用户名: 密码: 验证码:
永磁开关磁链直线电机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁开关磁链直线电机(PMFSLM)结合了永磁开关磁链(PMFS)旋转电机和永磁直线电机的双重特点,其永磁体和绕组均置于较短的动子侧,而定子仅有凸极形式的硅钢片构成,结构简单可靠、推力密度高,在应用于诸如轨道交通推进系统等长行程驱动时具有非常突出的成本优势,前景广阔,值得深入研究。
     本文首先简单介绍永磁直线电机的基本概况,较为详细介绍了与PMFS电机相关的双凸极永磁电机的研究发展概况,综述了国内外的相关研究情况,针对永磁开关磁链直线电机研究具体开展了以下一些工作,获得了一些较有价值的成果:
     首先,本文讨论分析了PMFSLM设计中非常关键的动子齿数与定子极数的配合关系对电机性能的影响;推导了PMFSLM的数学模型并建立dq坐标下的电机方程。并以轨道交通推进系统为应用背景,比较分析PMFSLM与传统永磁直线电机的特点;再以6/7极结构PMFSLM为例,详细分析了电机的性能表现。
     接着,提出一种在PMFSLM端部增加综合辅助齿的方法来减小磁阻力,本质上也属于改变动子长度法来减小磁阻力。对比分析了独立辅助齿和综合辅助齿的效果,独立辅助齿只能减小磁阻力,而综合辅助齿对磁阻力以外的其他性能也有改善,效果明显。
     然后,为了更好地分析PMFSLM磁阻力,本文提出一种基于旋转电机模型的磁阻力分量的分离方法,通过将直线电机转换成等效的有槽式旋转电机模型来单独计算齿槽力,实现了磁阻力中两个分量的有效分离,为PMFSLM的分析、特别是磁阻力的分析与优化提供有益的参考。
     最后,本文提出一种新型模块化高容错性PMFSLM结构,在传统PMFSLM基础上省去半数永磁体,绕组采用隔齿绕线方式,并采用模块化设计。相比传统PMFSLM,其具有更高的永磁体利用率、更高的容错能力、更经济便宜的生产制造成本等诸多优点,是一种颇具竞争力的永磁直线电机结构。
Permanent magnet flux-switching linear machines (PMFSLM), which combine the merits of both linear machines and PMFS rotary machines, possess advantages such as simple and robust structures, and high thrust density. It is particularly cost-effective since the expensive magnets and coils are both set on the short mover while the long stator is made of cheap laminations only. The savings in manufacture costs can be a great benefit for applications with long strikes, for instance, for the rail transportation propulsion. Therefore, PMFSLM is a special linear machine with potentially wide application ranges, and deserves deep investigations.
     This dissertation will introduce the developments of permanent magnet (PM) linear machines briefly and doubly salient permanent magnet (DSPM) machines more detailedly, and then review methodically the literatures presented by both domestic and overseas researchers. Related research work on PMFSLM will be summarized in this dissertation.
     Moreover, following research work by the author will be presented. Firstly, the influence of slots/poles combination is discussed since it is a key issue for primary design of PMFSLM. The mathematic model in the dq-frame is established. Then, comparative studies on PMFSLM and conventional PM linear machines for applications of rail transportation propulsions are carried out as an example, and the performance is analyzed in detail for a6/7-pole PMFSLM.
     Then, a new method that comprehensive assistant end teeth are employed on PMFSLM ends to reduce detent force is proposed. This method is similar to those methods modifying a suitable mover core length to minimize detent force. Compared with independent assistant teeth, which can only reduce the detent force, the comprehensive assistant teeth can not only reduce the detent force, but also improve other performance by enhancing the end coils' output.
     Subsequently, in order to analyze the detent forces better, a new simple method to segregate detent force components based on rotary machine models is performed. The rotary model converts the linear machines into complete slotted rotary machines without any ends. Therefore, the slot force can be calculated individually, thus, the detent force is segregated successfully. The segregation of detent force provides enhanced reference for further investigation of detent force in PMFSLMs.
     After that, a modular PMFSLM with high fault tolerant capability is developed. Compared with conventional PMFSLMs, half amount of magnets is taken away in the proposed PMFSLMs. Furthermore, alternative teeth wound and modular design are adopted, which result in many new merits such as a more effective usage of magnets, higher fault tolerance as well as low manufacturing cost for mass producing. Generally speaking, the proposed modular PMFSLM with fault tolerant capability is a competitive PM linear machine for applications in a wide range.
引文
[1]叶云岳,直线电机原理与应用[M],机械工业出版社,北京,2000.
    [2]潘开林,永磁直线电机的驱动特性理论及推力波动优化设计研究[D],浙江大学,杭州,2003.
    [3]张颖,永磁同步直线电机磁阻力分析及控制策略研究[D].华中科技大学,武汉.2008.
    [4]曾理湛,永磁同步直线电机复杂机电耦合系统分析与控制方法[D],华中科技大学,武汉,2011.
    [5]刘晓,空心式永磁直线伺服电机及其驱动控制系统研究[D].浙江大学,杭州,2008
    [6]G. Xiong and S. A. Nasar, Analysis of field and forces in a permanent magnet linear synchronous machine based on the concept of magnetic charge [J], IEEE Trans. Magn., vol.25, pp.2713-2719, May 1989.
    [7]Nicola Bianchi, Silverio Bolognani, et al., Tubular Linear Permanent Magnet Motors:An Overall Comparison [J]. IEEE Trans. on lnd. Appl., vol.39, no.2, MAR./APR.2003,466-475.
    [8]J. Wang, G.W. Jewell, and D. Howe, A general framework for the analysis and design of tubular linear permanent magnet machines [J], IEEE Trans. Magn., vol.35, pp.1986-2000. May 1999.
    [9]J. Wang, and D. Howe. Design Optimization of Radially Magnetized, Iron-Cored, Tubular Permanent-Magnet Machines and Drive Systems [J], IEEE Trans. Magn., vol.40, no.5, Sept.2004, 3262-3277.
    [10]N. Bianchi, S. Bolognani, and F. Tonel, Design criteria of a tubular linear IPM motor [C], in Proc. IEEE IEMDC, Boston, MA. June 18-20,2001, pp.1-8.
    [11]N. Bianchi, Analytical field computation of a tubular PM linear motor [J], IEEE Trans. Magn., vol.36, pp.3798-3801, Sept.2000.
    [12]J. Wang, G. W. Jewell and D. Howe, Design optimization and comparison of tubular permanent magnet machine topologies [J], IEE Proc-Electr. Power Appl. Vol.148, No 5, September 2001,456-464.
    [13]N. Bianchi, S. Bolognani, and J. Corda, Tubular linear motors:A comparison of brushless PM and SR motors [C], in Proc. IEE PEMD Conf., Bath. U.K., Apr.16-18.2002, pp.626-631.
    [14]王淑红,熊光煜.新型筒型永磁动圈式直线电动机气隙磁场解析分析[J],电工技术学报,第22卷,第5期,40-44,2007年5月.
    [15]宋媛,王淑红,圆筒型永磁动圈式直线电动机气隙磁场和推力解析分析[J],微特电机,2011年第5期,12-14.
    [16]王巍,宋志环等,分数槽永磁同步电机气隙磁场的分析与噪声抑制.微电机.1-6.
    [17]Nonkaa S, Ogwaa K., Boundary Element Analysis of Linear Induction Motor for Maglev Vehicle [C], Proc. Int. Conf on Maglev and Linear Drives,1986.171-177.
    [18]Paul Minciunescu, Boundary Element Method in Reduction of Cogging Torque [J]. IEEE Trans. Magn., Vol.34, No.5,1998, pp.2905-2907.
    [19]D. C. J. Krop, L. Encica, and E.A. Lomonova, Analysis of a Novel Double Sided Flux Switching Linear Motor Topology [C], XIX Int. Conf. on Electrical Machines-1CEM 2010, Rome.
    [20]In-Soung Jung, Sang-Baeck Yoon, Jang-Ho Shim, Dong-Seok Hyun, Analysis of Forces in a Short Primary Type and a Short Secondary Type Permanent Magnet Linear Synchronous Motor [J], IEEE Trans. Ener. Conv., Vol.14, No.4, Dec.1999 1265-1270.
    [21]Ki-Chae Lim, Joon-Keun Woo, et al., Detent Force Minimization Techniques in Permanent Magnet Linear Synchronous Motors [J], IEEE Trans. Magn.. vol.38, no.2 MARCH 2002 1157-1160.
