorption (24g N-667m-2·d-1). Super hybrid rice had the strongest nitrogen absorption efficiency (average at245.3g N·667m-2·d-1) during jointing-booting stage, which was significantly higher than control. The strong ability of nitrogen absorption and utilization after flowering stage increased the N content in functional leaves, slowed down the descending rate of leaf area and prolonged the photosynthetic function duration and high value duration of leaves. In order adapt to the characteristics of nitrogen active metabolism and large absorption amount in later growth stage of super hybrid rice, nitrogen supply should be increased in later stage for super-high-yielding cultivation.
     4. At booting stage, maximum population leaf area index could reach7.5-8.0, which increased3.4%than control, and the decrease of leaf area after flowering stage slowed down, increased the comparative advantages, at middle grain filling stage and maturity stage, the super hybrid rice had13.8%and16.9%higher LAI than control, respectively. The higher ability of nitrogen absorption is the possible reason of increasing of photosynthetic pigment content (PPC) in function leaf at the later growth stage. During grain filling stage, the content of chla+b is higher than control, and the ratio of chla/b is lower than control at early filling stage, this is a remarkable physiological characteristic of photosynthesis. At the later growth stage, super hybrid rice leaf had higher activities of superoxide dismutase, improved ability of scavenging oxygen free radicals in later stage, which decreased the content of malondialdehyde (MDA) and slowed down leaf presenility, improved the net photosynthetic rate of functional leaves in later stage, and the leaf source capacity increased significantly, so as to significantly improved the ability of photosynthetic production.
     5. Super hybrid rice had coordinated development of morphological characteristics and physiological characteristics:comparatively ideal plant type, optimized canopy structure, strong and stable supporting system.
     (1) Super hybrid rice has comparatively ideal plant type:flag leaf has moderate length or little short, longer length of top2nd and3rd leaf, orderly arrangement of function leaves, wide and involution, small basic angle and drooping angle of top three leaves; Dry matter weight of leaves and specific leaf weight is higher significantly, ensure the steady of leaf shape and leaf position; With the plant growth, compared with control, comparative superiority of morphological index is increasing. Good plant type could improve transmittance and decrease extinction coefficient of population. On the basis of above results, ideotype index for more higher grain yield was proposed.
     (2) Super hybrid rice has optimized canopy structure:the maximum leaf area index could reach330-350cm2per single-stem(10%higher than control), and70%of it is high effective leaf area; Photosynthetic function duration of bottom leaves is26.6%longer than control which caused by improved plant type; Leaf area and dry matter weight are all higher than control, and deceased gently, comparative superiority is increased with plant growth, special leaf weight increased at middle grain filling stage. Shorter basal internode, longer rachis internode, and little higher plant height are the morphological foundation of biological yield, and optimized the leaves structure and position; Higher leaf sheath phimosis degree, and thick wall of leaf sheath are the reasons of stem grow sturdily, and the degree increasing with plant growth; Make sure the index of canopy structure and morphological characteristics for more higher grain yield.
     (3) Super hybrid rice has strong supporting system:dry matter weight of leaf sheath and stem are higher than control significantly, at grain filling stage, the dry matter which stored in leaf sheath before flowering stage are transformed more than stored in stems, apparent export percentage of leaf sheath and stem are44.9%and14.3%, respectively, and6%and5%decreased than control. However, absolute amount of output from leaf sheath of super hybrid rice is higher than control. Meanwhile, the filling degree of basic internodes is higher than CK significantly, and the degree is increasing with plant growth, especially higher filling degree in leaf sheath is benefit to stabilized leaf area and photosynthetic function, it's a more important factor for supporting system. The filling and sheath phimosis degree of leaf sheath at the later grain filling stage could as the morphological index for more higher grain yield. Stabilized supporting system enhance the bearing ability and resistance to fracture, and it's benefit to improve the photosynthetic function at the later growth stage, that's the most important characteristics of super hybrid rice.
     6. It compares and analyzes the effect on yield formation and population quality of super hybrid rice in different cultivation patterns, and summarizes the approaches of compensated cultivation for super high yield, and analyzed cultivation principle and yield-increasing mechanism.
     (1) The suitable beginning population structure confirmed by experiments of seedlings and nitrogen management are follows:sparse planting and proper seedling number and the appropriate N level is17.5kg/667m2; By experiment demonstration and verification, the effects on yield formation and population quality in different cultivation patterns was compared, and bring compensated cultivation for super high yield.
     (2) It explained cultivation principle of compensated cultivation, revealed yield-increasing mechanism and expounded the core meaning of this approach is to compensate the population leaf area duration, improve the population function after flowering stage.
     Based on the3rd target yield(900kg/667m2) of super hybrid rice, yield components, physiological and morphological basis, and regulation approaches for getting more higher yield were discussed.
引文
[1]程式华主编.中国超级稻育种[M].2010年1月,北京:科学出版社
    [2]农业部科技与质量标准司.新世纪农业曙光计划—中国超级稻:背景、现状与展望[C].1996,北京:农业部科技与质量标准司
    [3]程式华,廖西元,闵绍楷.中国超级稻研究:背景、目标和有关问题的思考[J].中国稻米,1998,(1):1-3
    [4]陈温福,徐正进,张步龙,等.水稻超高产育种研究进展与前景[J]. 沈出农业大学学报,1998,29(2):101-105
    [5]青先国,王学华.超级稻研究的背景与进展[J].农业现代化研究2001,22(2):99—102
    [6]袁隆平.超级杂交稻的现状和展望[J].粮食科技与经济,2003,(1):2-3
    [7]邓华凤.长江流域超级杂交稻目标性状研究[D].湖南大学博士论文
    [8]陈温福,徐正进.水稻超高产育种理论与方法[M].北京:科学出版社,2008,31-33
    [9]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000,42-216
    [1]东正昭.日本水稻超高产育种的现状与今后的设想[J].徐进正译水稻文摘,1989:8(3):6-10.
    [2]高明君摘译.日本超高产水稻育种工程[J].世界农业,1986,(5):24-25
    [4]徐正进.日本水稻超高产育种新进展[J].中国农学通报,1991,7(2):43-46
    [5]陈温福,徐正进,张步龙,等.水稻超高产育种研究进展与前景[J].沈阳农业大学学报,1998,29(2):101-105
    [6]西山岩男.超高产水稻的开发及栽培生理特性[J].农业技术(日),1989,44:22-26
    [7]Khush G S. Prospects of and approaches to increasing the genetic yield potential of rice[A]. In "rice research in Asia, Progress and Priorities " [C].edited by R. E.venson. et al. CAB International and IRRI.1996,59-71
    [8]杨仁崔,杨惠杰.国际水稻研究所新株型稻研究进展[J].杂交水稻,1998,13(5):29-31
    [9]青先国,王学华.超级稻研究的背景与进展[J].农业现代化研究,2001,22(2):99-102
    [10]金田忠吉.应用粳籼杂交培育超高产水稻品种[J].国外农学—水稻.1987,(1):1-4
    [11]陈温福,徐正进,张龙步,等.水稻超高产育种研进展与前景[J],中国工程科学,2002,4(1):31-15
    [12]杨仁崔.IRRI超级稻研究进展[J].世界农业,2000(1):26-27
    [13]袁隆平.杂交水稻超高产育种[J].杂交水稻,1997,(6):1-6
    [14]吴长明,付秀林,等.水稻超高产育种研究与进展[J].吉林农业科学,1998, (3):]-4
    [15]周开达,马玉清,刘太清,等.杂交水稻亚种间重穗型组合选育——杂交水稻超高产育种的理论与实践[J].四川农业大学学报,1995,13(4):403-407
    [16]程式华,廖西元,闵绍楷.中国超级稻研究:背景、目标和有关问题的思考[J].中国稻米,1998,(1):1-3
    [17]农业部科技与质量标准司.新世纪农业曙光计划—中国超级稻:背景、现状与展望[M].1996,北京:农业部科技与质量标准司
    [18]袁隆平,马国辉.超级杂交稻亩产800kg关键技术[M].中国三峡出版社,2006,11
    [19]陈友订.广东省超级稻育种研究进展与展望[J].广东农业科学,2005,(1):12-15
    [20]艾治勇.超级杂交稻形态及生理特性与抗倒性的关系研究[D].硕士论文,湖南农业大学农学院,2006.
    [21]谢华安.中国特别是福建超级稻研究进展[J].中国稻米,2004,2:7-10.
    [22]邹应斌.水稻超高产栽培的理论与技术策略—兼论壮秆重穗栽培法[J].农业现代研究,1997,18(1):30-34
    [23]黄仲青,李奕松.关于水稻“四少四高”栽培模式的探讨[A].水稻高产理论与实践论文集[C].北京:中国农业出版社,1994:127-130.
