用户名: 密码: 验证码:
甘蓝型油菜不同磷素利用效率类型品种的基本特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在大田试验条件下以甘蓝型常规油菜品种(2006-2007年度73个品种,2007-2008年度98个品种并设置不施氮肥和150kg/hm2纯氮两个氮肥处理)为研究对象,通过测定初花期不同器官干重和磷素含量,成熟期植株农艺性状以及不同器官干重和磷素含量。采用组内最小平方和的动态聚类方法,按磷素籽粒生产效率为指标将不同品种从低到高依次分为A.B.C.D.E五种类型。从农艺性状、干物质和磷素的积累与分配等方面研究不同磷素籽粒生产效率类型品种的基本特征。对2007-2008年度98个品种分别在2008N0和2008N1处理下按磷素籽粒生产效率分别进行聚类(分低效、中效和高效三类),结合不同品种从低氮到高氮条件下类型的转换将供试品种分成低到低(L→L)、低到中(L→M)、低到高(L→H)、中到低(M→L)、中到中(M→M)、中到高(M→H)、高到中(H→M)和高到高(H→H)共8种类型,研究了不同磷素籽粒生产效率类型品种的基本特征及其对氮肥的响应。2007-2008年度选取22个品种(17个母本、5个父本),利用增广NC-Ⅱ设计配置成85个杂交组合(17×5),2008-2009年度种植亲本和杂交组合研究磷素籽粒生产效率杂种优势以及亲本的一般配合力和组合的特殊配合力,并分析遗传力大小。希望通过本研究为生产上高磷素籽粒生产效率品种的筛选和培育以及合理栽培措施的制定提供参考依据。本文主要研究结果如下:
     1.反映磷素利用效率的指标有多个,磷素籽粒生产效率、磷素干物质生产效率和磷素收获指数的大小都可作为衡量植株对磷素利用效率高低的指标。产量仍然是衡量油菜生产的关键指标,磷素籽粒生产效率与产量之间都呈极显著正相关,2007、2008N0和2008N1处理相关系数分别为0.3167”、0.3663**和0.4784**,磷素籽粒生产效率对产量通径分析结果显示磷素籽粒生产效率对产量的直接作用最大。因此,以磷素籽粒生产效率作为反映油菜对磷素利用效率高低的指标更为合适。
     2.不同品种(系)磷素籽粒生产效率变幅较大,2007处理变化范围为69.43g/g~137.23g/g,最大值和最小值相比增幅为97.66%;2008N0处理变化范围为66.62g/g-89.79g/g,增幅为34.79%;2008N0处理变化范围为53.38g/g~79.58g/g,增幅为49.08%。杂交组合2009N0处理磷素籽粒生产效率变幅为40.88g/g~142.09g/g,增幅为247.56%;2009CK处理变幅为56.56g/g~98.53g/g,增幅为74.18%。2009P0处理变幅为56.78g/g~125.39g/g,增幅为120.84%。宁油7号、N06-5、4029和YC7的磷素籽粒生产效率相对较小,均属于最低的A类型。宁油18号、湘05483和YN02磷索籽粒生产效率较高,都属于D类型或者E类型。
     3.磷素籽粒生产效率与库容量之间表现为显极显著正相关(r2007=0.4418*、 r2008\0=0.2666**、r2008\1=0.4355**),不同类型间随着磷素籽粒生产效率增加库容量逐渐增加。磷素籽粒生产效率与一次分枝数(r2007=0.2687*、r2008\0=0.2335*、r2008\1=0.3291**)和角果数(r2007=0.3167**、r2008\0=0.2968**、r2008\1=0.3843**)之间都表现为显著或极显著正相关。一次分枝数与角果数之间也表现为极显著正相关(r2007=0.8007**,r2008\0=0.7424**、 r2008\1=0.3680**)。一次分枝数多的品种角果数多,最终库容量大,磷素籽粒生产效率较高。一次分枝数和角果数可以作为高磷素籽粒生产效率品种的筛选指标。
     4.不同品种磷素籽粒生产效率与籽粒重之间都表现为极显著正相关,2007、2008N0和2008N1试验相关系数分别为0.3167**、0.3663**和0.4784**。磷素籽粒生产效率与籽粒重占总干重的比例呈极显著正相关,2007、2008N0和2008N1处理相关系数分别为分别为0.5703**、0.5354**和0.0033**。磷素籽粒生产效率与初花期全株磷素积累量之间未达显著相关(r2008NO=-0.0077、r2008N(?)=0.0469),与成熟期全株磷素积累总量之间呈极显著负相关(r2007=-0.7019**, r2008\0=-0.3195**、r2008\1=-0.4911**)。花后磷素积累量与磷素籽粒生产效率呈显著或极显著负相关(r2008(?)O=-0.2486*、r2008(?)=-0.4192**),不同品种类型问随着磷素籽粒生产效率增加,花后磷素积累量降低。
     5.磷素籽粒生产效率与蛋白质含量都呈极显著负相关(r2008\0=-0.3746**、r2008\1=-0.2672**、r2009\1=-0.4493**、r2009CK=-0.3736**、r2009PP=-0.4115**),与油份含量都呈极显著正相关(r2008\0=0.4105**、r2008\1=0.3670**、r2009\0=0.2955**、r2009CK=0.3652**、r2009PO=0.4928**)。常规种磷素籽粒生产效率与油份总量之间表现为极显著正相关,2008N0和2008N1处理相关系数分别为0.4884**和0.5432**。随着磷素籽粒生产效率增加,不同类型常规种油份含量和总量逐渐增加。
     6.在两个氮肥处理条件下属于同一类型(低到低,中到中,高到高)的品种51个,占品种总数的52.04%;施氮后类型降低(中到低,高到中)的品种13个,占品种总数的13.27%;施氮后类型升高(低到中,低到高,中到高)的品种34个,占品种总数的34.69%。施用氮肥后磷素籽粒生产效率类型升高的品种主要表现为每角粒数增加值比较大,籽粒重增加值比较大,全株以及不同器官磷素含量和磷素积累量增加值比较小,茎枝和果壳磷素分配比例增加值比较小,籽粒磷素分配比例下降值比较小。施用氮肥后磷素籽粒生产效率类型降低的品种表现与之相反。
     7.以22个甘蓝型油菜口种(系)为亲本(17个母本,5个父本),按NCⅡ设计配成17×5=85个杂交组合,研究了磷素籽粒生产效率的杂种优势及其遗传效应。结果表明:离中亲优势(Hm)的正向组合数明显多于负向组合数,超亲优势中正向组合数(超高亲Hh)明显多于负向组合数(超低亲H1),磷素籽粒生产效率存在一定的杂种优势。磷素籽粒生产效率的遗传参数在不同试验条件下变化较大,在2009N0处理条件下基因的加性效应和非加性效应都比较重要,其中加性效应略高于非加性效应,2009CK处理和2009P0处理一般配合力方差相对较小,特殊配合力相对较大,其非加性效应作用较大。
Field experiments were carried out to study basic characteristics of rapeseed varieties (Brassica napus L.) with different types of phosphorus use efficiency for grain production(PUEg).73conventional rapeseed varieties were cultured in2006-2007(2007treatment), and98conventional rapeseed varieties were cultured in2007-2008at the low nitrogen fertilization level (0kg ha-1)and high nitrogen fertilization level (180kg N ha-1). At beginning flowering stage,dry matter weight (DMW)and the phosphorus content of different organs (leave and stem) were tested, and at maturing stage agronomic characteristics, DMW and the phosphorus content of different organs (stem, shell and seed) were tested. The tested rapeseed varieties were classified into5types (A, B,C, D, E) based on PUEg by the MinSSw method, agronomic characteristics and phosphorus accumulation and distribution of different types were studied. According to2008N0and2008N1treatments, the tested rapeseed varieties were classified into3types (low type, middle type and high type) based on PUEg under different nitrogen fertilizer levels, then these varieties were divided into eight types (L→L, L→M, L→H, M→L, M→M, M→H,H→M, H→H) baded on change of different types from low nitrogen fertilizer to high nitrogen fertilizer, responses of PUEg on nitrogen fertilizer were studied. The heterosis performance, general combining ability(GCA), specific combining ability(SCA) and genetic effect of PUEg in rapeseed were investigated in22parents (the numbers of female and male parents were17and5, respectively) and their17×5=85F1hybrids. The purposes of these studies were to investigate the basic characteristics of rapeseed with higher PUEg and to provide fundamental information in rapeseed breeding and feasible cultivation measures designment. Results were as following:
