用户名: 密码: 验证码:
含电动汽车及换电站的微网优化调度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,能源需求不断增长,构建稳定、经济、清洁、安全的能源供应体系面临一系列重大挑战;机动车保有量增长迅速,尾气成为城市大气的主要污染源。应对能源与环境的双重压力,应积极优化能源结构、推动能源生产和利用方式变革。分布式发电与电动汽车的推广应用有助于减少石油依赖、降低环境污染、控制温室气体排放。如何提高电动汽车的保有量,提高能源供给设施的利用率,同时降低可能对电网产生的不利影响,发挥电动汽车接入的优势,使电网与电动汽车用户效益最大化是目前急需解决的问题。在这样的背景下,本文对含电动汽车与换电站的微网优化调度问题进行了研究,取得一些创新性的研究成果。
     首先,介绍了电动汽车及其能源供给的发展背景、发展现状,概括了电动汽车产业发展与智能电网建设间的关系以及面临的挑战与机遇。电动汽车成本、里程、用户体验等方面的问题一定程度上可以通过加强能源供给基础设施建设来解决。综述了电动汽车充放电对电力系统的影响、电动汽车相关优化调度研究,概括了微网在利用可再生能源解决电动汽车能源供给方面的优势,以及优化调度的重要意义。为避免含大规模电动汽车的优化调度计算出现“维数灾”问题,以及分布式电源与电动汽车直接接入配电网可能带来的不利影响,并考虑到国家电网公司发布的指导意见,利用分层分区运行管理结构,考虑将问题转化为含电动汽车及换电站的微网优化调度问题。
     其次,在电动汽车行驶统计规律的基础上,提出了电动汽车智能接入模式下的微网优化调度模型。微网调度机构根据不同电动汽车用户需求、可再生能源功率、其他负荷功率以及电动汽车充放电过程需满足的约束,给出包括每辆电动汽车在内的微网内所有设备的运行策略。所建立的混合整数线性规划模型可利用现有成熟商业软件(如CPLEX)求解。优化结果表明,智能接入模式下的电动汽车作为分散式储能单元,与微网内集中式储能元件协调配合,可发挥移峰填谷的作用,具有很好的经济性。
     第三,提出了一种基于微网的电动汽车换电站运营模式,建立了换电站充放电模型。根据换电站内充放电装置和电池组的约束,考虑了含有风电、光伏、燃料电池、微型燃气轮机、柴油发电机等电源的微网,提出了含电动汽车换电站的微网优化调度策略,并将换电站接入模式与传统储能电站接入模式进行了对比。算例表明换电站也可以发挥削峰填谷的作用,且更具经济性。随后,对市场容量、换电池价格及可再生能源渗透率等因素对经济性的影响进行了分析,提出的激励指数可为换电池价格、电池租赁价格的制定提供参考。随着可再生能源渗透率提高,电动汽车换电站接入微网模式的节能减排效益将更加明显。
     第四,对微电网内重要单元,如电池储能电站、电动汽车换电站、可中断负荷等分别进行了分析并建模,结合系统功率平衡、备用需求等约束,建立微电网独立运行优化模型。优化结果表明,相比传统电池储能电站,电动汽车换电站作为储能装置,通过协调优化,可以提高微电网的可再生能源接纳能力,提高微电网可靠性,并更具经济性。
     如前所述,第二部分研究电动汽车分散式接入微网的优化调度问题,第三、四部分分别在微网并网、孤岛运行方式下,研究采用集中换电方式的优化调度问题,由于问题侧重于经济性、可行性的分析,所以对可再生能源功率、负荷等采用典型日曲线来描述,没有考虑不确定性。
     第五,在微网并网运行方式下,同时考虑电动汽车分散式充放电和集中换电站模式,针对风电、光伏、负荷、电动汽车充放电功率等多种不确定因素,在预测值与概率分布统计规律的基础上,应用区间系数规划与机会约束规划建立了考虑电动汽车、可再生能源和换电站的微网随机调度模型,推导出随机变量线性组合的分布函数,并将含不确定性因素的约束转化成等价的确定性约束,有利于问题的快速求解,优化后的调度方案在满足备用约束的前提下更具经济性。
     最后,对全文工作进行了总结,概括了本文主要研究成果,并指出了今后有待进一步开展的工作。
With the rapid economic development, energy demand is growing quickly y ear-by-year. Construction of stable energy supply system is likely to face severe challenges. Exhaust gas from automobile engine is one of the main air pollution sources. The utilization efficiency of energy production and end use should be promoted. Electric vehicles and renewable energy can effectively relieve the burden of energy supply and environment. there are some urgent issues to be settled, such as increasing the quantity of electric vehicles, improving the utilization rate of energy supply facility, reducing the possible adverse effects on power system, exploiting advantages of electric vehicles plugging and maximizing the benefit of investors. Under such background, this thesis conducts research on optimal dispatch for microgrid with electric vehicles and battery swap station, and obtains some innovative research results.