    [22]Hong-hao Luo, Jun Wu, and Wen-Sen Chang, Minimizing Thrust Fluctuation in Moving-Magnet Permanent-Magnet Brushless Linear DC Motors [J], IEEE Trans. Magn., vol.43, no.5, MAY 2007. 1968-1972.
    [23]Shuhua Wang, Xudong Wang, et al., Study on Minimizing the Detent Force of PM Linear Brushless DC Motors [C], Electrical Machines and Systems,2008. ICEMS 2008. Int. Conf. on, pp.3430-3434.
    [24]G. Martinez, J. Atencia, et al., Reduction of detent force in flat permanent magnet linear synchronous machines by means of three different methods [C]. in Proc. IEEE Int. IEMDC, Jun.2003, vol.2, pp. 1105-1110.
    [25]In-Soung Jung, Jin Hur, and Dong-Seok Hyun, Performance Analysis of Skewed PM Linear Synchronous Motor According to Various Design Parameters [J]. IEEE Trans. Magn., vol.37. no.5. Sept.2001 3653-3657.
    [26]T Yoshlmura. HJ Rim. et al., Analysis of the Reduction of Detent Force in a Permanent Magnet Linear Synchronous Motor. IEEE Trans. Magn., vol 31, NO 6. NOVEMBER 1995,3728-3730.
    [27]N. Bianchi, S. Bolognani. and A. D. F. Cappello, Back EMF improvement and force ripple reduction in PM linear motor drives [C], in 35th Annu. IEEE Power Electronics Specialist Conf.,2004, pp. 3372-3377.
    [28]N. Bianchi, S. Bolognani and A.D.F. Cappello. Reduction of cogging force in PM linear motors by pole-shifting [J], IEE Proc.-Electr. Power. Appl., Vol.152, No.3,2005, pp.703-709.
    [29]Seok-Myeong Jang, Sung-Ho Lee, and In-Ki Yoon. Design Criteria for Detent Force Reduction of Permanent-Magnet Linear Synchronous Motors With Halbach Array [J], IEEE Trans. Magn., vol.38, no.5, Sept.2002 3261-3263.
    [30]Jan-Peter Jastrzembski. Bernd Ponick, Different Methods for Reducing Detent Force in a Permanent Magnet Linear Synchronous Motor [C], IECON 2010-36th Annu. Conf. on IEEE Industrial Electronics Societ, pp.823-828.
    [31]Sung Whan Youn, Jong Jin Lee, et al., A New Cogging-Free Permanent-Magnet Linear Motor [J], IEEE Trans. Magn., vol.44. no.7, JULY 2008 1785-1790.
    [32]Wei Shi, Chong Xiao, et al.. Optimization on Thrust Ripple of an Axial-Flux Permanent-Magnet Linear Synchronous Machine [C]. Electrical Machines and Systems (ICEMS),2011 Int. Conf. on, pp.1-6.
    [33]Goto, A., Okamoto, T., et al., A New Linear Actuator utilizing Flux Concentration Type Permanent Magnet Arrangement [C], Electrical Machines and Systems (ICEMS).2010 Int. Conf. on. pp.1500-1505.
    [34]Nyambayar Baatar, Hee Sung Yoon, et al. Shape Optimal Design of a 9-pole 10-slot PMLSM for Detent Force Reduction Using Adaptive Response Surface Method [J], IEEE Trans. Magn., vol.45. no. 10, Oct.2009,4562-4565.
    [35]P. J. Hor, Z.Q. Zhu, et al., Minimization of cogging force in a linear permanent magnet motor [J], IEEE Trans. Magn., vol.34, no.5, pp.3544-3547, Sep.1998.
    [36]Z. Q. Zhu. P. J. Hor. et al., Calculation of cogging force in a novel slotted linear tubular brushless permanent magnet motor [J], IEEE Trans. Magn., vol.33. no.5, pp.4098-4100, Sep.1997.
    [37]Masaya Inoue and Kenji Sato, An approach to a suitable stator length for minimizing the detent force of permanent magnet linear synchronous motors [J], IEEE Trans. Magnetics,2000, vol.36, no.4, pp.1890-1893.
    [38]Z. Q. Zhu, X. P. Xia, et al., Reduction of cogging force on slotless linear permanent magnet force [J], IEE Proc. Electr. Power Appl., vol.144, no.4, pp.277-282, July 1997.
    [39]Yu-Wu Zhu, Dae-Hyun Koo, and Yun-Hyun Cho, Detent Force Minimization of Permanent Magnet Linear Synchronous Motor by Means of Two Different Methods [J], IEEE Trans. Magn., vol.44, no. 11. NOVEMBER 2008 4345-4348.
    [40]Y.W. Zhu and Y.H. Cho, Detent Force Reduction in Permanent-Magnet Linear Synchronous Motor Utilizing Auxiliary Poles [C]. ELECTROMOTION 2009-EPE Chapter'Electric Drives" Joint Symposium,1-3 July 2009. Lille,France..
    [41]Sebastian Gruber, Christian Junge, et al.. Reduction of Detent Force Caused by the End Effect of a High Thrust Tubular PMLSM Using a Genetic Algorithm and FEM [C], IECON 2010-36th Annu. Conf. on IEEE Industrial Electronics Society, pp.968-971.
    [42]Dong-Yeup Lee, Jianpei Zhou, et al., Optimal Design of Auxiliary-teeth to Reduce Detent Force by End-effect in Moving Coil Type PMLSM [C], Electromagnetic Field Computation,2006 12th Biennial IEEE Conference on, pp.411-411.
    [43]Yanli Zhang, Jingguo Yuan, et al., Shape Optimization of a PMLSM Using Kriging and Genetic Algorithm [C],2010 5th IEEE Conference on Industrial Electronics and Applications,1496-1499.
    [44]Yuanxiong Cheng, Jiajun Yang, Guoxian Liu, A Novel Low Thrust Ripple 3-Phase 6-Slot Permanent Magnet Linear Synchronous Motor [C], Consumer Electronics, Communications and Networks (CECNet),2011 Int. Conf. on, pp.49-53.
    [45]Neng Xi, Jiajun Yang, et al.. Detent Force Analysis and Structure Improvement of PMLSM [C]. Consumer Electronics, Communications and Networks (CECNet),2011 Int. Conf. on, pp.260-263.
    [46]Yu-wu Zhu. Sang-geon Lee, and Yun-hyun Cho, Topology Structure Selection of Permanent Magnet Linear Synchronous Motor for Ropeless Elevator System [C], Industrial Electronics (ISIE),2010 IEEE International Symposium on, pp.1523-1528.
    [47]Rodrigo Benavides, Peter Mutschler, Detent force compensation in Segmented Long Stator Permanent Magnet Linear Drives using Finite Element Models [C], Power Electronics and Applications,2007 European Conference on, pp.1-10.
    [48]R. Benavides, P. Mutschler, Improved Application of Resonant Controllers for Compensation of Cogging Force Ripple in Long-Stator Permanent-Magnet Linear Machines [C], Optimization of Electrical and Electronic Equipment,2008. OPTIM 2008.11th Int. Conf. on, pp.125-130.
    [49]Yu-Wu Zhu, Sang-Min Jin, et al., Control-Based Reduction of Detent Force for Permanent Magnet Linear Synchronous Motor [J], IEEE Trans. Magn., vol.45, no.6, Jun.2009 2827-2830.
    [50]B. Grcar, P. Cafuta, et al., Control based reduction of pulsating torque for PMAC machines [J], IEEE Trans. Energy Convers., vol.17, no.2. pp.169-175. Jun.2002.
    [51]Y. W. Zhu and Y. H. Cho, Thrust ripples suppression of permanent magnet linear synchronous motor [J], IEEE Trans. Magn., vol.43, pp.2537-2539, Jun.2007.
    [52]S. Clenet, Y. Lefevre, et al., Compensation of permanent magnet motors torque ripple by means of current supply wave shapes control determined by finite element method [J], IEEE Trans. Magn., vol. 29, pp.2019-2023, Mar.1993.
    [53]Carl G. Jeans Rupert J. et al., Methods of Detent Force Reduction in Linear Synchronous Motors [C], Electric Machines and Drives,1999. Int. Conf. IEMD'99, pp.437-439.
    [54]Y. J. Kim. M. Watada and H. Dohmeki, Reduction of the cogging force at the outlet edge of a stationary discontinuous primary linear synchronous motor [J], IEEE Trans. Magn., vol.43, pp.40-45,2007.