     1. There are three indexes of phosphorus use efficiency, including phosphorus use efficiency for grain production (PUEg). phosphorus use efficiency for plant biomass (PUEp) and phosphorus harvest index (PHI). Yield is the most important factor during rapeseed production. There were significantly positive correlations between PUEg and yield (r2007=0.3167**,r2008=0.3663**. r2009=0.4784**). The study of path analysis indicated that the indirect influence of PUEg on yield was biggest. So PUEg was a more suitable index to indicate nitrogen efficiency than PUEp and PHI.
     2. PUEg differed greatly among rapeseed varieties used in this study. Range of PUEg was from69.43g/g to137.23g/gin2007treatment, from66.62g/g to89.79g/g in2008N0treatment, from53.38g/g to79.58g/g in2008N1treatment, and increasing ratio (the most value to the minimum value) was97.66%,34.79%and49.08%, respectively. Range of PUEg in hybrid combination was from40.88g/g to142.09g/g in2009N0treatment, from56.56g/g to98.53g/g in2009CK treatment, from56.78g/g to125.39g/g in2009P0treatment, and increasing ratio (the most value to the minimum value) was247.56%,74.18%and120.84%, respectively. There were four varieties in A types in different treatments, and they were Ningyou7, N06-5,4029and YC7。There were three varieties in D or E types in different treatments, and they were Ningyou18. Xiang05483and YN02。
     3. Sink capacity (total number of seeds) increased with increasing of PUEg in different type varieties, and there were significantly positive correlations between PUEg and total number of seeds (r2007=0.4418**, r2008N0=0.2666**, r2008N1=0.4355**). There were significantly positive correlations between PUEg and number of primary
     Branches(r2007=0.2687**,r2008N0=O.2335**, r2008N1=0.3291**), and there were significantly positive correlations between PUEg and number of pods (r2007=0.3167**, r2008N0=0.2968**, r2008N1=0.3843**). There were significantly positive correlations between number of primary branches and number of pods (r2007=0.8007**,r2008N0=0.7424**, r2008N1=0.3680**). Number of pods with high number of primary branches were high, and sink capacity were also high. So number of pods and primary branches could be screening indexes of variety with high PUEg.
     4. There were significantly positive correlations between PUEg and yield (r2007=0.3167**, r2008N0=0.3663**, r2008N1=0.4784**), and there were significantly positive correlations between PUEg and the ratio of DMW of seed to biomass (r2007=r2007=0.5703**,r2**8NO=0.5354**r2008N1=0.5033**). The relationship between PUEg and phosphorus accumulation at flowering stage were not significant(r2008N0=-0.0077, r2008N1=0.0469), and there were significantly negative correlations between PUEg and phosphorus accumulation at maturing stage (r2007=-0.7019**. r2008N0=-0.3195**, r2008N1=-0.4911**). There were significantly negative correlations between PUEg and phosphorus accumulation after flowering (r2008NO=-0.2486*, r2008N1=-0.4192**), and with increasing of PUEg at different types phosphorus accumulation after flowering decreased.
     5. There were significantly negative correlations between PUEg and content of protein (r2008N0=-0.3746**. r2008N1=-0.2672**,r2009N0=-0.4493**. r2009CK=-0.3736**, r2009p0=-0.4115**), and there were significantly positive correlations between PUEg and content of fat (r2008N0=0.4105**, r2008N1=0.3670**,r2009N0=O.2955**,r2009CK=0.3652**, r2009**P0=0.4928). In conventional rapeseed treatments there were significantly positive correlations between PUEg and fat accumulation (r2008N0=0.4884**,r2008N1=0.5432**), and with increasing of PUEg at different types fat accumulation increased.