    [24]蒋彭炎,冯来定,史济林,等.水稻三高一稳栽培法的理论与技术[J].山东农业大学学报,1992,23(增刊):18-24.
    [25]凌启鸿.稻作新理论—水稻叶龄模式栽培[M].科学出版社,1994.
    [26]徐正进,孙晓杰,中崎铁也,等.日本超高产水稻的形态生理特点及其与物质生长的关系[J].沈阳农业大学学报,1991,22(增刊):33-34
    [27]刘建丰,袁隆平,邓启云,等.超高产杂交稻的光合特性研究[J].中国农业科学,2005,38(2):258-264
    [28]吴文革,张洪程,吴桂成,等.超级稻群体籽粒库容特征的初步研究[J].中国农业科学,2007,40(2):250-257
    [29]佐藤尚雄(日).水稻超高产育种研究[J].国外农学水稻,1984(2):1-16
    [30]Sheehy J E, Dionora M J A, Mitchell P L. Spikelet numbers, sink size and potential yield in rice[J]. Field Crops Research,2001,7:77-85.
    [31]Ying J F, Peng S B, HeQR, Yang H, Yang C D, Visperas R M, Cassman K G. Comparison of high-yield in tropical and subtropical environments I. Determinants of grain and dry matter yields[J]. Field Crops Research,1998,57:71-84
    [32]姚立生,高恒广,杨立彬,何顺椹,顾根宝,孙明法,顾来顺.江苏省五十年代以来中籼稻品种产量及有关性状的演变[J].江苏农业学报,1990,6(3):38-44.
    [33]戚昌瀚.水稻品种的源库关系与调节对策简论[J].江西农业大学学报,1993,15(1):1-5
    [34]黄育民,陈启锋,李义珍.我国水稻品种改良过程库源特征的变化[J].福建农业大学学报,1998,27(3):271-278.
    [35]谢华安,王乌齐,杨惠杰,等.杂交水稻超高产特性研究[J].福建农业学报,2003,18(4):201-204.
    [36]杨惠杰,杨仁崔,李义珍,姜照伟,郑景生.水稻超高产品种的产量潜力及产量构成因素分析[J].福建农业学报,2000,15(3):1-8.
    [37]杨建昌,杜永,吴长付,刘立军,王志琴,朱庆森.超高产粳型水稻生长发育特性的研究[J].中国农业科学,2006,39(7):1336-1345.
    [38]马均,朱庆森,马文波,等.重穗型水稻光合作用、物质积累与运转的研究[J].中国农业科学,2003,36(4):375-381.
    [39]陈温福,徐正进,张龙步,等.水稻超高产育种研究进展与前景[J].中国工程科学,2002,4(1):31-35
    [40]高佩文.水稻理想株型的研究和发展[J].辽宁农业科学,1986,2:51-54
    [41]徐正进,陈温福,张龙步等.水稻高产品种物质生长分析[A].见:高佩文,谈松主编.水稻高产理论与实践[C].北京:中国农业出版社,1994.64-72
    [42]杨建昌,苏宝林,_王志琴,等.亚种间杂交稻籽粒灌浆特性及其生理的研究[J].中国农业科学,1998,31(1):7-14
    [43]Ying Jifeng,Peng Shaobing,He Qingrui,et al.Comparison of high-yield rice in tropical and subtropical environments. I. Determinants of grain and dry matter yields [A]. In:Field Crops Research[C]. Los Banos, Philippines:IRRI,1998.1-14
    [44]吴文革,张洪程,钱银飞,等.超级杂交中籼水稻物质生长特性分析[J].中国水稻科学,2007,21(3):287-293.
    [45]刘建丰,袁隆平,邓启云,等.超高产杂交稻的光合特性研究[J].中国农业科学2005,38(2):258-264
    [46]杨惠杰,李义珍,杨仁崔,等.超高产水稻的干物质生长特性研究[J].中国水稻科学,200115(4):265-270
    [47]吴桂成,张洪程,戴其根,等.南方粳型超级稻物质生长积累及超高产特征研究[J].作物学报,2010,36(11):1921-1930
    [48]蔡建中,王余龙,何杰升,等.水稻产量构成因素与群体干物质生长的关系及其对产量的影响[J]江苏农学院学报,1989,10(4):9-12
    [49]蒋彭炎,洪晓富,徐志福.超级稻的栽培特性与调控途径[J].浙江农业学报,2001,13(3):117-124.
    [50]张洪松,岩田忠寿.粳型杂交稻与常规稻的物质生长及营养特性的比较[J].西南农业学报,1995,8(4):11-16.
    [51]西山岩男.日本高产水稻品种的生理特性[J].中国水稻研究所:灌溉稻研究进展和前景.杭州:中国水稻研究所,1988,105-114.
    [52]刘军,余铁桥.大穗型水稻超高产产量形成特点及物质生长分析[J].湖南农业大学学报,1998,24(1):1-5
    [53]杨建昌,杜永,吴长付,等.超高产粳型水稻生长发育特性的研究[J].中国农业科学,2006,39(7):1336-1345.
    [54]史鸿儒,张文忠,解文孝,杨庆,张振宇,韩亚东,徐正进,陈温福.不同氮肥施用模式下北方粳型超级稻物质生长特性分析[J].作物学报,2008,34(11):1985-1993.
    [55]吴桂成,张洪程,戴其根,等.南方粳型超级稻物质生长积累及超高产特征研究[J].作物学报,2010,36(11):1921-1930
    [56]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993,26(6):1-11.
    [57]金继运.化肥在农业生产中的作用和展望[J].作物杂志,1997,(2):5-9
    [58]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000,42-216
    [59]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12):2457-2467.
    [60]吴文革,张洪程,陈烨,等.超级中籼杂交水稻氮素积累利用特性与物质生长[J].作物学报,2008,34(6):1060-1068.
    [61]杜永,刘辉,杨成,等.超高产栽培迟熟中粳稻养分吸收特点的研究[J].作物学报,2007,33(2):208-215.
    [62]陈进红,郭恒德,毛国娟,等.杂交粳稻超高产群体干物质生长及养分吸收利用特点[J].中国水稻科学,2001,15(4):271-275
    [63]杨建昌,王志琴,朱庆森.水稻产量源库关系的研究[J].江苏农学院学报,1993,14(3):47-53.
    [64]Wada W, Wada G. Varietal difference in leaf senescence during ripening period of advanced Indica rice [J]. Japan J Crop Science,1991,60(4):529-536.
    [65]单玉华,王海候,龙银成,等.不同库容量类型水稻在氮素吸收利用上的差异[J].扬州大学学报(农业与生命科学版),2004,25(1):41-45.
    [66]马国胜,薛吉全,路海东.不同类型饲用玉米品种干物质的积累与运转规律研究[J].玉米科学,2005,13(4):66-69.
    [67]宋海星,李生秀.玉米生长量、养分吸收量及氮肥利用率的动态变化[J].中国农业科学,2003,36(1):71-76.
    [68]杨益花,张亚洁,苏祖芳.施氮量对杂交水稻产量构成因素和干物质积累的影响[J].天津农学院学报,2005,12(1):5-8,30.
    [69]陈鸿飞,杨东,梁义元,等.头季稻氮肥运筹对再生稻干物质积累、产量及氮素利用率的影响[J].中国生态农业学报,2010,12(1):5-8,30.
    [70]程建峰,蒋海燕,潘晓云,等.施氮量对不同氮效率水稻花后干物质和氮积累与转运的影响[J].中 国农学通报,2010,26(6):150-156.
    [71]Evans R J. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.)[J]. PlantPhysiol,1983,72(2):297-302.
    [72]王强.光、氮及其互作对水稻物质生长和氮效率的影响[D].硕士论文,华中农业大学,2006.
    [73]关义新, 林葆,凌碧莹.光氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响[J].植物营养与肥料学报,2000,6(2):152-158.
    [74]云菲,刘国顺,史宏志,等.光氮互作对烤烟光合作用及叶绿素荧光特性的影响[J].中国农业科学,2010,43(5):932-941.
    [75]云菲,刘国顺,史宏志.光氮互作对烟草气体交换和部分碳氮代谢酶活性及品质的影响[J].作物学报,2010,36(3):508-516.
    [76]李宪利,高东升,顾曼如,等.铵态和硝态氮对苹果植株SOD和POD活性的影响[J].植物生理学通讯,1997,33(4):254-256.
    [77]张智猛,戴良香,胡昌浩,等.氮素对不同类型玉米蛋白质及其组分和相关酶活性的影响[J].植物营养与肥料学报,2005,11(3):320-326.