    [55]S. E. Rauch and L. J. Johnson. Design principles of flux-switch alternators [J], IEEE Trans. Power Apparatus & Systems, vol.74, no.3. Part Ⅲ, pp.1261-1268. Jul.1955.
    [56]B. Saelioglu, Y. Zhao, et al., A novel doubly salient single phase permanent magnet generator [C]. IEEE Proc.29th Ind. Appl. Soc. Annu. Meeting, vol.1, pp.9-15, Oct.1994.
    [57]D. X. Bian and Q. H. Zhan, A novel single phase doubly salient permanent magnet motor [C], IEEE Proc. Int. Conf. Power Electronics& Drive Systems, vol.2, pp.725-729, Jul.1999.
    [58]X. G. Luo, D. Y. Qin and T. A. Lipo. A novel two phase doubly salient permanent magnet motor [C]. IEEE Proc.31st Ind. Appl. Soc. Annu. Meeting, vol.2. pp.808-815, Oct.1996.
    [59]费伟中,三相永磁开关磁链电机的研究[D],硕士学位论文,浙江大学,杭州,2006.
    [60]Y. Liao and T.A. Lipo, A new doubly salient permanent magnet motor for adjustable speed drives [C], SPEEDAM, Positano, Italy,1992.
    [61]Y. Liao, F. Liang and T.A. Lipo, A novel permanent magnet motor with doubly salient structure [C], IEEE IAS Annual Meeting 1992, Houston, Texas,1992.
    [62]Y. Liao, Design and Performance Evaluation of a New Class of Permanent Magnet Motors with Doubly Salient Structure [D], Ph.D. Thesis, Univ. of Wisconsin-Madison,1992.
    [63]Y. F. Liao, F. Liang and T.A. Lipo, A novel permanent magnet motor with doubly salient structure [J], IEEE Trans. Ind. Appl., vol.31.no.5, pp.1069-1078, Sept./Oct.1995.
    [64]Y. F. Liao and T. A. Lipo, Sizing and optimal design of doubly salient permanent magnet motors [C]. IET 6th Int. Conf. Electrical Machines & Drives, vol.2, pp.452-456, Sept.1993.
    [65]Y. Li, and T. A. Lipo, A doubly salient permanent magnet motor capable of field weakening [C], IEEE Proc.26th Int. Annu. Conf. Power Electronics Specialists, vol.1, pp.565-571, Jun.1995.
    [66]廖海平、陈永校,新型永磁式开关磁阻电动机及其驱动系统研制[J],《中小里电机》1999,26(3),31-33.
    [67]廖海平、陈永校,新型永磁式开关磁阻电动机电磁场的二维有限元分析[J],电机与控制学报,第2卷第3,1998年9月,166-169.
    [68]Ming Cheng, Chau, et al, Static characteristics of a new doubly salient permanent magnet motor, Electric Machines and Drives [C],1999. Int. Conf. IEMD'99,1999, pp.22-24.
    [69]M. Cheng, K. T. Chau, and C. C. Chan, A new doubly salient permanent magnet motor [C], in Proc. IEEE Int. Conf. Power Electron. Drives Energy Syst., Australia,1998, pp.2-7.
    [70]M. Cheng, K. T. Chau and C. C. Chan, Control and operation of a new 8/6-pole split-winding doubly salient permanent magnet motor drive [C], IEEE Proc.37th Ind. Appl. Soc. Annu. Meeting, vol.1, pp. 126-133, Oct.2002.
    [71]Kan, H.P., Chau, K.T., Cheng, M., Development of doubly salient permanent magnet motor flywheel energy storage for building integrated photovoltaic system [C], Applied Power Electronics Conference and Exposition,2001. APEC 2001. Sixteenth Annual IEEE vol.1,2001, pp.314-320 vol.1.
    [72]Chau, K.T., Qiang Sun, et al., Torque ripple minimization of doubly salient permanent-magnet motors [J], Energy Conversion, IEEE Trans. vol.20, Issue:2,2005, pp.352-358.
    [73]Liao, Y., Liang, F., Lipo, T.A., A novel permanent magnet motor with doubly salient structure [C], Industry Applications Society Annual Meeting,1992.Conf. Rec. of the 1992 IEEE, pp.308-314 vol.1.
    [74]Cheng Ming, Chau, K.T., et al.. Inductance measurement of doubly salient permanent magnet motors [C], Electrical Machines and Systems,2001.ICEMS 2001. Proceedings of the Fifth Int. Conf. on, vol. 2, pp.842-845 vol.2.
    [75]Sarlioglu, B., Yifan Zhao, Lipo, T.A., A novel doubly salient single phase permanent magnet generator [C], Industry Applications Society Annual Meeting,1994., Conf. Rec. of the 1994 IEEE, pp.9-15 vol.1.
    [76]Xiaogang Luo, Dinyu Qin, Lipo, T.A., A novel two phase doubly salient permanent magnet motor [C], Industry Applications Conference,1996. Thirty-First IAS Annual Meeting, IAS'96., Conf. Rec. of the 1996 IEEE. vol.2, pp.808-815 vol.2.
    [77]K. T. Chau, M. Cheng and C. C. Chan, Nonlinear magnetic circuit analysis for a novel stator doubly fed doubly salient machine [J]. IEEE Trans. Magn., vol.38, no.5, pp.2382-2384, Sept.2002.
    [78]K. T. Chau, Y. Fan and M. Cheng, A novel three-phase doubly salient permanent magnet machine for wind power generation [C], IEEE Proc.39th lnd. Appl. Soc. Annu. Meeting, vol.1, pp.366-372, Oct. 2004.
    [79]J. Z. Zhang, M. Cheng and X. Y. Zhu, A novel three-phase doubly salient permanent magnet generator [C], IEEE Proc.8th Int. Conf. Electrical Machines & Systems, vol.1, pp.407-411, Sept.2005.
    [80]M. Cheng, K. T. Chau, et al., Static characteristics of a new doubly salient permanent magnet motor [J], IEEE Trans. Energy Convers., vol.16, no.1, pp.20-25, Mar.2001.
    [81]M. Cheng, K. T. Chau, et al., Nonlinear varying-network magnetic circuit analysis for doubly salient permanent-magnet motors [J], IEEE Trans. Magn., vol.36, no.1, pp.339-348, Jan.2000.
    [82]程明,周鹗.蒋全,双凸极变速永磁电机的静态特性[J],电工技术学报,vol.14, no.5, pp.9-13, Oct.1999.
    [83]程明,周鹗.黄秀留,双凸极变速永磁电机的变结构等效磁路模型[J].中国电机工程学报vol. 21, no.5, pp.23-28, May 2001.
    [84]程明,周鹗,新型分裂绕组双凸极变速永磁电机的分析与控制[J],中国科学(E辑)vol.31, no.3, pp.228-237, Jun.2001.
    [85]林明耀,程明,周鹗,新型12/8极双凸极变速永磁电机的设计与分析[J],东南大学学报(自然科学版)vol.32, no.6, pp.944-948, Nov.2002.
    [86]孙强,程明等,新型双凸极永磁电机调速系统的变参数PI控制[J],中国电机工程学报,vol.23, no.6, pp.117-122, Jun.2003.
    [87]金晓华,程明,李文广,基于Matlab/Simulink的双凸极永磁电机建模与仿真[J],微电机,vol.39, no.1, pp.32-35,2006.
    [88]Y. Gao and K. T. Chau, Design of permanent magnets to avoid chaos in doubly salient PM machines [J], IEEE Trans. Magn., vol.40, no.4, pp.3048-3050, Jul.2004.
    [89]M. Cheng and C. C. Chan, Design and analysis of a new doubly salient permanent magnet motor [J], IEEE Trans. Magn.:vol.37, no.4. pp.3012-3020, Jul.2001.
    [90]孟小利,严仰光,双凸极永磁电机的发展及现状[J].南京航天航空大学学报,vol.31, no.3, pp. 330-337, Jun.1999.
    [91]孟小利,严仰光,邓智泉,4/6极与8/12极双凸极永磁电机的比较[J],微特电机vol.28, no.2, pp. 24-25,47,2002.
    [92]李永斌,江建中,邹国膛,新型定子双馈双凸极永磁电机研究[J],中国电机工程学报,vol.25, no. 1,pp.119-123, Jan.2005.
    [93]王周叶,陈世元,电动车用外转子10/8极双凸极永磁电机的特性分析[J],微电机vol.39, no.7. pp.18-21,2006.