     6. Responses of PUEg on nitrogen fertilizer were studied and results showed that number of varieties at same types (L-L. M-M. H-H) under two nitrogen fertilizer levels was51. and the ratio of51to98(total number) was52.04%. Three were13varieties in M-L and G-M. and the ratio was13.27%. Three were34varieties in L-M, L-G and M-G, and the ratio was34.69%. In L-M, L-G and M-G, added values of the number of seeds per pod and yield were larger, and added values of phosphorus accumulation of whole plant and different organs, ratios of phosphorus accumulation of stem and shell to total phosphorus accumulation were smaller. Decreasing values of ratio of phosphorus of seed to total phosphorus accumulation were smaller. The trends of the varieties in M-L and G-M by nitrogen application (M→L, H→M) were opposite.
     7. The heterosis and genetic effect of PUEg in rapeseed was investigated in22parents (the numbers of female and male parents were17and5, respectively) and their17×5=85F1hybrids. Results showed that number of positive Hm was larger than that of negative Hm, and number of positive Hh was larger than that of negative HI, so positive heterosis of PUEg existed. Differences of genetic parameters of NUEg were bigger. Additive effects and dominance effects were all significant in low nitrogen fertilizer(2009N0). In2009CK and2009P0treatments GCA were less and SCA were bigger, and dominance effects dominance effects were more important.
引文
1. Ae N.Arihara J,Okada K,Yoshihara T,et al.Phosphorus uptake by pigeonpea and its role in cropping systems of the Indian subcontinent[J].Science.1990,248:477-480
    2. Asher C J,Loneragan J F.Response of plant to phosphate concentration in solution culture:Ⅰ.Growth and phosphorus content[J].Soil Sci 1967,103:225-233
    3. Atkinson D.Some general effects of phosphorus deficiency on growth and developement[J].New phytol,1973,72:101-111
    4. Baker D E,Jarren A E.Phosphorus uptake from soil by corn hybrids selected for high and low phosphorus accumulation[J].Agron J,1970,62:103-106
    5. Barber S A,Mackay A D. Root growth and phosphorus and potassium uptake by two corn genotypes in the field[J]. Fertilizer Research,1986,10(3):217-230
    6. Bokert C M,Barber S A.Soybean shoot and root growth and phosphorns concentration as affected by phosphorus placement[J].Soil Sci Soc Am,1985,49:152-155
    7. Bole J B.Influence of root hairs in supplying soil phosphorus to wheat[J].Can.J Soil Sci 1977,53:169-175
    8. Bonser A,Lynch J PSnapp S.Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus rulgari[J].New phytol,1996,132:281-288
    9. Chapin F S,Bieleski R L.Mild phosphorus stress in barley and a related low phosphorus adapted barley grass:Phosphorus fractions and phosphate absorption in relation to growth[J].Physiolgia Plantarum.1982,54:309-317
    10. Chapin F S.The mineral nutrition of wild plants[J]. Ann Rev Ecol Syst.1980.11.233-260
    11. Clark R B,Brown J C.Differential Phosphorns uptake by phosphorus-trssed eorn inbreds[J].Crop Sci,1974,14:505-508
    12. Classen N,Barber S A.Potassium influx characteristics of com roots and interaction with N.P,K,Ca and Mg influx[J].Agron J,1977,69:860-864
    13. Dinkeaker B,Romheld V,Marschner H.Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lup in(Lupinus albus L.) [J].Plant Cell Environ.1989,12:285-292.
    14. Drew M C.Saker L R.Uptake and long distance transport of phosphate,potassium and chloride in relation to intern ion concentrations in Barley:evidence of non-allosteric regulation[J].Planta,1984,160:500-507
    15. Estaun V.Calret C.Hayman D S.Influence of plant genotype on mycorrhizal infection response of three pea cultivars[J].Plant and Soil,1987,103:295-298
    16. Fageria,Wright N K.Rice cultivar evaluation for phosphor efficiency[J].Plant and soil, 1988,111:105-109
    17. Fawole I.Gabelman W H,Gerloff G C.Heritability of efficiency in phosphorus utilization in beans(Phaseofus Vulgaris)grown under phosphorus stress[J].J Amer Soc Hort Sci,1982,107(1):98-100
    18. Foehse D,Classen N,Jungk A.PhosPhorus efficiency of Plants.l.External and internal Prequirement and P uptake efficiency of different plant species[J].Plant and Soil,1988,110:101-109
    19. Gahoonia T S,Nieslen N E.Variation in acquisition of soil phosphorus among wheat and barely genotypes[J].Plant and soil,1996,178:223-230
    20. Gardner W K,Barber D A,and Parbery D G.The acquisition of phosphorus by Lupinus albus.L.The Probable mechanism by which phosphorus movement in the soil root interface is enhanced[J].Plant and Soil,1983,70:107-124
    21. Hattingh M J,Gray L E,Gerdemann J W.Vpteke and transloeation of 32P-labelled Phosphorus to onion roots by endomycorrhizal fungi[J].Soil Sci,1973,116:383-387
    22. Hoffland E,Findeneg G R,Nelemans J A.Solubilization of rock phosphate by rape. Ⅰ.Evaluation of the role of the nutrient uptake pattern.Plant and Soil,1989b.113:155-160
    23. Hoffland E.Quantitative evaluation of the role of organic acid exudation in them obilization of rock phosphate by rape[J].Plant Soil.1992,140:279-289.
    24. Jungk A. and Claassen N.Availability of P and K as the result of interactions between root and soil in the rhizosphere Z[J].Aflanzenernaehr Bodenk,1986.149:411-27
    25. Kania A.Langlade N.Martinoia E.et al.Phosphorus deficiency-in-duced modifications in citrate catabolism and in cytosolic pH as related to citrate exudtion in cluster roots of white lupin[J]. Plant Soil,2003,248:117-127.