    [78]Huang Z A, Jiang D A, Yang Y, et al. Effects of nitrogen deficiency on gas exchange, chlorophy Ⅱ fluorescence, and antioxidiant enzymes in leaves of rice[J]. Plants Photosynthetica,2004, 42(3):357-364.
    [79]Zhang X C, Shang-Guan Z P. Nitrogen regulatory mechanism in leaf membranes superoxidize of different drought reisistance ability winter wheat[J]. Plant Nutr Fert Sci,2007,13(1):106-112.
    [80]Saneoka H, Moghaieb R E A, Premachandra G S, Fujita K. Nitrogen nutrition and water stress effects on cell membrance stability and leaf water relation in Agrostis palustris Huds[J]. Environ Exp Bot,2004,52:131-138.
    [81]Watson D J. Comparative physiological studies on the growth of field crops[J]. A nn Bot N S,1947, 11:375-407
    [82]Evans L T, Dunstone R L. Some physiological aspects of evolution in wheat [J]. Aust J Biol Sci, 1970,23:725-741
    [83]Ishi, Y. Physiology of the rice plant. [J]. Adv Agron.1971,23:241-315.
    [84]刘军,余铁桥.大穗型水稻超高产产量形成特点及物质生长分析[J].湖南农业大学学报,1998,24(1):1-5
    [85]程式华,曹立勇,陈深广,等.后期功能型超级稻的概念及生物学意义[J].中国水稻科学,2005,19(3):280-284.
    [86]刘建丰,袁隆平,邓启云,等.超高产杂交稻的光合特性研究[J].中国农业科学,2005,38(2):258-264.
    [87]姚克敏,皱江石,王志南,等.两系杂交稻组合两优培九和65396的光合形态特征研究[J].杂交水稻,1999,14(5):35-38.
    [88]严斧,李悦丰,卓儒洞.两系组合两优培九与三系组合Ⅱ优58后期光合生产特性比较研究[J].杂交水稻,2001,16(1):51-54.
    [89]翟虎渠,曹树青,万建民,等.超高产杂交稻灌浆期光合功能与产量的关系[J].中国科学(C辑),2002,32(3):211-217
    [90]李霞,焦德茂.超级杂交稻两优培九的光合作用特性[J].江苏农业学报,2002,18(1):9-13.
    [91]焦德茂,李霞,黄雪青,等.不同高产品种后期早衰与光抑制、光氧化之间的关系[J].中国农业科学,2002,35(5):487-492.
    [92]王强,卢从明,张其德,等.超高产杂交稻两优培九的光合作用、光抑制和C4途径酶特性[J].中国科学(C辑),2002,32(6):482-487.
    [93]王荣富,张云华,焦德茂,等.超级杂交稻两优培九及其亲本生育后期的光抑制和早衰特性[J].作物学报,2004,30(4):393-397.
    [94]欧志英,彭长连,林桂株.超高产水稻培矮64S/E32及其亲本叶片的光氧化特性和遗传特点[J].作物学报,2004,30(4):308-314.
    [95]朱庆森,张祖建,杨建昌,等.亚种间杂交稻产量源库特征[J].中国农业科学,1997,3:53-59
    [96]Chaoui A, M azhoudi S, Ghorbal M H. Cadmium and Zinc Induction of Lipid Peroxidation and Effects on Antioxidant Enzyme Activities in Bean[J]. Plant Sci,1997,127:139-147.
    [97]张荣铣,程在全,方志伟,等.关于小麦叶片光合速率高值持续期的初步研究[J].南京师范大学学报,1992,15(增刊):76-86
    [98]Elmore CD. The paradox of no correlation between leaf photosynthetic rates and crop yields[A]. In: Hesketh JD, Jones JW, editors. Predicting photosynthesis for ecosystem models[C].Vol.11.Boca Raton, Fla. (USA):CRC Press.1980,155-167.
    [99]Gupta US, Olugbemi LB. Improving photosynthetic efficiency of crops[A]. In:Gupta US, editor. Progress in crop physiology[C]. New Delhi (India):Oxford &IBH Publishing Co. PVT. LTD.1988, 189-238.
    [100]Carlos A., et al. carbon metabolism[A]. In"Biochemical Basis of Plant Breeding" [C].CRC press, INC. Florida.1985,51-68.
    [101]Evans LT. Raising the ceiling to yield:the key role of synergisms between agronomy and plant breeding[A]. In:Muralidharan K, Siddiq EA, editors. New frontiers in rice research[C]. Hyderabad (India):Directorate of Rice Research.1990:13-107.
    [102]刘振业,刘贞琦.光合作用的遗传及其在育种中应用研究进展[A],见:刘后利主编,作物育种研究与进展[C],北京:农业出版社,1993,168-183.
    [103]Peng S.Sheehy, JE.Mitchell PL., and Hardy B. Editors. Redesigning rice Photosynthesis to increase yield [A]. Proceedings of the workshop on The Quest to Reduce Hunger:Redesigning Rice Photosynthesis[C].30 Nov-3 Dec.1999, Los Banos, Philippines. City (Philippines):International Rice Research Institute and Amsterdam (The Netherlands):Elsevier Science B. V.2000,213-224.
    [104]曹树青,翟虎渠,张红生,张荣铣.不同类型水稻品种叶源量及有关光合生理指标的研究[J].中国水稻科学,1999,13(2):91-94
    [105]严进明,翟虎渠,等.重穗型杂种稻光合作用和光合产物运转特性研究[J].作物学报,2001,27(2):261-266
    [106]刘贞琦,刘振业,曾淑芬,等.水稻某些光合生理特性的研究[J].中国农业科学,1982,(5):33-39
    [107]刘贞琦,刘振业,马达鹏,等.水稻叶绿素含量及其与光合速率的研究[J].作物学报,1984,10(1):57-62
    [108]张龙步,王进民,董克,等.水稻群体特性与产量相关性研究[J].沈阳农业大学学报(增刊),1991,(22):45-52.
    [109]陆定志,潘裕才,马跃芳,等.杂交水稻抽穗结实期间叶片衰老的生理生化研究[J].中国农业科学,1988,21(3):21-26.
    [110]王丹英,章秀福,邵国胜,等.不同叶色水稻叶片的衰老及对光强的响应[J].中国水稻科学,2008,22(1):77-81.
    [111]Martin C, Thimann K V. The role of protein synthesis in the senescence of leaves[J]. Plant Physiol, 1972,49 (1):64-71.
    [112]林植芳,李双顺,林桂珠,等.水稻叶片的衰老与超氧化物歧化酶活性及脂质过氧化作用的关系[J].植物学报,1984,26(6):605-615.
    [113]李名迪,魏冬,颜满莲,等.水稻叶片的活性氧代谢及衰老调控[J].江西农业学报,2005,17 (4):112-116.
    [114]华春,王仁雷.杂交稻及其三系叶片衰老过程中SOD、CAT活性和MDA含量的变化[J].西北植物学报,2003,23(3):406-409.
    [115]Donald C M. The breeding of crop ideotype[J]. Euphytica,1968,17:385-403.
    [116]松岛省三.水稻栽培新技术[M].吉林:吉林人民出版社,1973:20-30.
    [117]田中市郎.超多收水稻开发现状展望[J].农业及园艺,1984,59(1):155-160
    [118]杨守仁.水稻株形研究进展[J].作物研究,1982,8(3):205-209.
    [119]陈温福,徐正进,张龙步.水稻超高产育种生理基础[M].沈阳:辽宁科学技术出版社,1995
    [120]Yuan L-P(袁隆平).Hybrid rice breeding for supper high yield[J]. Hybrid Rice(杂交水稻),1997,12(6):1-6.
    [121]周开达,刘太清.亚种间重穗型杂交稻研究[[J].中国农业科学,1997,30(5):91-93
    [122]杨仁崔,杨惠杰.国际水稻研究所新株型稻研究进展[J].杂交水稻,1998,13(S):29—31.
    [123]程式华,曹立勇,陈深广,等.后期功能型超级杂交稻的概念及生物学意义[J].中国水稻科学,2005,19(3):280—284
    [124]程式华主编,中国超级稻育种[M],2010,北京:科学出版社.