    [94]胡勤丰,严仰光,永磁式双凸极电机机械特性[J],电工技术学报,vol.22, no.3, pp.6-12. Mar. 2007.
    [95]X. Y. Zhu, M. Cheng and W. G. Li, Design and analysis of a novel stator hybrid excited doubly salient permanent magnet brushless motor [C], IEEE Proc.8th Int. Conf. Electrical Machines & Systems, vol. 1,pp.401-406, Sept.2005.
    [96]Y. B. Li and C. Mi, Doubly-salient permanent-magnet machine with skewed rotor and six-state commutating mode [J], IEEE Trans. Magn., vol.43, no.9. Part 1, pp.3623-3629, Sept.2007.
    [97]N. K. Sheth and K. R. Rajagopal, Performance of doubly salient permanent magnet motors for parallel and tapered rotor poles [C], IEEE Proc. Int. Conf. Power Electronics, Drives & Energy Systems, pp. 1-5, Dec.2006.
    [98]J. Z. Zhang, M. Cheng, et al., New approach to power equation for comparison of doubly salient electrical machines [C], IEEE Proc.41st Ind. Appl. Soc. Annu. Meeting, vol.3, pp.1178-1185, Oct. 2006.
    [99]W. X. Zhao, M. Cheng, et al.. Fault analysis and remedial strategy in doubly salient permanent magnet machine drives [C], IEEE Proc.10th Int. Conf. Electrical Machines & Systems, pp.420-425, Sept. 2007.
    [100]A. R. C. S. Babu, K. R. Rajagopal and P. R. Upadhyay, Performance prediction of multiphase doubly salient permanent magnet motor having no uniform air gap [J], IEEE Trans. Magn., vol.42, no.10, pp. 3503-3505, Oct.2006.
    [101]C. Ma and B. Zhou, A novel optimal control strategy of turn-on angle and turn-off angle for doubly salient permanent magnet motor [C], IEEE Proc.10th Int. Conf. Electrical Machines & Systems, pp. 534-538, Sept.2007.
    [102]J. R. Hendershot and T. J. E. Miller, Design of brushless permanent magnet motors [M], Oxford, U. K., Magna Physics Publication & Oxford University Press,1994.
    [103]唐任远,现代永磁电机理论与设计[M].机械工业出版社.北京,1997.
    [104]Duane C. Hanselman, Brushless Permanent Magnet Motor Design [M].2nd Edition, Magna Physics Pub. Ohio,2006.
    [105]陈伯时,陈敏逊,交流调速系统[M].机械工业出版社,北京,2006.
    [106]Deodhar, R.P., Andersson, S., et al., The flux-reversal machine:a new brushless doubly-salient permanent-magnet machine [C], Industry Applications Conference,1996. Thirty-First IAS Annual Meeting, IAS'96., Conf. Rec. of the 1996 IEEE pp.786-793 vol.2.
    [107]R. P. Deodhar, S. Andersson, et al., The flux-reversal machine:a new brushless doubly-salient permanent-magnet machine [J], IEEE Trans. Ind. Appl., vol.33, no.4, pp.925-934. Jul./Aug.1997.
    [108]C. Wang, S. A. Nasar, I. Boldea, Three-phase flux reversal machine (FRM) [C]. IEE Proc, Electr. Power Appl., vol.146. no.2, pp.139-146. Mar.1999.
    [109]I. Boldea, J. H. Zhang and S. A. Nasar, Theoretical characterization of flux reversal machine in low-speed servo drives-The pole-PM configuration [J], IEEE Trans. Ind. Appl., vol.38, no.6, pp. 1549-1557, Nov./Dec.2002.
    [110]D. S. More. H. Kalluru, B. G. Fernandes, Outer rotor flux reversal machine for rooftop wind generator [C], IEEE Proc.43rd lnd. Appl. Soc. Annu. Meeting, pp.1-6, Oct.2008.
    [111]I. Boldea, C. X. Wang, et al.. Analysis and design of flux-reversal linear permanent magnet oscillating machine [C], IEEE Proc.33rd Ind. Appl. Soc. Annu. Meeting, vol.1, pp.136-143, Oct.1998.
    [112]S. U. Chung, K. W. Kim, et al. Dynamic simulation and experimental validation of flux reversal linear synchronous motor [C], IEEE Proc.14th Int. Conf. Electromagnetic Field Computation, Biennial, pp.1-1, May 2010.
    [113]S. U. Chung. D. H. Kang. et al., New configuration of flux reversal linear synchronous motor [C], IEEE Proc. Int. Conf. Electrical Machines & Systems, pp.864-867, Oct.2007.
    [114]P. Upadhyay. N. K. Sheth and K. R. Rajagopal, Effect of rotor pole arc variation on the performance of flux reversal motor [C], IEEE Proc. Int. Conf. Electrical Machines & Systems, pp.906-911, Oct. 2007.
    [115]D. S. More, H. Kalluru and B. G. Fernandes, d-q equivalent circuit representation of three-phase flux reversal machine with full pitch winding [C], IEEE Proc. Int. Conf. Power Electronics Specialists, pp. 1208-1214, Jun.2008.
    [116]D. S. More, H. Kalluru and B. G. Fernandes, Comparative analysis of flux reversal machine and fractional slot concentrated winding PMSM [C], IEEE Proc.34th Annu. Conf. Industrial Electronics, pp.1131-1136. Nov.2008.
    [117]D. S. More and B. G. Fernandes, Power density improvement of three phase flux reversal machine with distributed winding [J], IET Elect. Power Appl., vol.4, no.2, pp.109-120. Feb.2010.
    [118]D. S. More and B. G. Fernandes, Analysis of flux-reversal machine based on fictitious electrical gear [J], IEEE Trans. Energy Convers., vol.25, no.4, pp.940-947, Dec.2010.
    [119]G. Vakil, P. Upadhyay, A.Tiwari and D. Miller, Torque ripple reduction in the flux reversal motor by rotor pole shaping and stator excitation [C], IEEE Proc. Int. Conf. Electrical Machines & Systems, pp. 2980-2985. Oct.2008.
    [120]H. Zhu. G. Y. Li, et al., Comparative analysis of the methods to reduce flux linkage in flux reversal machine [C], IEEE Proc. Int. Conf. Electrical Machines & Systems, pp.1065-1067, Oct.2010.
    [121]E. Hoang. A. H. B. Ahmed and J. Lucidarme, Switching flux permanent magnet polyphased synchronous machines [C], IEEE Proc.7th Eur. Conf. Power Electron. & Appl., vol.3. Trondheim, Sept.1997.
    [122]W. Hua, M. Cheng, et al., Analysis and optimization of back-EMF waveform of a novel flux-switching permanent magnet motor [C], IEEE Proc. Int. Conf. Electric Machines & Drives, vol.2, pp.1025-1030, May 2007.
    [123]W. Hua, M. Cheng, et al., Design of flux-switching permanent magnet machine considering the limitation of inverter and flux-weakening capability [C], IEEE Proc.41st Conf. Ind. Appl. Soc. Annu. Meeting, vol.5, pp.2403-2410, Oct.2006.
    [124]Y. Pang, Z. Q. Zhu, et al.. Investigation of iron loss in flux-switching PM machines [C], IET Proc.4th Int. Conf. Power Electronics, Machines & Drives, pp.460-464. Apr.2008.
    [125]Z. Q. Zhu. Y. Pang, et al.. Analysis and reduction of magnet eddy current loss in flux-Switching permanent magnet machines [C], IET Proc.4th Int. Conf. Power Electronics, Machines & Drives, pp. 120-124, Apr.2008.
    [126]Y. Pang, Z. Q. Zhu, et al., Eddy current loss in the frame of a flux-switching permanent magnet machine [J], IEEE Trans. Magn., vol.42, no.10, pp.3413-3415, Oct.2006.
    [127]A. S. Thomas, Z. Q. Zhu and G. W. Jewell, Proximity loss study in high speed flux-switching permanent magnet machine [J], IEEE Trans. Magn., vol.45, no.10, pp.4748-4751, Oct.2009.
    [128]Z. Q. Zhu, Y. Pang, et al., Influence of design parameters on output torque of flux-switching permanent magnet machines [C], IEEE Proc. Conf. Vehicle Power & Propulsion, Harbin, China, pp. 1-6, Sept.2008.
    [129]W. Hua, Z. Q. Zhu, et al., Comparison of flux-switching and doubly-salient permanent magnet brushless machines [C], IEEE Proc.8th Int. Conf. Electrical Machines & Systems, vol.1, pp.165-170. Sept.2005.