    26. Kovacevie V.In:Genetic Aspect of Plant Nutrition[M].Eds M R Saric and B C Loughman.Martings Nijhoff Publishers,1983,471-475
    27. Lauer M.J., Pallardy S.G.. Blevirs D.G., et al. Whole leaf carbon exchange characteristics of phosphate deficient soybean[J].Plant Physiol.,1989,91:848-854
    28. Liao H,Wan H,Shaff J.et al.Phosphorus and A luminum Interactions in Soybean in Relation to A luminum Tolerance.Exudation of specific organ ic acids from different regions of the intact root system[J].Plant Physiol.2006,141:674-684.
    29. Lynch J and Beebe S.Adaptation of beans to low phosphorus availability[J].Hort science,1995,30(6):1165-1171
    30. Lynch J P,Brown K M.Regulation of root architecture by phosphorus availability[A].Eds Lynch J P,Deikman J.Phosphorus in Plant Biology:Regulatory Roles in Molecular,cellular,Organismic and Ecosystem Processes[M].American Society of Plant Physiologists,Maryland,1999,148-156
    31. Merlo L.Massimo F.Ghisi R.et al.Developmental changes of enzymes of malatem etabolism in relation to respiration.photo synthesis and nitrate assimilation in peach leaves[J].Physiol Plant,1993,89:71-76.
    32. Mihaljev Land Kartori R.In:Genetic Aspects of Plant Nutr[A].Eds M R,Saric and B Loughman[M]. Marting Nijhoff publishes,1983:477-481
    33. Moorby H,White R E,Nye P H.The influence of phosphate nutrition on H ion effux from root of young rape plants[J].Plant soil,1988,105:247-256
    34. Mosse B.Adrances in the study of vesicular arbuscular-mycorrhiza[J].Ann Rev Phytopathol,1973,11:176-196
    35. Newman E J,Andrews R E.Uptake of phosphorus in relation to root growth and root density[J]. Plant Soil,1973,38:49-69
    36. Ni J J,Wu P,Senadhira D.Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.) [J].Theor Appl Genet,1998,97:1361-1369.
    37. Nielsen M E and Schjrring J K.Efficiency and kinetics of phosphorus uptake from soil by various barley genotypes[J].Plant Soil,1983,72:225-230
    38. Raghothanma K G.Phosphate acquisition[J].Annu Rev Plant Physiol Plant Mol Biol,1999,50:665-693.
    39. Reiter R S,Coors J G,Sussman M R, et al. Genetic analysis of tolerance to low phosphorus stress in maize using restriction fragment length poly morphisms[J].Theor Appl Genet,1991,82:561-568.
    40. Rhodes L H.Gerdemann J W.Phosphate uptake zones of mycorrhizal and nonmycorrhizal onions[J].New Phytol,1975.75:555-561
    41. Ryan P R.Delhaize E,Jones D L.Function and mechanism of organic anion exudation from plant roots[J].Annu Rev Plant Physiol Plant Mol Biol,2001,52:527-560.
    42. Sehenk M K,Barber S A.Root characteristics of corn genotypes as related to P uptake[J].Agro J,1979,71,921-924
    43. Smith F W,Ealing P M,Dong B,Delhaize E.The cloning of two Arabidopsis genes belonging to a phosphate transporter family[J].Plant J 1997,11:83-92
    44. Srivastara O P, Singth B, Pathak A N. Varietal differences in P-uptake of rice on sodic soil [J].IRRN Newsletter,1984,9:11.
    45. T Lickfett, B Matthaus, L Velasco,et al. Seed yield, oil and phytate concentration in the seeds of two oilseed rape cultivars as affected by different phosphorus supply[J]. European Journal of Agronomy 1999 11:293-299
    46. Tarafdar J C,Jungk A.Phosphatase activity in the rhizo-sphere and its relation to the depletion of Soil organic phosphorus[J].Fertil Soil,1987,199-204
    47. Terry N, Tao I M.Nutrient and photosyn thesis:iron and phosphorus as case studies[A].Eds Porter J R, Lawlor D W. Plant Growth:Interaction with Nutrition and Environment[M].Cam bridge University Press,1991:54-59.
    48. Uhde-Stone C, Gibert G,Johnson J M F,et al.Acclination of white lup in to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism[J]. Plant Soil,2003,248:99-116.
    49. Watt M,Evans J R.Linking development and determinacy with organic acid efflux from proteoid roots of white lup in grown with low phosphorus and ambient elevated atmospheric CO2 concentrition[J].Plant Physiol,1999,120:705-716.
    50. Yan X L,Lynch J P.Beebe S E.Genetic variation for phosphorus efficiency of common bean in contrasting soil types:I Vegetative response[J].Crop Sci,1995.35:1086-1093.
    51.曹黎明,潘晓华.水稻不同耐低磷基因基因型的评价指标分析[J].上海农业学报,2000,16(4):31-34.
    52.成瑞喜、刘景福,黄棕壤、棕红壤中磷的转化对油菜产量的有效性[J].十壤通报,1994(2):84-86
    53.戴良香.不同基因型冬小麦磷营养差异的研究.土壤通报[J].1995.26(5):213-215.
    54.董召娣,左青松,冷锁虎,等.施N水平对油菜杂交种及其亲本氮素利用效率的影响[J].中国油料作物学报,2008,30(3):366-369
    55.杜立,梁成华.陈新之.等.菜园十壤高磷条件对油菜磷、锌含量的影响[J].十壤通报,2003 8:330-332
    56.段海燕,徐芳森,王运华.甘蓝型油菜不同品种磷运转和利用差异的研究[J].中国油料作物学报,2002,24(4):46-49.
    57.段海燕.甘蓝型油菜磷高效的营养生理及遗传行为研究[D].华中农业大学博十学位论文,2003.
    58.傅寿仲,朱耕如主编.江苏油作科学[M].江苏科技出版社,1983.
    59.傅寿仲主编.油菜的形态与生理[M].江苏科技出版社,1981.
    60.高志宏,赵继献,任廷波.氮、磷、钾对油研10号油菜产量和品质的影响[J].山地农业生物学报,2006,25(5):382-389.
    61.郭延平,陈屏昭,张良诚,等.不同供磷水平对温州蜜柑叶片光合作用的影响[J].植物营养与肥料学报,2002,8(2):186-191.