    [125]松岛省三.水稻栽培新技术[M].吉林人民出版社,1973
    [126]杨守仁,张龙步,陈温福,等.水稻理想株型育种的基础研究及其与国内外同类研究的比较[J].沈阳农业大学学报,1991,22(增刊):1-5
    [127]杨守仁,张龙步,陈温福,等.水稻超高产育种的理论与方法[J].中国水稻科学,1996,10(2):115-120
    [128]万安良,钟永模.水稻品种叶面积与穗重关系的研究[J].中国农业科学,1981,(6):21-28
    [129]张声涵,雷雪方,朱普年.水稻穗重高产育种的效应研究[J].江西农业大学学报,1995,17(4):386-389
    [130]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993,36(6):1-11
    [131]凌启鸿等.IR24大面积高产栽培技术途径[J].江苏农业科学,1982,(9):1-10
    [132]苏祖芳,郭宏文,李永丰,等.水稻群体叶面积动态类型的研究[J].中国农业科学,1994,27(4):23-30
    [133]杨建昌,朱庆林,曹显祖.水稻群体冠层结构与光合特性对产量形成作用的研究[J].中国农业科学,1992,25(4):7-14
    [134]周开达,马玉清,刘清,等.杂交水稻亚种间重穗型组合的选育——杂交水稻超高产育种的理论与实践[J].四川农业大学学报,1995,13(4):403-407
    [135]袁隆平.从育种角度展望我国水稻的增产潜力[J].杂交水稻,1996,(4):1-2
    [136]程式华,翟虎渠.水稻亚种间超高产杂交组合若干株型因子的比较[J].作物学报,2000,26(6):713-718.
    [137]胡延吉,兰进好,赵坦方,等.不同穗型的两个冬小麦品种冠层结构及光合特性的研究[J].作物学报,2000,26(6):905-912
    [138]Murata, Y. Studies on the photosynthesis of rice plant and culture significance[J]. Bull.Nati.Inst.Agri.Sci.1961:1-169
    [139]程式华,黄超武.华南地区水稻品种发展中产量及有关性状的演变研究[J].华南农业大学学报,1988,9(1):17-29
    [140]姚立生,高恒广,杨立彬,等.江苏省五十年代以来中籼稻品种产量及有关性状的演变[J].江苏农业学报,1990,6(3):38-44
    [141]黄育民,陈启锋,李义珍.我国水稻品种改良过程库源特征的变化[J].福建农业大学学报,1998, 27(3):271-278
    [142]吕川根,谷福林,邹江石,等.水稻理想株型品种的生产潜力及相关特性研究[J].中国农业科学,24(5):15-22
    [143]杨从党,袁平荣,周能,等.叶型特征与产量构成因素的相关分析[J].中国水稻科学,2001,15(1):70-72
    [144]徐正进,孙晓杰,中崎铁也,等.日本超高产水稻品种的形态生理特点及其与物质生长的关系[J].沈阳农业大学学报,1991,22(增刊):34-44
    [145]翁仁宪,武田友四郎,县和一,等.日本作物学会纪事[C],1982,51(4):500-509
    [146]Tsunoda, S. A developmental analysis of yielding ability in varieties of field crops (II) [J]. Japan J. Breeding,1959,9 (4):237-244
    [147]Tsunoda.S. A developmental analysis of yielding ability in varieties of field crops[J]. Japan J. Breeding.1959, (2-3):161-168
    [148]Tsunoda, S., et al. Biology of Rice[M]. Tokyo. Japan Sci. Soc. Press,1984,89-115
    [149]蒋彭炎.水稻高产栽培新技术[J].浙江科技出版社,1992
    [150]Venkateswalu. Source-sink relationships in crop plants[J]. IRPS,1987, (25):115-113
    [151]陈温福,徐正进,张龙步.水稻超高产育种生理基础[M].辽宁科学技术出版社,1995
    [152]刘振业,刘贞琦.光合作用的遗传与育种[J].贵州人民出版社,1984,169-249
    [153]徐正进,张龙步,陈温福,等.从日本超高产品种(系)的选育看粳稻高产的方向[J].沈阳农业大学学报,1991,22(增刊):27-33
    [154]曾世雄.水稻品种间性状优势强度关联性的初步分析[J].作物学报,1983,9(2):73-78
    [155]陈温福,徐正进,张龙步.水稻理想株型的研究[J].沈阳农业大学学报,1989,20(4):417-420
    [156]黑田荣喜,大川泰一郎,石原邦.日本作物学会纪要[C],1989,58(3):374-382
    [157]孙旭初.籼稻主要经济性状在杂种后代F2-F5中相关怀的研究[J].作物学报,1982,8(3):211-214
    [158]李日志,姜文正,汪新民.水稻早籼品种遗传参数的研究[J].遗传,1980,2(1):13-16
    [159]马景勇,邹信康,邢桂玲,等.水稻数量性状的相关和单株产量的选择指数[J].吉林农业科学1993,(4):21-24
    [160]蒋开锋,郑家奎,文宏灿.杂交早稻主要性状分析及高产育种探索[J].四川农业大学学报,1996,14(2):162-166
    [161]Newton, J.et al. The peneration of solar radiation through leaf canopies of different structure[J]. Ann.Bot,1970,334:329-348.
    [162]陈温福,徐正进,张龙步,等.不同株型粳稻品种的冠层特征和物质生长关系的研究[J].中国水稻科学,1991,5(2):67-71
    [163]孙旭初.水稻茎秆抗倒性研究[J].中国农业科学,1987,20(4):32-37
    [164]Yuan Long ping. Super hybrid rice[J] CRRN,2000,8 (1):13-15
    [165]杨守仁.水稻超高产育种新动向—理想株型与有利优势相结合[J].沈阳农业大学学报,1987,18(1):1-5
    [166]Yoshida, S. Physiological Aspect of Grain Yield[J]. Ann. Rev. Plant Physiology,1972,23:437-464
    [167]Seko, H. Studies on Lodging in rice plants[J]. Bull. Kyushu Agri.Expt.Ctn,1962,7:419-499
    [168]B.S.维加拉.热带水稻品种的适应性及增产能力方面的生态学和遗传学知识(水稻育种译文集)[M].上海人民出版社,1975:1-29
    [169]Hoshikawa, K. The Growing Rice Plant[J]. Nosan Gyoson Bunka Kyokai.Tokyo,1989
    [170]张忠旭,陈温福,杨振玉,等.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响[J].沈阳农业大学学报,1999,30(2):81-85
    [171]宫坂昭,高屋武彦.日本犒赏学会纪事[C],1982,51(3):360-368
    [172]高屋武彦,宫坂昭.日本作物学会纪事[C],1983,52(1):7-14
    [173]大川泰一郎,石原邦.日本作物学会纪事[C],1992,61(3):419-425
    [174]天野高久,朱庆林,王余龙.日本作物学会纪事[C],1993,62(2):275-281
    [175]松岛省三著.实用水稻栽培[M].秦玉田,缪世才译.北京:农业出版社,1984.168-210
    [176]松岛省三.稻作(?)改善(?)技术[M].日本养贤堂.1973
    [177]村田吉男等著.作物的光合作用与生态--作物生产的理论与技术[M].吴尧鹏等译.上海科技出版社,1982:272
    [178]角田重三郎等.稻的生物学[M].闵绍楷等译.北京:农业出版社,1989:158-159
    [179]凌启鸿,苏祖芳,张洪程等.水稻品种不同生育类型的叶龄途径[J].中国农业科学,1983,(1):9-18
    [180]凌启鸿主编.水稻群体质量理论与实践[M].北京:中国农业出版社,1995
    [181]蒋彭炎等.水稻高产新技术——稀少平栽培法的原理与应用[M].杭州:浙江科技出版社,1989
    [182]蒋彭炎等.论水稻“三高一稳栽培法”[J].山东农业大学学报,1992,32(增刊):18-24
    [183]陈周前,吴文革.水稻稀长大栽培技术研究[J].安徽农业科学,1997,25(1):35-38,94
    [184]邹应斌,黄见良,屠乃美,等.“旺壮重”栽培对双季杂交稻产量形成及生理特性的影响[J].作物学报,2001,27(3):344-350.
    [185]屠乃美,李合松,黄见良,等.双季稻旺壮重栽培法的理论与技术邹应斌[J].湖南农业大学学报,2000,26(4):241-244
    [186]马国辉,刘朝友.培矮64S/E32的超高产特性及栽培技术初探[J].杂交水稻,2000,15(5):25-28
    [187]马均,陶诗顺.杂交中稻超多蘖壮秧超稀高产栽培技术研究[J].中国农业科学,2002,35(1):42-48.
    [188]陶诗顺,马均等.杂交中稻超多蘖壮秧稀植栽培高产原理探讨[J].西南农业学报,1998,11(3):37-45
    [189]郑家国姜心禄.水稻超高产的突破技术——强化栽培[J].四川粮油科技,2003,20(2):8-9
    [190]袁隆平.水稻强化栽培体系[J].杂交水稻,2001,16(4):1-3
    [191]金学泳,金正勋,孙滔,商文楠,李殿平,徐凤花.寒地水稻三超栽培技术研究[J].中国农学通报,2005,21(4):136-141.