    [130]A. S. Thomas, Z. Q. Zhu and G. W. Jewell, Comparison of flux-switching and surface mounted permanent magnet generator for aerospace applications [C], IET Proc.5th Int. Conf. Power Electronics, Machines & Drives, pp.1-5, Apr.2010.
    [131]Y. Pang, Z. Q. Zhu, et al., Comparative study of flux-switching and interior permanent magnet machines [C], IEEE Proc. Int. Conf. Electrical Machines & Systems, pp.757-762, Oct.2007.
    [132]Y. Chen, S. Chen, et al., Starting torque of single-phase flux-switching permanent magnet motors [J], IEEE Trans. Magn., vol.42. no.10, pp.3416-3418. Oct.2006.
    [133]Y. Chen, Z. Q. Zhu and D. Howe, Three-dimensional lumped-parameter magnetic circuit analysis of single-phase flux-switching permanent-magnet motor [J]. IEEE Trans, Ind. Appl., vol.424. no.6, pp. 1701-1710, Nov./Dec.2008.
    [134]Z. Q. Zhu, J. T. Chen, et al., Analysis of a novel multi-tooth flux-switching PM brushless AC machine for high torque direct-drive applications [J]. IEEE Trans. Magn., vol.44, no.11, pp.4313-4316, Nov. 2008.
    [135]J. T. Chen, Z. Q. Zhu and D. Howe, Stator and rotor pole combinations for multi-tooth flux-switching permanent-magnet brushless AC machines [J], IEEE Trans. Magn., vol.44, no.12, pp.4659-4567, Dec. 2008.
    [136]A. S. Thomas. Z. Q. Zhu, et al., Multiphase flux-switching permanent-magnet brushless machine for aerospace application [J], IEEE Trans. lnd. Appl., vol.45, no.6, pp.1971-1981, Nov./Dec.2009.
    [137]R. L. Owen, Z. Q. Zhu, et al., Alternate poles wound flux-switching permanent-magnet brushless AC machines [J], IEEE Trans. lnd. Appl., vol.46, no.2, pp.790-797. Mar./Apr.2010.
    [138]J. T. Chen and Z. Q. Zhu, Winding configurations and optimal stator and rotor pole combination of flux-switching PM brushless AC machines [J], IEEE Trans. Energy Convers., vol.25, no.2, pp. 293-302. Jun.2010.
    [139]J. T. Chen and Z. Q. Zhu, Comparison of all- and alternate-poles-wound flux-switching PM machines having different stator and rotor pole numbers [J]. IEEE Trans. Ind. Appl., vol.46, no.4, pp. 1406-1415, Jul./Aug.2010.
    [140]J. T. Chen, Z. Q. Zhu. et al., Comparison of losses and efficiency in alternate flux-switching permanent magnet machines [C], IEEE Proc.19th Int. Conf. Electrical Machines, pp.1-6, Sept.2010.
    [141]J. T. Chen, Z. Q. Zhu, et al., A novel hybrid excited flux-switching brushless AC machines for EV/HEV applications [C], IEEE Proc. Int. Conf. Vehicle Power & Propulsion, pp.1-6, Sept.2010.
    [142]J. T. Chen, Z. Q. Zhu, et al., A novel E-core switched-flux PM brushless AC machine [J], IEEE Trans. Ind. Appl., vol.47, no.3, pp.1273-1282, May/Jun.2011.
    [143]黄志文,三相永磁开关磁链电机的研究[D],硕士学位论文,浙江大学,杭州,2008.
    [144]W. Hua and M. Cheng, Inductance characteristics of 3-phase flux-switching permanent magnet machine with doubly-salient structure [C], IEEE Proc.5th Int. Conf. Power Electronics & Motion Control, vol.3, pp.1-5, Aug.2006.
    [145]花为,程明等,新型磁通切换型双凸极永磁电机的静态特性研究[J],中国电机工程学报,vol. 26, no.13, pp.129-134, Jul.2006.
    [146]W. Hua, M. Cheng, Z. Q. Zhu and D. Howe, Study on static characteristics of a novel two-phase flux-switching doubly-salient permanent magnet machine [J], China Trans. Eletrotech. Soc., vol.21, no. 6, pp.70-77, Jun.2006.
    [147]J. Zhang, Z. Chen and M. Cheng, Design and comparison of a novel stator interior permanent magnet generator for direct-drive wind turbines [J],IET Renew. Power Gener.. vol.1, no.4, pp.203-210, Dec. 2007.
    [148]J. Zhang, M. Cheng and Z. Chen, Investigation of a new stator interior permanent magnet machine [J], IET Electr. Power Appl., vol.2. no.2, pp.77-87, Mar.2008.
    [149]W. Hua and M. Cheng. Cogging torque reduction of flux-switching permanent magnet machines without skewing [C], IEEE Proc. Int. Electrical Machines and Systems, pp.3020-3025. Oct.2008.
    [150]W. Hua, M. Cheng, et al., Optimal design of flux-switching permanent magnet machine based on finite element analysis [C], IEEE Proc.12th Int. Conf. Electromagnetic Field Computation, Biennial, pp.333-333,2006.
    [151]沈勇环,陈益广,赵维友.削弱反磁通电机齿槽转矩的两种新方法[J],电工技术学报,vol.22, no.7, pp.141-144, Jul.2007.
    [152]沈勇环,陈益广等,一种减小磁通反向电机齿槽转矩的新方法[J].微电机,vol.42. no.11. pp. 60-63.2007.
    [153]J. Y. Yang, Y. Deng, et al., Cogging torque analysis of flux-switching permanent magnet motor [C], IEEE Proc. Int. Conf. E-Product E-Service & E-Entertainment, pp.1-4. Nov.2010.
    [154]Z. X. Fang, Y. Wang, et al., Design and analysis of a novel flux-switching permanent magnet integrated-starter-generator [C], IET Proc.4th Conf. Power Electronics, Machines & Drives, pp. 106-110, Apr.2008.
    [155]方宗喜,新型永磁开关磁链起发电机的研究[D],硕士学位论文,浙江大学,杭州,2008.
    [156]W. Z. Fei and J. X. Shen, Comparative study and optimal design of PM switching flux motors [C], IEEE Proc.41st Conf. Universities Power Engineering, vol.2, pp.695-699, Sept.2006.
    [157]费伟中,沈建新,新型永磁开关磁链电机[J],微特电机,pp.1-3,7, vol.34. no.8,2006.
    [158]费伟中,沈建新.转子斜极对永磁开关磁链电机性能影响的研究[J],微电机,vol.40, no.2. pp. 1-4,2006.
    [159]黄志文.沈建新,等,用于弱磁扩速运行的三相6/5极永磁开关磁链电机的分析与优化设计[J].中国电机工程学报,vol.28. no.30, pp.61-66, Oct.2008.
    [160]Y. Wang, Z. W. Huang, et al., Comparison and study of 6/5-and 12/10-pole permanent magnet flux-switching motors considering flux-weakening capability [C], IEEE Proc. Int. Conf. Electrical Machines & Systems, pp.3262-3265, Oct.2008.
    [161]黄志文,沈建新等,永磁开关磁链电机弱磁运行的结构与性能[J],浙江大学学报(工学版),vol. 43, no.3, pp.578-583, Mar.2009.
    [162]J. T. Chen and Z. Q. Zhu, Influence of the rotor pole number on optimal parameters in flux-switching PM brushless AC machines by the lumped-parameter magnetic circuit model [J]. IEEE Trans. Ind. Appl., vol.46, no.4, pp.1381-1388, Jul./Aug.2010.
    [163]Z. Q. Zhu, J. T. Chen, et al., Modeling of end-effect in flux-switching permanent magnet machines [C]. IEEE Proc. Int. Conf. Electrical Machines & Systems, pp.943-948, Oct.2007.
    [164]J. H. Lee, T. H. Lee and S. C. Lee, Optimum design criteria for maximum torque density & minimum torque ripple of flux switching motor using response surface methodology [C], IEEE Proc.14th Int. Conf. Electromagnetic Field Computation, Biennial, pp.1-1, May 2010.
    [165]A. Y. Chen. R. Nilssen and A. Nysveen, Analytical design of a high-torque flux-switching permanent magnet machine by a simplified lumped parameter magnetic circuit model [C], IEEE Proc.19th Int. Conf. Electrical Machines, pp.1-6. Sept.2010.