    62.何振立,朱祖祥.十壤对P的吸附特性及其与十壤供P指标间的关系[J].土壤学报,1988,25(4):397-404
    63.姜宗庆.磷素对小麦产量和品质的调控效应及其生理机制[D].扬州大学博士学位论文,2006.
    64.金子渔,沈守江,孙玉昆,等.核酸降解物在水稻生产上的应用及其作用机理的研究:水稻苗期应用的生理作用[J].生物化学与生物物理学报,1975,7(2):139-147.
    65.李刚华,丁艳锋,杨文祥,等.江苏省主要土壤的磷肥指数及适宜磷肥用量[J].十壤通报,2005,36(6):896-898.
    66.李继云,刘秀娣,周伟等.有效利用土壤养分元素的作物育种新技术研究[J].中国科学(B),1995,25(1):41-48
    67.李庆逵,朱兆良,于大仁主编.中国农业持继发展中的肥料问题[M].江西科学技术出版社,1998:52-68.
    68.李银水,鲁剑巍,邹娟,等.湖北省油菜磷肥效应及推荐用量研究[J].中国油料作物学报,2009,31(1):44-50.
    69.李志刚,谢甫绨,张玉铃,等.磷胁迫对大豆不同磷素基因型光合作用的影响[J].内蒙古民族大学学报(自然科学版),2004,19(3):297-299.
    70.李志洪.磷胁迫下不同基因型大豆根系生长和吸磷动力学反应[J].吉林大学学报,1995,17(2):54-57
    71.李志玉,胡琼,廖星,等.优质油菜中油杂8号施用氮磷硼肥的产量和品质效应[J].中国油料作物学报,2005,27(4):59-63.
    72.梁秀兰,林英春,年海,等.低磷胁迫对不同基因型玉米主要生理生化特性的影响[J].作物学报,2005,31(5):667-669.
    73.梁银丽,康绍忠.限量灌水和磷营养对冬小麦产量及水分利用的影响[J].十壤侵蚀与水土保持学报,1997,3(1):61-67
    74.廖红.戈振扬,严小龙.水磷藕合胁迫下植物磷吸收的理想根构型模拟与应用[J].科学通报.2001.46(8):641-646
    75.林休华、薛洪启.油菜氮磷适宜用量及配比试验[J].现代化农业,1996(4):12-13
    76.林郑和,陈荣冰,郭少平.植物对缺磷的生理适应机制研究进展[J].作物杂志,2010(5):5-9.
    77.凌启鸿主编.作物群体质量[M].上海科技出版社,2000.
    78.刘吕智,蔡常被,陈仲雨,等.氮磷钾肥对油菜籽产量品质的影响[J].中国油料,1982(3):25-28
    79.刘后利主编.实用油菜栽培学[M].上海科技出版社,1987.
    80.刘建中.利用植物自身潜力,提高土壤P的生物有效性[J].农业生态研究,1994(2):16-23.
    81.鲁剑巍,陈防,张竹青,等.磷肥用量对油菜产量、养分吸收及经济效益的影响[J].中国油料作物学报,2005,27(1):73-76.
    82.鲁明星,邹娟,鲁剑巍,等.湖北省油菜磷肥施用效果与土壤速效磷分级标准研究[J].中国油料作物学报,2006,28(4):448-452.
    83.鲁如坤,时正元,顾益初.土壤积累态磷的研究,Ⅱ.磷肥的表观积累利用率[J].土壤.1995,27(6):286-289.
    84.罗安程,孙羲,章永松.有机肥对小麦生长的影响及其可能机制[J].土壤通报,1994,25(5):219-221.
    85.罗成秀,等.杂交水稻的需肥特性与肥料管理[A].杂交水稻国际学术讨论会论文集[M].北京:学术期刊出版社,1986:129-134.
    86.罗立新,孙铁珩,靳月华.镉胁迫对小麦叶片细胞膜脂过氧化的影响[J].中国环境科学,1998,18(1):72-75.
    87.倪吾钟,孙羲.有机无机配施对水稻土供钾特性和水稻生长的影响[J].土壤通报,1990,21(4):170-172.
    88.聂艳丽,郑毅,林克惠.根分泌物对土壤中磷活化的影响[J].云南农业大学学报,2002,17(3):281-286.
    89.潘晓华,刘水英李锋,等.低磷胁迫对不同水稻品种叶片膜脂过氧化及保护酶活性的影响[J].中国水稻科学,2003,17(1):597-601.
    90.庞欣,李春俭,张福锁.缺磷胁迫对黄瓜体内磷运输及再分配的影响植物营养与肥料学报[J].1999,5(2):137-143.
    91.邱江,黄秀芳,戚存扣,等.移栽密度和施氮量对宁油14号油菜产量及品质的影响[J].江苏农业科学,2006(4):22-24.
    92.沈善敏主编.中国土壤肥力[M].中国农业出版社,1998:227.
    93.石桃雄,王少思,石磊,等.不同氮、磷水平对“双高”油菜品种宁油7号和“双低”油菜品种Tapidor生长和品质的影响[J].植物营养与肥料学报,2010,16(4):959-964.
    94.苏德纯.从土壤磷的空间分布特征探讨提高磷肥及土壤磷有效性的新途径[J].中国农学通 报.1995,11(1):38-40.
    95.孙羲.唐才贤,章永松等.磷对棉花生理效应及产量的影响[J].土壤,1992,24(2):93-97.
    96.万美亮,邝炎华,陈建勋.缺磷胁迫对甘蔗膜质过氧化及保护酶系统活性的影响[J].华南农业大学学报,1999,20(2):1-6.
    97.王维国,李建龙,韩庆保,等.优质油菜高产施磷技术[J].土壤肥料,1997(4):34-36.
    98.王永锐.杂交水稻“汕优2号”、“汕优6号”和“威优6号”对磷(32P)的吸收分配和干物质增长情况研究[J].中国农业科学,1983,(3):15-19.
    99.王运华.油菜磷营养与磷肥有效施用技术的研究Ⅰ.油菜磷营养的规律性[J].湖北农业科学,1973(7):11-15.
    100.魏世强,王开洪,等.黄红紫泥油菜肥料的效应研究[J].中国油料,1994,16(2):38-42.