    [192]王松良,林文雄.水稻旱育稀植高产机理和调控技术I.水稻旱育稀植高产机理研究进展与展望[J].福建农业大学学报,1999,28(1):12-17
    [193]许哲鹤,金熙镛.水稻“三早栽培”研究报告Ⅰ.早熟品种高产途径的探讨[J].吉林农业科学,1986,(4):31-36
    [194]金玉女,赵士龙.水稻大养稀栽培施氮肥效应研究初报[J].吉林农业科学,1991,(4):50-54
    [195]金玉女,田奉俊,赵世龙,等.水稻大养稀栽培分蘖发育特性的研究[J].延边大学农学学报,1998,20(4):258-262
    [196]王贵江,于良斌,宋福金.水稻单本植栽培法的群体结构及生理指标研究[J].黑龙江农业科学,2002,(3):8-10
    [197]吴文革,孔令娟,杨惠成,等.双季北缘地区水稻补偿超高产栽培研究[J].安徽农学通报,2006,12(11):121-128
    [198]吴文革,张健美.杂交中籼水稻机插“平衡栽培”技术研究[J].中国稻米,2009(05):32-37
    [1]程式华主编.中国超级稻育种[M].2010年1月,北京:科学出版社
    [2]Peng S, Gassman K. G, Virmani S S,Sheehy J, Khush G S. Yield potential trends of tropical rice since release of IR8 and the challenge of increasing rice yield potential[J].Crop Science,1999,39: 1552-1559.
    [3]凌启鸿,张洪程,丁艳锋,等.水稻高产技术的新发展—精确定量栽培[J].中国稻米,2005,1:3-7.
    [4]程式华,廖西元,闵绍楷.中国超级稻研究:背景、目标和有关问题的思考[J].中国稻米,1998,1:3-5.
    [5]袁隆平.超级杂交稻的现状和展望[J].粮食科技与经济,2003,(1):2-3
    [6]袁隆平.实施超级杂交稻“种三产四”丰产工程的建议[J].杂交水稻,2007,22(4):1
    [7]杨仁崔,杨惠杰.国际水稻研究所新株型稻研究进展[J].杂交水稻,1998,13(5):29-31.
    [8]徐正进,张龙步,陈温福,等.从日本超高产品种(系)的选育看粳稻高产的方向[J].沈阳农业大学学报,1991,22(增刊):27-33
    [9]Mark C. Concepts and strategies for plant adaptation research in rainfed lowland rice[J]. Field Crops Research,1999,64:13-34
    [10]杨守仁,张龙步,陈温福,等.水稻超高产育种理论和方法[J].中国水稻科学,1996,10(2):115-120.
    [11]黄耀祥,林青山.水稻超高产、特优质株型模式的构想和育种实践[J].广东农业科学,1994,4:1-6.
    [12]周开达,汪旭东,李仕贵,等.亚种间重穗型杂交稻研究[J].中国农业科学,1997,30(5):
    [13]袁隆平.杂交水稻超高产育种[J].杂交水稻,1997,12(6):1-3.
    [14]程式华,曹立勇,陈深广,等.后期功能型超级杂交稻的概念及生物学意义[J].中国水稻科学,2005,19:280-284.
    [15]张洪程,严宏生,苏祖芳,吴志光.水稻高效栽培株型的研究[A].见:凌启鸿主编.稻麦研究新进展 [C].南京:东南大学出版社,1999:99-106.
    [16]谢华安,王乌齐,杨惠杰,等.杂交水稻超高产特性研究[J].福建农业学报,2003,18(4):201-204.
    [17]杨惠杰,李义珍,杨仁崔,等.超高产水稻的干物质生长特性研究[J].中国水稻科学,200115(4):265-270.
    [18]杨建昌,杜永,吴长付,等.超高产粳型水稻生长发育特性的研究[J].中国农业科学,2006,
    39(7):1336-1345.
    [19]谢华安.中国种植面积最大的水稻良种“汕优63”Ⅲ—光合特性与光能利用率[J].福建省农科院学报,1997,12(2):1-5
    [20]Ying J F, Peng S B, He Q R, etal. Comparison of high-yield in tropical and subtropical environments Ⅰ Determinants of grain and dry matter yields[J]. Field Crops Research,1998,57:71-84
    [21]Mohapatra P K, Sahu S K. Heterogeneity of primary branch development and spikelet survival in rice in relation to assimilates of primarybranches[J]. Journal of Experimental Botany.1991,42(Abstract)
    [22]高良艳,周鸿飞.水稻产量构成因素与产量的分析[J].辽宁农业科学,2007(1):26-28
    [23]邹江石,吕川根,王才林,等.两系杂交稻“两优培九”选育及栽培特性初步研究[J].中国农业科学,2003,36(8):869-872
    [24]吴文革,吴桂成,杨联松,等.超级稻Ⅲ优98的产量构成与物质生长特性研究[J].扬州大学学报(农业与生命科学版),2006,27(2):11-15
    [25]张洪程,王夫玉.中国水稻群体研究进展[J].中国水稻科学,2001,15(1):51-56
    [26]S. Ramasamy, H.F.M. ten Berge and S. Purushothaman. Yield formation in rice in response to drainage and nitrogen application[J].Field Crops Research,1997,51, (1):65-82
    [27]Jifeng Ying, Shaobing Peng, Qingrui He, etal. Visperas and Kenneth G. Cassman. Comparison of high-yield rice in tropical and subtropical environments:Ⅰ. Determinants of grain and dry matter yields[J]. Field Crops Research,1998,57(1):71-84
    [28]J. E. Sheehy, M. J. A. Dionora and P. L. Mitchell.Spikelet numbers, sink size and potential yield in rice[J]. Field Crops Research,2001,7 (2):77-85
    [29]Hiroe Yoshida, Takeshi Horie, Tatsuhiko Shiraiwa. A model explaining genotypic and environmental variation of rice spikelet number per unit area measured by cross-locational experiments in Asia[J]. Field Crops Research 2006 (97):337-343
    [30]姚立生,高恒广,杨立彬,等.江苏省五十年代以来中籼稻品种产量及性状的演变[J].江苏农业学报,1990,6(3):38-44
    [31]黄育民,陈启锋,李义珍.我国水稻品种改良过程库源特征的变化[J].福建农业大学学报,1998,27(3):271-278
    [32]杨惠杰,杨仁崔,李义珍,等.水稻超高产品种的产量潜力及产量构成因素分析[J].福建农业学报,2000,15(3):1-8
    [1]Evans L T. Morphological and physiological changes among rice varieties used in the Philippines over the seventy years[J].Field Crops Res,1984,8:105-125.
    [2]朱德峰,严学强.提高水稻品种产量潜力的农艺学和生理学观点[J].西南农业学报,1998,11(水稻栽培专辑):141-147
    [3]姚立生.江苏省五十年代以来中籼稻品种产量及性状的演变[J].江苏农业学报,1990,6(3):38-44.
    [4]黄育民,陈启锋,李义珍.我国水稻品种改良过程库源特征的变化[J].福建农业大学学报,1998,27(3):271-278.
    [5]A kita S. Improving yield potential in tropical rice[A]. In Progress in Irrigated Rice[C]. Los Banos, Philippines:IRRI,1989:41-73.
    [6]杨惠杰,李义珍,杨仁崔,等.超高产水稻的干物质生长特性研究[J].中国水稻科学,2001,15(4):265-270.
    [7]Jiang G Z. Physiological and ecological characteristics of high yielding varieties in rice plant I.Yield and dry matter production[J]. Jan J Crop Sci,1998,57(1):132-138.
    [8]陈温福,徐正进,张龙步.水稻超高产育种生理基础[M].沈阳:辽宁科学技术出版社,1995,69-94
    [9]蔡建中,王余龙,何杰升,等.水稻产量构成因素与群体干物质生长的关系及其对产量的影响[J].江苏农学院学报,1989,10(4):9-12
    [10]蒋彭炎.高产水稻的若干生物学特性[J].中国稻米,1994,1(2):43-45
    [11]李杰,张洪程,钱银飞,等.两个杂交粳稻组合超高产生长特性研究[J].中国水稻科学,2009,23(2):179-185.