    [166]G. Zhang. M. Cheng and W. Hua, Analysis of flux-switching permanent-magnet machine by nonlinear magnetic network model with bypass-bridges [C], IEEE Proc. Int. Conf. Electrical Machines & Systems, pp.1787-1791. Oct.2010.
    [167]G. Zhang, M. Cheng, et al., Analysis of flux-switching permanent-magnet machine by nonlinear magnetic network model considering saturation [C], IEEE Proc.14th Int. Conf. Electromagnetic Field Computation, Biennial, pp.1-1. May 2010.
    [168]D. H. Wang and X. H. Wang, Analysis of static performance for flux-switching motor by nonlinear equivalent magnetic circuit model [C], IEEE Proc. Int. Conf. Electrical Machines & Systems, pp. 1661-1665, Oct.2010.
    [169]E. Ilhan. J. Paulides, et al., Tooth contour method implementation for the flux-switching PM machines [C], IEEE Proc.19th Int. Conf. Electrical Machines, pp.1-6, Sept.2010.
    [170]E. Hoang, M. Lecrivain, M. Gabsi, A new structure of a switching flux synchronous polyphased machine with hybrid excitation [C], IEEE Proc. Eur. Conf. Power Electronics. & Appl., pp.1-8, Sept. 2007.
    [171]E. Hoang, M. Lecrivain, M. Gabsi,3-D thermal model of an hybrid excitation flux switching synchronous machine using a 2-D FE method software [C], IEEE Int. Sympo. Power Electronics, Electrical Drives Automation & Motion, pp.101-104, Jun.2010.
    [172]E. Hoang, S. Hlioui, et al., Experimental comparison of lamination material case of switching flux synchronous machine with hybrid excitation [C], IEEE Proc.13th Eur. Conf. Power Electronics. & Appl., pp.1-7, Sept.2009.
    [173]E. Sulaiman. T. Kosaka. et al., Performance Analysis of Permanent Magnet Flux Switching Machine with Hybrid Excitation [C], Proc. Int. Conf. on Electrical Energy and Industrial Electronics System (EEIES 2009), Dec 2009.
    [174]E. Sulaiman, T. Kosaka, et al., Design of 12-slot 10-pole permanant magnet flux-switching machine with hybrid excitation for hybrid electric vehicle [C], IET Proc.5th Int. Conf. Power Electronics. Machines & Drives, pp.1-5, Apr.2010.
    [175]E. Sulaiman, T. Kosaka, et al., Design Improvement and Performance Analysis of 12Slot-10Pole Permanent Magnet Flux Switching Machine with Field Excitation Coils [C], The 5th International Power Engineering and Optimization Conference (PEOCO2011), Shah Alam, Selangor, Malaysia:6-7 June 2011.
    [176]Sulaiman, E., Kosaka, T., Matsui, N., A novel hybrid excitation flux switching synchronous machine for a high-speed hybrid electric vehicle applications [C], Electrical Machines and Systems (ICEMS). 2011 Int. Conf. on, Aug.2011, pp 1-6.
    [177]E. Sulaiman, T. Kosaka, and N. Matsui, Design and performance of 6-slot 5-pole permanent magnet flux switching machine with hybrid excitation for hybrid electric vehicle applications [C], in Proc. 2010 Int. Power Electronics Conf., pp.1962-1968.
    [178]E. Sulaiman, T. Kosaka. and N. Matsui. FEA-based design and parameter optimization study of 6-slot 5-pole PMFSM with field excitation for Hybrid Electric Vehicle [C], Power and Energy (PECon),2010 IEEE Int. Conf. on 2010, pp.206-211.
    [179]E. Sulaiman, T. Kosaka, and N. Matsui, High Power Density Design of 6-Slot-8-Pole Hybrid Excitation Flux Switching Machine for Hybrid Electric Vehicles [J]. IEEE Trans. Magn., vol.47. no. 10, Oct.2011,pp4453-4456.
    [180]E. Sulaiman. T. Kosaka. and N. Matsui, Parameter Optimization Study and Performance Analysis of 6S-8P Permanent Magnet Flux Switching Machine with Field Excitation for High Speed Hybrid Electric Vehicles [C], Power Electronics and Applications (EPE 2011). Proceedings of the 2011-14th European Conference on, pp.1-9.
    [181]W. Hua, M. Cheng and G. Zhang, A novel hybrid excitation flux-switching motor for hybrid vehicles [J]. IEEE Trans. Magn., vol.45. no.10, pp.4728-4731, Oct.2009.
    [182]华为,程明,混合励磁型磁通切换电机[P],中国专利申请CN200810100789.2.
    [183]W. Hua, G. Zhang, et al., Comparison of flux-regulation capability of a hybrid-excited flux-switching machine with different magnet materials [C], IEEE Proc.14th Int. Conf. Electromagnetic Field Computation, Biennial, pp.1-1. May 2010.
    [184]华为,董广鹏,程明,混合励磁型磁通切换电机电感特性分析[J],中国科技论文在线,vol.5,no.8,pp.637-642,Aug.2010.
    [185]G. P. Dong, M. Cheng and W. Hua, Modeling of a novel hybrid-excited flux-switching machine drives for hybrid electrical vehicles [C], IEEE Proc. Int. Conf. Electrical Machines & Systems, pp. 839-843, Oct.2010.
    [186]沈建新,王灿飞,混合励磁型永磁开关磁链电机[P],中国专利申请CN200810120973.3.
    [187]沈建新,王灿飞,混合励磁开关磁链电机[P],中国专利申请CN200910098787.9.
    [188]沈建新,王灿飞,混合励磁型开关磁链电机[P],中国专利申请CN200910098789.8.
    [189]王宇,邓智泉等,并联式混合励磁开关磁链电机[P],中国专利申请CN200910025636.0.
    [190]王宇,邓智泉等,串联式混合励磁开关磁链电机[P],中国专利申请CN200910030774.8.
    [191]王宇,邓智泉等,混合励磁开关磁链电机[P],中国专利申请CN200910030775.2.
    [192]吉敬华,孙玉坤等,新型定子永磁式容错电机的工作原理和性能分析[J],中国电机工程学报,vol.28. no.21, pp.96-101, Jul.2008.
    [193]T. Raminosoa, C. Gerada. Novel fault tolerant design of flux switching machines [C], IET Proc.5th Int. Conf. Power Electronics, Machines & Drives, pp.1-6. Apr.2010.
    [194]T. Raminosoa, C. Gerada, Fault tolerant winding technology comparison for flux switching machine [C]. IEEE Proc.19th Int. Conf. Electrical Machines, pp.1-6, Sept.2010.
    [195]T. Raminosoa, C. Gerada, A comparative study of permanent magnet-synchronous and permanent magnet-flux switching machines for fault tolerant drive systems [C], IEEE Proc. Int. Conf. Energy Conversion Congress & Exposition, pp.2471-2478, Sept.2010.
    [196]W. X. Zhao, M. Cheng, et al., A new modular flux-switching permanent-magnet machine using fault-tolerant teeth [C], IEEE Proc.14th Int. Conf. Electromagnetic Field Computation, Biennial, pp. 1-1, May 2010.
    [197]Y. Wang, Z. Q. Deng, X. L. Wang, A novel fault-tolerant multi-tooth flux-switching motor with hybrid excitation for electro-mechanical actuator [C], IEEE Proc.14th Int. Conf. Electromagnetic Field Computation, Biennial, pp.1-1, May 2010.
    [198]W. X. Zhao. M. Cheng, et al., A redundant flux-switching permanent magnet motor drive for fault-tolerant applications [C], IEEE Proc. Int. Conf. Vehicle Power & Propulsion, Harbin, China, pp. 1-6. Sept.2008.
    [199]W. X. Zhao. M. Cheng, et al., Remedial operation of a fault-tolerant flux-switching permanent magnet motor for electric vehicle applications [C], IEEE Proc. Int. Conf. Vehicle Power & Propulsion, pp.1-6, Sept.2010.
    [200]张磊,顾娟,轴向磁场磁通切换永磁电机定子结构参数优化[J],防暴电机,vol.44, no.151, pp. 11-17,2009.
    [201]李婉,李鑫,张磊,轴向磁场磁通切换型永磁电机电感计算[J],防暴电机.vol.45, no.152. pp. 4-9,2010.
    [202]林明耀,张磊,李鑫,轴向磁场磁通切换永磁电机齿槽转矩分析[J],电机与控制学报,vol.13, no.6, pp.787-791, Nov.2009.