    101.吴俊江,刘丽君,钟鹏,等.低磷胁迫对不同基因型大豆保护酶活性的影响[J].大豆科学,2008,27(3):417-421.
    102.武际,郭熙盛,李孝勇,等.连续施用磷钾肥对油菜产量及养分吸收的影响[J].中国油料作物学:报,2006,28(2):180-183,
    103.武杰,李宝珍,谌利,等.不同施肥水平对甘蓝型黄籽油菜含油量的效应研究[J].中国油料作物学报,2004,26(4):59-62.
    104.谢再稚,葛志良.等.白土上油菜磷肥用量试验[J].土壤通报,1995,27(1):54-55.
    105.严小龙,张福锁主编.植物营养遗传学[M].北京:中国农业出版社.1997.
    106.严小龙.热带土壤中菜豆种质碉低P特性的评价[J].植物营养与肥料学报,1995,1(1):30-37.
    107.严正炼,刘安琴.“杂选1号”油菜磷磷钾配施效应的数模研究[J].耕作与栽培,2003(6):33-34.
    108.杨光,左青松,冷锁虎,等.施磷对油菜根茎叶磷素输出及角果中磷素积累的影响[J].安徽农业科学,2010,38(3):1191-1193.
    109.杨光,左青松,殷璀艳,等.甘蓝型油菜氮素吸收利用的杂种优势表现[J].中国油料作物学报,2010,32(4):457-461.
    110.杨淑慎,高俊凤.活性氧、自由基与植物的衰老[J].西北植物学报,2001,21(2):215-220.
    111.姚其华,杨利,赵书军,等.植物吸收养分的数学机理模型研究进展[J].湖北农业科学,1997(2):30-34.
    112.张福锁.土壤与植物营养研究新动态(第一卷)[M].北京:北京农业大学出版社,1992.
    113.张福锁.植物营养生态生理学和遗传学[M].北京:中国科学技术出版社,1993.
    114.张永泰,惠飞虎,左青松,等.施N量对油菜杂种及其亲本成熟期各器官干物质积累的影响[J].上海农业学报,2008,24(1):63-65.
    115.张子龙,李加纳,唐章林,等.播期和密度对甘蓝型黄籽油菜主要品质的影响[J].西南农业大学学报(自然科学版),2005,27(6):791-794.
    116.张子龙,王瑞,李加纳,等.密度和氮素与甘蓝型黄籽油菜主要品质的关系[J].西南农业大学学报(自然科学版),2006,28(3):349-352.
    117.赵红霞.有机肥对水稻根系生长的影响.土壤农化通报.1988(2):71-74.
    118.赵继献,程国平,任廷波,等.不同氮水平对优质甘蓝型黄籽杂交油菜产量和品质性状的影响[J].植物营养与肥料学报,2007,13(5):882-889.
    119.浙江农业大学主编.作物营养与施肥[M].北京:中国农业出版社,1987:220-250.
    120.中国农业科学院油料作物研究所主编.中国油菜栽培学[M].农业出版社,1990.
    121.朱耕如,邓秀兰主编.油菜栽培基本原理[M].江苏科技出版社,1981.
    122.朱洪勋,李贵宝.高产油菜营养吸收规律及施用氮磷钾对产量和品质的影响[J].十壤肥料,1995(5):34-37.
    123.邹娟.鲁剑巍,李银水,等.氮、磷、钾、硼肥对甘蓝型油菜籽品质的影响[J].植物营养与肥料学报,2008,14(5):961-968.
    1. 彭克明,裴保义.农业化学[M].北京:农业出版社,1980:102.
    2. 沈金雄,李志玉,廖星,等.磷对甘蓝型油菜产量及矿质营养吸收与积累的影响[J].作物学报,2006,32(8):1231-1235.
    3. 阎秀兰,段海燕,王运华.甘蓝型油菜不同基因型幼苗磷营养差异的研究[J].中国油料作物学报,2002,24(2):47-49.
    4. 段海燕,王运华,徐芳森,等.不同甘蓝型油菜品种磷营养效率的差异研究[J].华中农业大学学报,2001,20(3):241-245.
    5. 李志玉,郭庆元,伍晓明,等.油菜不同类型品种磷效率特性研究[J].中国油料作物学报,2001,23(4):57-61.
    6. Moll R H, Rampatr E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization[J]. Agron. J,1982,74:562-564.
    7. 董桂春,王余龙,张岳芳,等.不同氮素籽粒生产效率类型灿稻品种产量及其构成的基本特点[J].作物学报,2006,32(10):1511-1518.
    8. 卢艳丽,陆卫平,王继丰,等.不同基因型糯玉米氮素吸收利用效率的研究Ⅰ.氮素吸收利用的基因型差异[J].植物营养与肥料学报,2006,12(3):321-326.
    9. 董召娣,左青松,冷锁虎,等.施N水平对油菜杂交种及其亲本氮素利用效率的影响[J].中国油料作物学报,2008,30(3):366-369.
    10. Zlatko Svecnjak. Zdenko Rengel. Canola cultivars differ in nitrogen utilization efficiency at vegetative stage [J]. Field Crops Res,2006,97(2-3):221-226.
    11.李继云,孙建华.不同小麦品种的根系生理特性,磷的吸收及利用效率对产量影响[J].西北植物学报,2000,20(4):503-510
    12.李永大,罗安程,王为木,等.不同供磷水平下水稻磷素吸收利用和产量的基因型差异[J].十壤通报,2005,26(3):365-370.
    13. Fageria N K Wright R J, Baligar V C. Rice cultivar evaluation for phosphorus use efficiency [J]. P lant and Soi,1 1988,111:105-109
    14.曹黎明,潘晓华.水稻耐低磷基因型种质的筛选与鉴定[J].江西农业大学学报,2000,22(2):162-168
    15. Wissuwa M. Ae N. Genotypic variation for tolerance to phosphorus efficiency in rice and the potential for its exploitation in rice improvement [J].Plant Breeding,2001,120:43-48.
    16.顾世梁.莫惠栋.动态聚类的一种新方法——最小组内平方和法[J].江苏农学院学报,1989,10(4):1-8.