    [12]张洪松,岩田忠寿.粳型杂交稻与常规稻的物质生长及营养特性的比较[J].西南农业学报,1995,8(4):11-16
    [13]西山岩男.日本高产水稻品种的生理特性[A].见:灌溉稻研究进展和前景[C].杭州:中国水稻研究所,1988,(1):105-114
    [14]Ying, J., S.Peng, Q.He, H.et al. Comparison of high-yield rice in a tropical and subtropical environment. I:Determinants of grain and dry matter yields[J]. Field Crops Research 1998, 57(1):71-84.
    [15]翟虎渠,曹树青,万建民,等.超高产杂交稻灌浆期光合功能与产量的关系[J].中国科学(C辑),2002,32(3):211-217.
    [16]翁仁宪.水稻抽穗前贮藏碳水化合物和抽穗后干物质生长对籽粒生产的影响[J].国外农学—水稻,1984,(2):40-49.
    [17]刘军,余铁桥.大穗型水稻超高产产量形成特点及物质生长分析[J].湖南农业大学学报,1998,24(1):1-7
    [18]刘建丰,袁隆平,邓启云,等.超高产杂交稻的光合特性研究[J].中国农业科学,2005,38(2):258-264.
    [19]严进明,翟虎渠,张荣铣,等.重穗型杂种稻光合和光合产物运转特性研究[J].作物学报,2001,27(2):261-266.
    [20]马均,朱庆森,马文波,等.重穗型水稻光合作用、物质积累与运转的研究[J].中国农业科学,2003,36(4):375-38
    [21]吴桂成,张洪程,钱银飞,等.粳型超级稻产量构成因素协同规律及超高产特征的研究[J].中国农业科学,2010,43(2):266-276.
    [22]吴文革,张洪程,吴桂成,等.超级稻群体籽粒库容特征的初步研究[J].中国农业科学,2007, 40(2):250-257.
    [23]吴文革,张洪程,陈烨,等.超级杂交中籼稻氮素积累利用特性与物质生长[J].作物学报,2008,34(6):1060-1068.
    [24]谢华安,王乌齐,杨惠杰,等.杂交水稻超高产特性研究[J].福建农业学报,2003,18(4)201-204
    [25]杨建昌,杜永,吴长付,刘立军,王志琴,朱庆森.超高产粳型水稻生长发育特性的研究[J].中国农业科学,2006,39(7):1336-1345.
    [26]史鸿儒,张文忠,解文孝,杨庆,张振宇,韩亚东,徐正进,陈温福.不同氮肥施用模式下北方粳型超级稻物质生长特性分析[J].作物学报,2008,34(11):1985-1993.
    [27]谢华安.中国种植面积最大的水稻良种“汕优63”Ⅲ-光合特性与光能利用率[J].福建省农科院学报,1997,12(2):1-5
    [28]王永锐.杂交水稻产量生理[M].广州:中山大学出版社,1986:75-81.
    [29]朱庆森,张祖建,杨建昌,等.亚种间杂交稻产量源库特征[J].中国农业科学,1997,30(3):52-59
    [30]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993,26(6):1-11.
    [31]杨惠杰,李义珍,杨仁崔.云南超高产水稻与龙海高产稻性状的比较[J].福建稻麦科技,1998,16(3):38-40.
    [1]Wang W-J(王维金).Studies on Rice Uptake and Distribution of 15N of Indica Rice and at Different Fertilizer in Different Varieties Growth Stages[J]. ACT A AGRONOMICA SINICA(作物学报),1994,20(4):476-480
    [2]Shan Y-H(单玉华),Wang Y-L(王余龙),Yamamoto Yoshinori(山本由德),et al. EFFECTS OF N APPLICATION DATE ON HULL SIZE AND GRAIN PLUMPNESS OF JAPONICA RICE[J]. JOURNAL OF YANGZHOU UNIVERSITY (Natural Science dition)扬州大学学报(自然科学版)),2001,4(3):42-45.
    [3]De Datta S K, Broadbent F E. Nitrogen use efficiency of 24 rice genotypes in N-deficient soil[J]. Field Crops Research,1990,23:81-92.
    [4]Inthapanya P, Sihavong P, Sihathep V, et al. Genotypic performance under fertilized and non-fertilized conditions in rainfed lowland rice [J].Field Crops Research,2000,65:1-14.
    [5]Wu W-G(?)(吴文革),Ruan X-M(阮新民),Shi F-Zi(施伏芝)Nitrogen Uptake and Utilization Under Different Nitrogen Management and Influence on Grain Yield in middle-season Rice[J]. Journal of Anhui Agri. Sci安徽农业科学).2007,35(5):1403-1405,
    [6]Zhang Y-H(张耀鸿),Zhang Y-Li(张亚丽),Huang Q-Wi(黄启为),et al. Effects of different nitrogen application rates on grain yields and nitrogen uptake and utilization by different rice cultivars[J]. Plant Nutrition and Fertilizer Science植物营养与肥料学报),2006,12(5):616-621
    [7]Ling Q-H(凌启鸿),Zhang H-Ci(张洪程),Dai Q-Gl(戴其根),et al. Study on Precise and Quantitative N Application in Rice[J]. Scientia Agricultura Sinical(中国农业科学),2005,38(12):2457-2467
    [8]Zhang H-C(张洪程),Wang X-Q(王秀芹),Dai Q-G(戴其根),et al. Effect s of N-Application Rate on Yield, Quality and Characters of Nitrogen Uptake of Hybrid Rice Variety Liangyoupeijiu[J]. Scientia Agricultura Scinica(中国农业科学),2003,36(7):800-806
    [9]Jiang G Z. Physiological and ecological characteristics of high yielding varieties in rice plant I. Yield and dry matter production [J]. Jan J Crop Sci,1998,57(1):132-138.
    [10]Ying, J., S. Peng, Q. He, H.et al.. Comparison of high-yield rice in a tropical and subtropical environment. I:Determinants of grain and dry matter yields[J]. Field Crops Research 1998, 57(1):71-84.
    [11]Wu W-G(吴文革),Zhang H-C(张洪程),Qian Y-F(钱银飞),et al. Analysis on Dry Matter Production Characteristics of Middle-Season lndica Super Hybrid Rice[J]. Chinese J Rice Sci(中国水稻科学),2007,21(3):287-293
    [12]Yang H-J(杨惠杰),Li Y-Z(李义珍),Yang R-C(?)(杨仁崔),et al. Dry Matter Production Characteristics of Super High Yielding Rice[J]. Chinese J Rice Sci(中国水稻科学),2001,15(4):265-270.
    [13]Wu W-G(?)(吴文革),Zhang S-H(张四海),Zhao J-J((赵决建),et al.Nitrogen uptake, utilization and rice yield in the north rimland of double-cropping rice region as affected by different nitrogen management strategies[J]. Plant Nutrition and Fertilizer Science (植物营养与肥料报),2007, (In press)
    [14]Peng S-B(彭少兵),Huang J-L(黄见良),Zhong X-Hi(钟旭华),et al. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Scientia Agricultura Scinica(中国农业科学),2002,35(9):1095-1103.
    [15]Jiang L-G(江立庚),Cao W-X((曹卫星),Gan X-Q((甘秀芹),et al. Nitrogen Uptake and Utilization Under Different Nitrogen Management and Influence on Grain Yield and Quality in Rice[J]. Scientia Agricultura Sinica(中国农业科学),2004,37(4):490-496
    [16]Tang Q-Y(唐启源),Zou Y-B(邹应斌),Mi X-C(米湘成),et al. Grain yield construction and N fertilizer efficiency of super hybrid rice under different N applications[J]. Hybrid Rice(杂交水稻),2003,18(1):44-48.
    [17]Yang X-E(杨肖娥),Sun X(孙羲).Physiological effect of nitrate or ammonia top-dressing on hybrid and conventional rice varieties at the late growth stage[J]. Acta Agronomica Sinica(作物学报),1991,17(4):283-291
    [18]李刚华,薛利红,尤娟,等.水稻氮素和叶绿素SPAD叶位分布特点及氮素诊断的叶位选择[J].中国农业科学,2007,40(6):1127-1134
    [19]张志良,瞿伟菁主编.植物生理学实验指导[M].北京:高等教育出版社,2000.
    [20]贾良良,陈新平,张福锁.作物氮营养诊断的无损测试技术[J].世界农业,2001(6):36-371
    [21]Peng S, Laza R. C, Garcia F V et al. Chlorophyll meter estimates leaf area-based nitrogen concentration of rice [J]. Commun. soil Sci. Plant Anal.,1995,26 (5-6):927-935.
    [1]蒋彭炎.高产水稻的若干生物学特性[J].中国稻米,1994,1(2):43-45
    [2]刘秋英,蔡耀辉,等.超高产组合新优52干物质积累与分配特性研究[J].江西农业学报,1998,10(4):23-28
    [3]王建林,徐正进.穗型和行距对水稻冠层受光态势的影响[J].中国水稻科学,2005,19(5):422-426.