    [203]林明耀,张磊,磁通切换型轴向磁场永磁电机定位力矩分析[J],东南大学学报(自然科学版),vol.40,no.2,pp.296-300,Mar.2010.
    [204]张磊,林明耀,李鑫,基于有限元法的新型轴向磁场磁通切换型永磁电机齿槽转矩分析[J],微电机vol.43.no.3, pp.18-20,2010.
    [205]J. H. Yan, H. Y. Lin, et al., Magnetic field analysis of a novel flux switching transverse flux permanent magnet wind generator with 3-D FEM [C], IEEE Proc. Int. Conf. Power Electronics and Drive System, Taipei, pp.332-335, Nov.2009.
    [206]颜建虎,林鹤云,冯奕,磁通切换型横向磁通永磁风力发电机[J].中国电机工程学报,vol.30, no.21. pp.67-72, Jul.2010.
    [207]Charles J. Flynn, Norman B. Talsoe, Jamie J. Childress, Parallel Path Magnetic Technology for High Efficiency Power Generators and Motor Drives [C], Space Technology and Applications International Forum-STAIF 2006, pp.1205-1212.
    [208]Charles J. Flynn, Methods of controlling the path of magnetic flux from a permanent and devices incorporating the same [P], United States patent 6.246.561B1.
    [209]http://www.flynnresearch.net/technology/PPMT%20Technology.htm.
    [210]J. Wang. W. Wang, et al., A tubular flux-switching permanent magnet machine [J], Journal of Applied Physics, vol.103. no.7, pp.07F105-07F105-3, Apr.2008.
    [211]J. B. Wang, W. Y. Wang, et al., Design considerations for tubular flux-switching permanent magnet machines [J], IEEE Trans. Magn., vol.44, no.11, pp.4026-4032, Nov.2008.
    [212]Z.Q. Zhu, X. Chen, et al., Novel linear flux-switching permanent magnet machines [C], IEEE Proc. Int. Electrical Machines and Systems, pp.2948-2953, Oct.2008.
    [213]W. Min, J. T. Chen, et al., Optimization of linear flux switching permanent magnet motor [C], IEEE Proc. Int. Conf. Vehicle Power & Propulsion, pp.1-6, Sept.2010.
    [214]W. Min, J. T. Chen, et al., Optimization and comparison of novel E-core and C-core linear switched flux PM machines [J], IEEE Trans. Magn., vol.47, no.8, pp.2134-2141, Aug./Jun.2011.
    [215]D. C. J. Krop. L. Encica, et al., Analysis of a novel double sided flux switching linear motor topology [C], IEEE Proc.19th Int. Conf. Electrical Machines, pp.1-6, Sept.2010.
    [216]D. C. J. Krop, L. Encica and E. A. Lomonova, Hybrid modeling method for the analysis of a linear flux switching machine [C], IEEE Proc.14th Int. Conf. Electromagnetic Field Computation, Biennial, pp.1-1, May 2010.
    [217]曹瑞武,程明等.磁路互补型模块化磁通切换永磁直线电机[J],中国电机工程学报.vol.31, no. 6, pp.58-65, Feb.2011.
    [218]L. Huang, H. T. Yu. et al., Static characteristics of a novel flux-switching permanent magnet linear motor [J]. Journal of Southeast University (English Edition), vol.27, no.1, pp.26-30, Mar.2011.
    [219]S. G. Zhou, H. T. Yu, et al., Transient characteristics analysis of linear flux-switching permanent magnet machines for precision control [J]. Journal of Southeast University (English Edition), vol.27, no.1, pp.31-35, Mar.2011.
    [220]贾红云,程明等,磁通切换永磁电机等效模型与控制策略分析[J],电机与控制学报vol.13, no. 5, pp.631-637. Sept.2009.
    [221]D.C. Hanselman, Effect of skew, pole count and slot count on brushless motor radial force, cogging torque and back EMF. Electric Power Applications [J], IEE Proceedings Volume 144, Issue 5, Sept. 1997 pp325-330.
    [222]Z. Q. Zhu, D. Ishak. et al., Unbalanced magnetic forces in permanent magnet brushless machines with diametrically asymmetric disposition of phase windings [J], IEEE Trans. on Industry Applications, vol.43, no.6, pp.1544-1553,2007.
    [223]U. Hoefer. A. Jack, and B. Mecrow, Unbalanced magnetic pull in high-speed brushless permanent magnet motors-experimental observations and results [C], Proc. Int. Conf. on Electrical Machines, (ICEM), paper no.426,2006.
    [224]Yoneda. M., Shoji. M., Kim, Y. and Dohmeki, H., Novel selection of the slot/pole ratio of the PMSM for auxiliary automobile [C],41st IAS Annu. Meeting Ind. App. Conf.2006, Conf. Rec, Vol.1, pp. 8-12.
    [225]Zhu, Z.Q.. Fractional slot PM brushless machines and drives for electric and hybrid propulsion systems [C], plenary speech the Int. Conf. and Exhibition on Ecological Vehicles and Renewable Energies (EVER'09), Monaco.
    [226]C.F. Wang, et al. Design issues of an IPM motor for EPS, COMPEL:The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Vol.31 No.1,2012, pp.71-87.
    [227]W. Z. Fei, J. X. Shen. et al., Design and Analysis of a New Outer-Rotor Permanent-Magnet Flux-Switching Machine for Electric Vehicle Propulsion [J], COMPEL:The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol.30. No.1, January 2011, pp.48-61.
    [228]Y. Wang, M. J. Jin. et al., An outer-rotor flux-switching permanent magnet machine for traction applications [C], IEEE Energy Conversion Congress and Exposition (ECCE 2010), pp.1723-1730, Sept.2010.
    [229]汪昱,永磁开关磁链电机结构与控制的研究[D],浙江大学,杭州.2011.
    [230]J. T. Chen and Z. Q. Zhu, Winding configurations and optimal stator and rotor pole combination of flux-switching PM brushless AC machines [J], IEEE Trans. Energy Convers., vol.25, no.2, pp. 293-302. Jun.2010.
    [231]刘建强,直线电机轨道交通牵引传动系统研究[D],北京交通大学,北京,2008.5.
    [232]游高祥,广州地铁4号线车辆直线电机烧损原因分析[J],机车电传动,2009年第1期.
    [233]童昕宏,磁浮交通同步电机计算及模拟仿真软件设计[D],浙江大学.杭州,2006.
    [234]B. Ackermann, J. H. H. Janssen, et al., Van Steen, New technique for reducing cogging torque in class of brushless motors [C], IEE Proc. B. Electr. Power Appl., vol.139, no.4, pp.315-320, Jul.1992.
    [235]T. Li and G. R. Slemon, Reduction of cogging torque in permanent magnet motors [J], IEEE Trans. Magn., vol.24, no.6, pp.2901-2903, Nov.1988.
    [236]Z. Q. Zhu and D. Howe, Influence of design parameters on cogging torque in permanent magnet machines [J], IEEE Trans. Energy Convers., vol.15, no.4, pp.407-412, Dec.2000.
    [237]T. Ishikawa and G. R. Slemon, A method of reducing ripple torque in permanent magnet motors without skewing [J], IEEE Trans. Magn., vol.29, no.2, pp.2028-2031, Mar.1993.
    [238]C. Studer, A. Keyhani, et al., Study of cogging torque in permanent magnet machines [C], IEEE Proc. 32nd Ind. Appl. Soc. Annu. Meeting, New Orleans, LA, vol.1, pp.42-49, Oct.1997.
    [239]王道涵,王秀和,张冉,丁婷婷,不等宽永磁体削弱表面永磁电机齿槽转矩方法[J],电机与控制学报,vol.12, no.4, pp.380-384. Jul.2008.
    [240]Y. S. Kim, T. H. Kim, et al.. Various design techniques to reduce cogging torque in flux-reversal machines [C], IEEE Proc.8th Int. Conf. Electrical Machines & Systems, vol.1, pp.261-263, Sept. 2005.
    [241]M. Goto and K. Kobayashi, An analysis of the cogging torque of a DC motor and a new technique of reducing the cogging torque [J], Electr. Eng. Jpn., vol.103. no.5, pp.113-120, Sept./Oct.1983.
    [242]K. Kobayashi and M. Goto. A brushless DC motor of a new structure with reduced torque fluctuations [J], Electr. Eng. Jpn.. vol.105. no.3, pp.104-112, Jun.1985.
    [243]Y. Wang, J. X. Shen. et al.. Design techniques for reducing cogging torque in PM flux-switching machines [C], Doctoral Forum of China 2008, Chendou, China, pp.1587-1593, Nov.2008.