    1. 刘慧,刘景福,刘武定.不同磷营养油菜品种根系形态及生理特性差异研究[J].植物营养与肥料学报,1999,5(1):40-45
    2. 段海燕,徐芳森,王运华.甘蓝型油菜不同磷效率品种苗期根系生长及磷营养的差异[J]植物营养与肥料学报,2002,8(1):65-69
    3. Smith F M, Mudge S R, Rae A L. Phosphate transport in plants[J]. Plant and Soil,2003,248:71-83
    4. Santhy P, Muthuvel P, Murugappan V,et al. Land degradation due to P depletion under intensive cropping in inceptisols[J]. Fert. News 2001 46 (5),65-67
    5. 严小龙,张福锁.植物营养遗传学[M].北京:中国农业出版社,1997
    6. 李庆逵.磷肥的现代化研究[J].土壤通报,1986,17(2):1-7
    7. 刘吕智,蔡常被,陈仲雨,等.氮磷钾肥对油菜籽产量品质的影响[J],中国油料,1982(3):25-28
    8. 朱洪勋,李贵宝.高产油菜营养吸收规律及施用氮磷钾对产量和品质的影响[J],土壤肥料,1995000(005):34-37
    9. 鲁剑巍.陈防,张竹青,等.磷肥用量对油菜产量、养分吸收及经济效益的影响[J].中国油料作物学报,2005,27(1):73-76
    10.武际,郭熙盛,李孝勇,等.连续施用磷钾肥对油菜产量及养分吸收的影响[J].中国油料作物学报,2006,28(2):180—183
    11.杜立宇,梁成华,陈新之.菜园土壤高磷条件对油菜磷、锌含量的影响[J],十壤通报,2003 34(4):330-332
    12. T Lickfett, B Matthaus, L Velasco,et al. Seed yield, oil and phytate concentration in the seeds of two oilseed rape cultivars as affected by different phosphorus supply[J]. European Journal of Agronomy 1999 11:293-299
    13.何文寿.宁夏春小麦磷素利用效率的基因型差异研究,干旱地区农业研究,2003,21(2):1-6
    14.卢艳丽,陆卫平,陆大雷,等.糯玉米磷素分配转移特性的基因型差异[J],中国农业科学,2009,42(5):1559-1567
    15.李永大,罗安程,王为小,等.不同供磷水平下水稻磷素吸收利用和产量的基因型差异,土壤通报,2005,36(3):365-370
    16.宋海星,彭建伟,刘强,等.不同氮素生理效率油菜生育后期氮素再分配特性研究[J].中国农业科学,2008,41(6):1858-1864
    1. 王维国,李建龙,韩庆保,等.优质油菜高产施磷技术[J].土壤肥料.1997(4):34-36.
    2. 严正炼,刘安琴.“杂选1号”油菜磷磷钾配施效应的数模研究[J].耕作与栽培,2003(6):33-34.
    3. 邱江,黄秀芳,戚存扣,等.移栽密度和施氮量对宁油14号油菜产量及品质的影响[J].江苏农业科学,2006(4):22-24.
    4. 武杰,李宝珍,堪利,等.不同施肥水平对甘蓝型黄籽油菜含油量的效应研究[J].中国油料作物学报,2004,26(4):59-62.
    5. 李志玉,胡琼,廖星,等.优质油菜中油杂8号施用氮磷硼肥的产量和品质效应[J].中国油料作物学报,2005,27(4):59-63.
    6. 高志宏,赵继献,任廷波.氮、磷、钾对油研10号油菜产量和品质的影响[J].山地农业生物学报,2006,25(5):382-389.
    7. 石桃雄,王少思,石磊,等.不同氮、磷水平对”双高”油菜品种宁油7号和“双低”油菜品种Tapidor生长和品质的影响[J].植物营养与肥料学报,2010,16(4):959-964.
    8. 赵继献,程国平,任廷波,等.不同氮水平对优质甘蓝型黄籽杂交油菜产量和品质性状的影响[J].植物营养与肥料学报,2007,13(5):882-889.
    9. 邹娟,鲁剑巍,李银水,等.氮、磷、钾、硼肥对甘蓝型油菜籽品质的影响[J].植物营养与肥料学报,2008,14(5):961-968.
    10.张子龙,王瑞,李加纳,等.密度和氮素与甘蓝型黄籽油菜主要品质的关系[J].西南农业大学学报(自然科学版),2006,28(3):349-352.
    11.张子龙,李加纳,唐章林,等.播期和密度对甘蓝型黄籽油菜主要品质的影响[J].西南农业大学学报(自然科学版),2005,27(6):791-794.
    12.胡国智,张炎,胡伟,等.施磷对棉花磷素吸收、利用和产量的影响[J].中国土壤与肥料,2010(4):27-31
    13.张斌,秦岭.植物对低磷胁迫的适应及其分子基础[J].分子植物育种,2010,8(4):776-783.
    14.丁玉川,陈明吕,程滨,等.不同大豆品种磷吸收利用特性比较研究[J].西北植物学报,2005,25(9):1791-1797.
    1.石桃雄,王少思,石磊,等.不同氮、磷水平对“双高”油菜品宁油7号和“双低”油菜品种Papidor生长和品质的影响[J].植物营养与肥料学报,2010,16(4):959-964.
    2. 施卫红,刘文广,吴耀玉.油菜氮、磷、钾配合施用效果研究初报[J].浙江农业科学,2009(2):336-337.
    3. 邹娟,鲁剑巍,陈防,等.氮磷钾硼肥施用对长江流域油菜产量及经济效益的影响[J].作物学报,2009,35(1):87-92.
    4. 李宝珍,王正银,李加纳,等.氮磷钾硼对甘蓝型黄籽油菜产量和品质的影响[J].十壤学报,2005,42(3):479-486.
    5.于飞,周健民,王火焰,等.不同氮肥与磷肥的互作效应生态环境[J].2005,14(6):930-935
    6.鲁剑巍,陈防.张竹青.等.磷钾肥配合施用对汕菜产量及养分积祟的影响[J].2003,25(2):52-55.