    [4]Elmore CD. The paradox of no correlation between leaf photosynthetic rates and crop yields[A]. In:Hesketh JD, Jones JW, editors. Predicting photosynthesis for ecosystem models[C].Vol.11.Boca Raton, Fla. (USA):CRC Press.1980,155-167.
    [5]Gupta US, Olugbemi LB. Improving photosynthetic efficiency of crops[A]. In:Gupta US, editor. Progress in crop physiology[C]. New Delhi(India):Oxford &IBH Publishing Co. PVT. LTD.1988, 189-238.
    [6]Carlos A., et al. carbon metabolism[A].. In"Biochemical Basis of Plant Breeding" [C].CRC press, INC. Florida.1985,51-68.
    [7]Evans LT. Raising the ceiling to yield:the key role of synergisms between agronomy and plant breeding[A].. In:Muralidharan K, Siddiq EA, editors. New frontiers in rice research[C]. Hyderabad (lndia):Directorate of Rice Research.1990.13-107.
    [8]刘振业,刘贞琦.光合作用的遗传及其在育种中应用研究进展[A].见:刘后利主编,作物育种研究与进展[C].北京:农业出版社,1993,168-183.
    [9]Peng S.Sheehy, JE.Mitchell PL., and HardyB. editors. Redesigning rice Photosynthesis to increase yield[A]. Proceedings of the workshop on The Quest to Reduce Hunger:Redesigning Rice Photosynthesis[C].30 Nov-3 Dec.1999, Los Banos, Philippines. City (Philippines):International Rice Research Institute and Amsterdam (The Netherlands):Elsevier Science B. V.2000,213-224.
    [10]程式华,曹立勇,陈深广,等.后期功能型超级稻的概念及生物学意义[J].中国水稻科学,2005,19(3):280-284.
    [11]刘建丰,袁隆平,邓启云,等.超高产杂交稻的光合特性研究[J].中国农业科学,2005,38(2):258-264.
    [12]姚克敏,皱江石,王志南,等.两系杂交稻组合两优培九和65396的光合形态特征研究[J].杂交水稻,1999,14(5):35-38.
    [13]严斧,李悦丰,卓儒洞.两系组合两优培九与三系组合Ⅱ优58后期光合生产特性比较研究[J].杂交水稻,2001,16(1):51-54.
    [14]翟虎渠,曹树青,万建民,等.超高产杂交稻灌浆期光合功能与产量的关系[J].中国科学(C辑),2002,32(3)211-217
    [15]李霞,焦德茂.超级杂交稻两优培九的光合作用特性[J].江苏农业学报,2002,18(1):9-13.
    [16]焦德茂,李霞,黄雪青,等.不同高产品种后期早衰与光抑制、光氧化之间的关系[J].中国农 科学,2002,35(5):487-492.
    [17]王强,卢从明,张其德,等.超高产杂交稻两优培九的光合作用、光抑制和C4途径酶特性[J].中国科学(C辑),2002,32(6):482-487.
    [18]王荣富,张云华,焦德茂,等.超级杂交稻两优培九及其亲本生育后期的光抑制和早衰特性[J].作物学报,2004,30(4):393-397.
    [19]欧志英,彭长连,林桂株.超高产水稻培矮64S/E32及其亲本叶片的光氧化特性和遗传特点[J].作物学报,2004,30(4):308-314.
    [20]Ishi Y. Physiology of the rice plant[J]. Adv Agron,1971,23:241-315.
    [21]刘军,余铁桥.大穗型水稻超高产产量形成特点及物质生长分析[J].湖南农业大学学报,1998,24(1):1-5.
    [22]Zelitch I. The close relationship between net photosynthesis and crop yield.Bio Science.1982,32: 796-802.
    [23]谢华安.中国种植面积最大的水稻良种“汕优63"Ⅲ.光合特性与光能利用率[J].福建省农科院学报,1997,12(2):1-5.
    [25]张志良,瞿伟菁主编.植物生理学实验指导[M].北京:高等教育出版社,2000.
    [26]李合生.植物生理生化试验原理和技术[M].北京:高等教育出版社,2000.
    [26]Noctor G,Foyer C H. Ascorbate and Glutathione:Keeping Active Oxygen Under Control [J]. Annu Rev Plant Physiol Plant Mol Biol,1998,49:249-279.
    [27]Quartacci M F, Navarilzzo F. Water Stress and Free Radical Mediated Changes in Sunflower Seedling [J]. Plant Physiol,1991,139 (5):621-625.
    [28]Chaoui A, M azhoudi S, Ghorbal M H. Cadmium and Zinc Induction of Lipid Peroxidation and Effects on Antioxidant Enzyme Activities in Bean[J]. Plant Sci,1997,127:139-147.
    [29]Satake T, Yoshida S. High temperature-induced sterility in indica rices at flowering[J]. Jpn J Crop Sci, 1978,47:6-17.
    [30]吴建慧,赵军,孙国荣,等.高温对玉米幼苗膜脂过氧化作用的影响[J].哈尔滨师范大学自然科学学报,2005,21(1):82-85.
    [31]刘媛媛,滕中华,王三根,等.高温胁迫对水稻可溶性糖及膜保护酶的影响研究[J].西南大学学报,2008,30(2):59-63.
    [32]张桂莲,陈立云,雷东阳,张顺堂.水稻耐热性研究进展[J].杂交水稻,2005,20(1):1-5.
    [34]Watson D J. Comparative physiological studies on the growth of field crops[J]. A nn Bot N S,1947, 11:375-407.
    [35].Evans L T, Dunstone R L. Some physiological aspects of evolution in wheat. Aust J Biol Sci,1970,23:725-741
    [36]刘贞琦,刘振业,曾淑芬,等.水稻某些光合生理特性的研究[J].中国农业科学,1982,(5):33-39
    [37]刘贞琦,刘振业,马达鹏,等.水稻叶绿素含量及其与光合速率的研究[J].作物学报,1984,10(1):57-62
    [38]张龙步,陈温福,杨守仁.水稻理想株型育种的理论与方法再论[J].中国水稻科学,1987,(3):144-154
    [39]曹树青,翟虎渠,杨图南,等.水稻种质资源光合速率及光合功能期的研究[J].中国水稻科学,2001,15(1):29-34.
    [1]Donald C M. The breeding of crop ideotype[J]. Euphytica,1968,17:385-403.
    [2]松岛省三.水稻栽培新技术[M].吉林:吉林人民出版社,1973:20-30.
    [3]田中市郎.超多收水稻开发现状展望[J].农业及园艺,1984,59(1):155-160
    [4]杨守仁.水稻株形研究进展[J].作物研究,1982,8(3):205-209.
    [5]陈温福,徐正进,张龙步.水稻超高产育种生理基础[M].沈阳:辽宁科学技术出版社,1995
    [6]Yuan L-P. Hybrid rice breeding for supper high yield[J]. Hybrid Rice,1997,12 (6):1-6
    [7]周开达,刘太清.亚种间重穗型杂交稻研究[[J].中国农业科学,1997,30(5):91-93
    [8]Khush, CxS..1995.Breaking the yield frontier of rice[J]. Geo journal.35:329-332.
    [9]程式华,翟虎渠.水稻亚种间超高产杂交组合若干株型因子的比较[J].作物学报,2000,26(6):713-718
    [10]Donald C M. The biological yield and harvest index of cereals as agronomic and plant breeding criteria [J].Agronomy,1976,28:361-405.
    [11]杨仁崔,杨惠杰.国际水稻研究所新株型稻研究进展[J].杂交水稻,1998,13(S):29-31.
    [12]黄耀祥.水稻丛化育种[[J].广东农业科学,1983,(1):1-5
    [13]杨守仁,张龙步,陈温福,等.水稻超高产育种理论和方法[J].中国水稻科学,1996,10(2):115-120.
    [14]程式华,曹立勇,陈深广,等.后期功能型超级杂交稻的概念及生物学意义[J].中国水稻科学,2005,19(3):280-284
    [15]苏祖芳,许乃霞,孙成明,等.水稻抽穗后株型指标与产量形成关系的研究[J].中国农业科学,2003,36(1):115-120
    [16]徐正进,董克.水稻叶片基角、开张角和披垂角的同时测定方法[J].沈阳农业大学学报,1991,22(2):185-187
    [17]张旭等.水稻生态育种[M].1991,北京:农业出版社:8-199
    [18]潘瑞炽.水稻生理[M].1981,北京:科学出版社,45-82
    [19]孙旭初.水稻茎秆抗倒性研究[J].中国农业科学,1987,20(4):32-37.