    [244]J. D. L. Ree and N. Boules, Torque production in permanent-magnet synchronous motors [J], IEEE Trans. Ind. Appl., vol.25, no.1, pp.107-112, Jan./Feb.1989.
    [245]王道涵.王秀和,丁婷婷等,基于磁极不对称角度优化的内置式永磁无刷直流电动机齿槽转矩削弱方法[J],中国电机工程学报,vol.28, no.9, pp.66-70. Mar.2008.
    [246]T. M. Jahns and W. L. Soong, Pulsating torque minimization techniques for permanent magnet AC motor drives-A review [J]. IEEE Trans. Ind. Electr., vol.43, no.2, pp.321-330, Apr.1996.
    [247]R. P. Deodhar, D. A. Staton, et al., Prediction of cogging torque using the flux-MMF diagram technique [J], IEEE Trans. Ind. Appl., vol.32, no.3, pp.569-576, May/Jun.1996.
    [248]K. H. Kim. D. J. Sim and J. S. Won, Analysis of skew effects on cogging torque and BEMF for BLDCM [C], IEEE Rec.26th Ind. Appl. Soc. Annu. Meeting, Dearborn, MI, vol.1, pp.191-197, Sept. 1991.
    [249]D. C. Hanselman, Effect of skew, pole count and slot count on brushless motor radial force, cogging torque and back EMF [C], IEE Proc. Elect. Power Appl.. vol.144, no.5, pp.325-330, Sept.1997.
    [250]N. Bianchi and S. Bolognani, Design techniques for reducing the cogging torque in surface-mounted PM motors [J], IEEE Trans. Ind. Appl., vol.38, no.5, pp.1259-1265, Sept./Oct.2002.
    [251]M. S. Islam, S. Mir and T. Sebastian, Issues in reducing the cogging torque of mass-produced permanent-magnet brushless DC motor [J], IEEE Trans. Ind. Appl., vol.40, no.3, pp.813-820, May /Jun.2004.
    [252]Franco Leonardi et al. Permanent magnet machines with offset pole spacing [P], United Stateds patent, US8018109B2.
    [253]C. C. Hwang, M. H. Wu and S. P. Cheng. Influence of Pole and slot combinations on cogging torque in fractional slot PM motors [J], Journal of Magnetism and Magnetic Materials, Volume 304, Issue 1, p.e430-e432.
    [254]Z. Q. Zhu and D. Howe, Synthesis of cogging-torque waveform from analysis of a single stator slot [J], IEEE Trans. Ind. Appl., vol.42, no.3, pp.650-657, May/Jun.2006.
    [255]程远雄,永磁同步直线电机推力波动的优化设计研究[D],华中科技大学,武汉,2010.
    [256]胡之光,电机电磁场的分析与计算[M],机械工业出版社,北京,1989.
    [257]汤蕴,电机内的电磁场[M],北京:科学出版社,1998.
    [258]M. Inoue. An approach to a suitable stator length for minimizing the detent force of permanent magnet linear synchronous motors [J], IEEE Trans. Mag. vol.36, no.4, pp.1890-1893,2000.
    [259]潘开林,傅建中,陈子辰,永磁同步直线电机的磁阻力分析及其最小化研究[J],中国电机工程学报.2004,24(4):112-115.
    [260]Z.Q. Zhu, Z. Xia, et al., Reduction of cogging force in slotless linear permanent magnet motors [J], IEE Proc.-Electr. Power Appl., vol.144, no.4, pp.277-282,1997.
    [261]夏加宽,高精密永磁直线电机端部效应推力波动及补偿策略研究[D],沈阳工业大学,沈阳,2006.
    [262]汪旭东,袁世鹰等,基于场路结合的永磁直线同步电机的解析计算[J],微电机,2001,34(1),P15-17,56.
    [263]Zesheng Deng, Boldea, I., Nasar. S., Fields in permanent magnet linear synchronous machines [J], IEEE Trans. Magnetics, Vol.22 (2), P107-112,1986.
    [264]焦留成,袁世鹰,永磁直线同步电动机等效电路参数计算[J],中国电机工程学报,2002,22(3),P12-16.
    [265]倪光正,杨仕友等,工程电磁场数值计算[M],机械工业出版社,2004年.
    [266]Yu-wu Zhu, Sang-Gun Lee, et al., Investigation of Auxiliary Poles Design Criteria on Reduction of End Effect of Detent Force for PMLSM [J], IEEE Trans. Magn., vol.45, no.6. Jun.2009 2863-2866.
    [267]M.J. Jin, Y. Wang, et al., Cogging torque suppression in a permanent magnet flux-switching integrated-starter generator [J], IET Electr. Power Appl.,2010, Vol.4, Iss.8, pp.647-656.
    [268]Z.X. Fang, Y. Wang, et al., Design and analysis of a novel flux-switching permanent magnet integrated-starter-generator [C], the 4th IET international conference on Power Electronics, Machines and Drives (PEMD), pp.116-119,2008.
    [269]Zhu, Z.Q., A simple method for measuring cogging torque in permanent magnet machines [C], Power & Energy Society General Meeting,2009. PES'09. IEEE 2009, pp.1-4.
    [270]Bianchi N., Pre M. D., and Bolognani S., Design of a fault-tolerant IPM motor for electric power steering [J], Vehicular Technology, IEEE Trans, on vol.55, no.4, pp.1102-1111.
    [271]B. Mecrow, A. Jack, et al., Fault tolerant permanent magnet machine drives [J], IEE Proc.-Electron. Power Appl., vol.143, no.6, pp.437-442,1996.
    [272]J. Ede, K. Atallah, et al., Modular fault tolerant permanent magnet brushless machines [C], in 2nd IET Int. Conf. Power Electronics, Machines and Drives (PEMD),2002, pp.415-420.
    [273]Ayman M. Al-Refaie, Fractional-Slot Concentrated-Windings Synchronous Permanent Magnet Machines:Opportunities and Challenges [J], IEEE Trans. Industrial Electronics, Vol.57, No.1. January 2010, pp.107-121.
    [274]N. Bianchi, M. Dai Pre, et al.. Theory and design of fractional-slot PM machines [C]. in Conf. Rec. IEEE IAS Annu. Meeting, New Orleans, LA. Sep.23,2007.
    [275]D. Ishak, Z. Q. Zhu, and D. Howe, Comparison of PM brushless motors, having either all teeth or alternate teeth wound [J]. IEEE Trans. Energy Convers., vol.21, no.1, pp.95-103, Mar.2006.
    [276]J. Cros and P. Viarouge, Synthesis of high performance PM machines with concentrated windings [J]. IEEE Trans. Energy Convers., vol.17. no.2, pp.248-253, Jun.2002.
    [277]F. Libert and J. Soulard, Manufacturing Methods of Stator Cores with Concentrated Windings [C], Proceedings of IET Int. Conf. on Power Electronics. Machines and Drives (PEMD), pp.676-680, 2006.
    [278]A. G. Jack, B. C. Mecrow, et al., Permanent Magnet Machines With Powdered Iron Cores And Pressed Windings [J]. IEEE Trans. Ind. Appl., Vol.36, No.4, pp.1077-1084, Jul./Aug.2000.
    [279]B. C. Mecrow, A. G. Jack, et al., Simplifying The Manufacturing Process For Electrical Machines [C], IEE Int. Conf. On Power Electronics, Machines And Drives (PEMD), pp.169-174,2004.
    [280]www.zfsachs.com/dynastart-pc.
    [281]H. Akita, Y. Nakahara, et al.. New Core Structure and Manufacturing Method for High Efficiency of Permanent Magnet Motors [C], In Conf. Rec. IEEE IAS Annu. Meeting, Salt Lake City, UT, Oct.2003, Vol.2, pp.367-372.
    [282]Ionel et al. Electric Motor Having A Stator [P], United States Patent Application, US 2006/0028087A1.
    [283]Sheeran et al. Method for forming an annular stator assembly [P], United States Patent, US7111380B2.
    [284]Peachee et al. segmented stator switched reluctance machine [P], United States Patent Application, US2002/0125782A1.
    [285]Hartsfield et al. interconnecting method for segmented stator electric machines [P], United States Patent Application, US2004/0006865A1.
    [286]G. Bao, and J. Jiang, A modular multiphase permanent magnet machine optimization for direct propulsion systems [C], Vehicle Power and Propulsion Conference,2008. VPPC'08. IEEE.3-5 Sept. 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700