    7.田吕,彭建伟,宋海星,等.氮磷钾配比对湘杂油763产量和养分吸收的影响[J],湖南农业大学学报(自然科学版).2010,36(3):263-266.
    8.王树亮,田奇卓,李娜娜,等.不同小麦品种对磷素吸收利用的差异[J].麦类作物学报,2008,28(3):476-483.
    1. 沈金雄,傅廷栋,杨光圣,等.甘蓝型油菜杂种优势及产量性状的遗传改良[J].中国油料作物学报,2005,27(1):5-9.
    2. 高必军,李平,江洪.甘蓝型油菜若干农艺性状与单株产量的关系分析[J].生物数学学报,2007,22(1):137-144.
    3. 邓武明,阳小虎,文凤君,等.甘蓝型油菜产量性状的遗传及相关与通径分析[J].中国油料作物学报,2003,25(4):27-30.
    4. 谌利,李加纳,唐章林,等.甘蓝型黄籽杂交油菜新品种渝黄1号的选育[J].西南农业大学学报,2002,24(1):45-47.
    5. Ali M, Copeland L O, Elias S G, et al. Relationship between genetic distance and heterosis for yield and morphological traits in winter canola (Brassica napus L.) [J]. Theor Appl Genet,1995,91: 118-121.
    6. Pradhan A K, Sodhi Y S, Mukhopadhyay A, et al. Heterosis breeding in Indian mustard (Brassica juncea L. Czern & Coss):analysis of component characters contributing to heterosis for yield [J]. Euphytica,1993,69:219-229.
    7. 刘定富,刘后利.甘蓝型油菜脂肪酸成分的基因作用形式和效应[J].作物学报,1990,16(3):193-199.
    8. 王通强.油菜籽含油量的遗传及杂种优势,贵州农业科学[J].1992(6):37-42.
    9. 戚存扣,盖钧镒,章元明.甘蓝型油菜芥酸含量的主基因+多基因遗传[J].遗传学报,2001,28(2):182-187.
    10. Burnsm J, Barnes S R, Bowman J G, et al. QTL analysis of an intervarietal set of substitution lines in Brassica napus:(i) seed oil content and fatty acid composition [J]. Heredity,2003,90:39-48.
    11.韩继祥.甘蓝型油菜含油量的遗传研究[J].油料学报,1990(2):1-6.
    12.张永泰,惠飞虎,左青松,等.施N量对油菜杂种及其亲本成熟期各器官干物质积累的影响[J].上海农业学报,2008,24(1):63-65
    13.董召娣,左青松,冷锁虎,等.施N水平对油菜杂交种及其亲本氮素利用效率的影响[J].中国油料作物学报,2008,30(3):366-369
    14。杨光,左青松,殷璀艳,等.甘蓝型油菜氮素吸收利用的杂种优势表现.中国油料作物学报[J],2010,32(4):457-461
    15.戚存扣,浦惠明,张洁夫,等.甘蓝型油菜品种间籽粒产量及产量性状杂种优势分析[J].江苏农业学报,2003,19(3):145-150.
    16.刘绚霞,董振生,刘创社,等.甘蓝型优质杂交油菜主要农艺性状配合力与遗传力研究[J].中国油料作物学报,2001,23(3):1-4.
    17.黄永菊,李云吕,陈军,等.新疆野生油菜芥酸含量的遗传分析[J].中国油料作物学报,1999,21(4):15-16,20.
    18.官春云.杂交油菜某些生理特性的研究[M].长沙:湖南科技出版社,1990:435-438.
    19.张书芬,宋文光,傅廷栋.甘蓝型单、双低油菜细胞质雄性不育杂种生理优势[J].中国油料作物学报,1994,16(1):5-9.
    20.黄永菊,赵合句,李培武.杂交油菜生理特性的初步研究[J].湖北农业科学,1994(6):4-8.
    21.刘来福,毛盛贤,黄远樟,等.作物数量性状遗传[M].北京:农业出社,1984:211-285.
    22.李莓,陈卫江.杂交油菜数量性状配合力与遗传力分析湖南农业科学[J].2002,(4):19-21.
    1. 刘慧,刘景福,刘武定.不同磷营养油菜品种根系形态及生理特性差异研究[J].植物营养与肥料学报,1999,5(1):40-45
    2. 段海燕,徐芳森,王运华.甘蓝型油菜不同磷效率品种苗期根系生长及磷营养的差异[J],植物营养与肥料学报,2002,8(1):65-69
    3. Smith F M, Mudge S R, Rae A L. Phosphate transport in plants[J]. Plant and Soil,2003,248:71-83.
    4. Santhy P, Muthuvel P.Murugappan V.et al.Land degradation due to P depletion under intensive cropping in inceptisols[J]. Pert. News 2001 46 (5),65-67.
    5. 严小龙,张福锁.植物营养遗传学[M].北京:中国农业出版社,1997.
    6. 李庆逵.磷肥的现代化研究[J].十壤通报,1986,17(2):1-7.
    7. 鲁如坤,时正元,顾益初.土壤积累态磷的研究,Ⅱ,磷肥的表观积累利用率.土壤.1995,27(6):286-289.
    8. 田吕,彭建伟,宋海星,等.氮磷钾配比对湘杂油763产量和养分吸收的影响[J],湖南农业大学学报(自然科学版),2010,36(3):263-266.
    9.石桃雄,王少思,石磊,等.不同氮、磷水平对“双高”油菜品种宁油7号和“双低”油菜品种Tapidor生长和品质的影响[J].植物营养与肥料学报,2010,16(4):959-964.
    10.施卫红,刘文广,吴耀玉.油菜氮、磷、钾配合施用效果研究初报[J].浙江农业科学,2009(2):336-337.
    11.邹娟,鲁剑巍,陈防,等.氮磷钾硼肥施用对长江流域油菜产量及经济效瓶的影响[J].作物学报,2009,35(1):87-92.
    12.李宝珍,王正银,李加纳,等.氮磷钾硼对甘蓝型黄籽油菜产量和品质的影响[J].土壤学报,2005,42(3):479-486.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700