    [20]马均,马文波,田彦华,等.重穗型水稻植株抗倒伏能力的研究[J].作物学报,2004,30(2):143-148.
    [21]李荣田,姜廷波,秋太权,等.水稻倒伏对产量影响及倒伏和株高关系的研究[J].黑龙江农业科学,1996,(1):13-17.
    [22]邹德堂,秋太权,赵宏伟,等.水稻倒伏指数与其它性状的相关和通径分析[J].东北农业大学报,1997,28(2):61-64.
    [23]华泽田,郝宪彬,沈枫,等.东北地区超级杂交粳稻倒伏性状的研究[J].沈阳农业大学学报,2003,34(3):161-164.
    [24]霍中洋,董明辉,张洪程,等.不同粳稻品种倒伏指数及其相关农艺性状分析[J].西南农业大学学报,2003,25(3):234-237.
    [25]松岛省三.稻作的理论与技术[M].北京:农业出版社,1979.
    [26]杨守仁,张龙步,王进民.水稻理想株型育种的理论和方法初论[J].中国农业科学,1984,(3):6-13.
    [27]孙旭初.水稻叶型的类别及其与光合作用的关系[J].中国农业科学,1985, (4):49-55.
    [28]凌启鸿等.IR24大面积高产栽培技术途径[J].江苏农业科学,1982, (9):1-10.
    [29]杨守仁,张龙步,王进民.水稻理想株型育种的理论和方法初论[J].中国农业科学,1984,(3):6-13.
    [30]石原邦(徐正进译).日本对水稻光合作用、物质生长与株型的研究概况[J].沈阳农业大学学报,1989,20(3):254-262.
    [31]袁隆平.杂交水稻超高产育种[J].杂交水稻,1997,12(6):1-3.
    [32]邓启云.超级杂交水稻形态性状特征及其遗传规律[D].长沙:湖南农业大学博士学位论文,2000.
    [33]袁立新,张金宝.谷子理想株型的形态特性[J].作物杂志,2000,(2):23-24
    [34]胡文新,彭少兵,高荣孚,J.K.Ladha.新株型水稻的光合效率[J].中国农业科学,2005,38(11):2205-2210.
    [35]杨建昌,徐国伟,等.新株型水稻生育特性及产量形成特点的研究[J].扬州大学学报(农业与生命科学版),2002,23(1):45-50.
    [36]杨建昌,张文虎,等.水稻新株型与粳、籼杂种源库特征与物质运转的研究[J].中国农业科学,2001,34(5):511-518.
    [37]马国辉.超级杂交稻超高产理论与实践初论困[J].中国农业科技导报,2005,7(4):3-8.
    [38]孙旭初.水稻叶型的类别及其与光合作用关系的研究[J].中国水稻科学,1985(4):4955.
    [39]刘贞琦.不同株型水稻光合特性的研究[J].中国农业科学,1980,(03):21-24.
    [40]李萍,韩亚东,郝兴宇.不同穗型不同种植方式对水稻光能利用的影响[J].山西农业大学学报(自然科学版),2004,24(2):112-115.
    [41]张云华,王荣富,陈炳松,等.超级稻两优培九生育后期的光能利用和同化产物分配[J].安徽农业大学学报,2003,30(3):269-272.
    [1]松岛省三著.实用水稻栽培[J].秦玉田,缪世才译.北京:农业出版社,1984:168-210
    [2]松岛省三.稻作(?)改善(?)技术[J].日本养贤堂.1973
    [3]村田吉男等著.作物的光合作用与生态--作物生产的理论与技术[J].吴尧鹏等译.上海科技出版社,1982:272
    [4]角田重三郎等.稻的生物学[M].闵绍楷等译.北京:农业出版社,1989:158-159
    [5]凌启鸿,张鸿程等.IR24大面积高产栽培技术途径——兼论小群体、壮个体栽培途径[J].江苏农业科学,1983,9
    [6]凌启鸿,苏祖芳,张洪程等.水稻品种不同生育类型的叶龄途径[J].中国农业科学,1983,(1):9-18
    [7]凌启鸿,张洪程,蔡建中等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993,26(6):1-11
    [8]凌启鸿主编.水稻群体质量理论与实践[M].北京:中国农业出版社,1995
    [9]蒋彭炎等.水稻高产新技术——稀少平栽培法的原理与应用[M].杭州:浙江科技出版社,1989
    [10]蒋彭炎等.论水稻“三高一稳栽培法”[J].山东农业大学学报,1992,32(增刊):18-24
    [11]黄仲青,李奕松等.关于水稻“四少四高”栽培途径的探讨[J].水稻高产理论与实践论文集.北京:中国农业出版
    [12]陈周前,吴文革.水稻稀长大栽培技术研究[J].安徽农业科学,1997,25(1):35-38,94
    [13]邹应斌,黄见良,屠乃美,等.“旺壮重”栽培对双季杂交稻产量形成及生理特性的影响.作物学报,2001,27(3):344-350.
    [14]屠乃美,李合松,黄见良等.双季稻旺壮重栽培法的理论与技术邹应斌[J].湖南农业大学学报,2000,26(4):241-244
    [15]马国辉,刘朝友.培矮64S/E32的超高产特性及栽培技术初探[J]..杂交水稻,2000,15(5):25-28
    [16]程式华,曹立勇,陈深广,等.后期功能型超级杂交稻的概念及生物学意义[J].中国水稻科学,2005,19(3):280-284
    [17]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12):2457-2467.
    [18]马均,陶诗顺.杂交中稻超多蘖壮秧超稀高产栽培技术研究[J].中国农业科学,2002,35(1):42-48.
    [19]陶诗顺,马均等.杂交中稻超多蘖壮秧稀植栽培高产原理探讨[J].西南农业学报,1998,11(3):37-45
    [20]郑家国姜心禄.水稻超高产的突破技术——强化栽培[J]..四川粮油科技,2003,20(2):8-9
    [21]袁隆平.水稻强化栽培体系.杂交水稻,2001,16(4):1-3
    [22]金学泳,金正勋,孙滔,商文楠,李殿平,徐凤花.寒地水稻三超栽培技术研究[J].中国农学通报,2005,21(4):136-141.
    [23]王松良,林文雄.水稻旱育稀植高产机理和调控技术Ⅰ.水稻旱育稀植高产机理研究进展与展望[J].福建农业大学学报,1999,28(1):12-17
    [24]许哲鹤,金熙镛.水稻“三早栽培”研究报告Ⅰ.早熟品种高产途径的探讨[J].吉林农业科学,1986,(4):31-36
    [26]金玉女,赵士龙.水稻大养稀栽培施氮肥效应研究初报[J].吉林农业科学,1991,(4):50-54
    [27]金玉女,田奉俊,赵世龙,等.水稻大养稀栽培分蘖发育特性的研究[J].延边大学农学学报,1998,20(4):258-262
    [28]王贵江,于良斌,宋福金.水稻单本植栽培法的群体结构及生理指标研究[J].黑龙江农业科学,2002,(3):8-10
    [29]吴文革,孔令娟,杨惠成,等.双季北缘地区水稻补偿超高产栽培研究[J].安徽农学通报,2006,12(11):121-128
    [30]许恒道,潘启民,齐运田,等.赣化2号亩产1800斤以上田块群体及其控制技术[J].中国农业科学,1984,(5):12-17.
    [31]桥川潮.基肥无氮使水稻姿势、穗相发生变化而获得高产[J].现代农业,1981,60(6):3-7.
    [32]丁颖.有关水稻密植的几个问题[J].中国水稻科学,1958,15:696-698
    [33]江苏水稻叶龄途径研究协作组.水稻叶龄施用穗肥的研究[J].江苏农学院学报,1985,6(3):11-19
    [1]西山岩男.超高产水稻的开发及栽培生理特性[J].农业技术(日),1989,44:22-26
    [2]凌启鸿主编.水稻群体质量[M].上海:上海科技出版社,2001.11
    [3]Murals, Y. Studies on the photosynthesis of rice plant and culture significance[J]. Bull. Natl. Inst., Agric. Sci., Japan Ser. D.1961:1-169
    [4]角田重三郎.稻的理想型—光合结构的调节[A],国外有关水稻理想株形文集(二)[C](陈温福编译),沈阳农业大学稻作研究室1985:1-18
    [5]徐正进,薛亚杰,东正昭.水稻超高产品种物质生产与产量分析[J].辽宁农业科学,1992,(3):1-4
    [6]邓启云.超级杂交水稻形态性状特征及其遗传规律的研究[D].湖南大学博士学位论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700