     Firstly, the development background of electric vehicles and energy supply infrastructure. The challenges and opportunities of electric vehicle industry and smart grid are summarized, as well as the relationship between them. Problems such as cost, mileage, user experience of electric vehicles can be solved by enhancing energy supply infrastructure. The research status of impacts of electric vehicle charging and discharging on power system and optimal dispatch methods are reviewed. The superiorities of microgrid for electric vehicles and renewable resource integration are concluded, as well as the importance of optimal dispatch. Microgrid can help decrease communications and computational burden, and alleviate the adverse effects. Instruction released by state grid corporation of China should be considered carefully. A centralized hierarchical management and control structure is proposed, which makes microgrid independent from distributed network. The main problem is then transformed into research on optimal dispatch for microgrid with electric vehicles and battery swap station (BSS).
     Secondly, significant uncertainty arising from a large amount of EV's disordered integration should be considered while dispatching. A smart connecting mode for EV is proposed on the basis of statistical regularities. The optimal dispatch model of microgrid is presented according to EV owners'needs, renewable energy power, load and other constraints of EV when charging or discharging. The operation strategy of all components in microgrid including each electric vehicle is given. The model of mixed integer linear programming can be solved by CPLEX. The stochastic simulation is used to create a large number of scenarios. Smart connecting mode is compared with random charging mode and off-peak charging mode after thousands of times optimization. The results indicate that in smart connecting mode electric vehicles play the role of distributed energy storage devices, coordinating with centralized energy storage station. Thus, load shifting is realized in smart connecting mode, which will bring more profit in electricity market than other two modes.
     Thirdly, a business model of microgrid based battery swap station for electric vehicles is proposed. Analysis and evaluation of charging and discharging performance modeling is presented. According to battery and charger/discharger constraints, a new optimal dispatching strategy of microgrid containing BSS, wind generators, photovoltaic systems, fuel cells, micro turbines and diesel generators is given. Economic indices of BSS mode and traditional energy storage station (ESS) mode are also compared, and the simulation results indicate that BSS can bring more benefits than ESS. Furthermore, the economic impacts of battery renting market capacity, price of batteries and penetration of renewable energy are also discussed. A pricing method for battery swapping and renting is also put forward.
     Fourthly, the intermittence of renewable power supply may result in power surplus or shortfall in islanded microgrid. The important components of microgrid such as interruptible load and energy storage station are analyzed and modeled. Case study is carried out respectively for microgrid with BSS and that with ESS, which shows that, through coordinated optimization, the islanded microgrid with BSS as the energy storage device is cheaper and more reliable, and integrates more renewable energy sources.
     Fifthly, stochastic dispatch is a difficult problem because of high penetration of renewable energy and electric vehicles. The uncertainties caused by renewable energy resources, load, electric vehicles charging and V2G are all considered. An interval coefficients and chance constrained programming combined stochastic dispatch model is proposed based on power forecasts and probability distribution. Case studies are carried out to illustrate the feasibility and efficiency of the proposed model comparing with traditional model.
     At last, the main findings of the paper are summarized, and the future research directions are pointed out.
引文
[1]中国的能源状况与政策[M].北京:中华人民共和国国务院,2007.
    [2]汪泽民.对中匡能源问题的思考[J].上海交通学学报,2008,42(3):345-359.
    [3]石油和化学工业2011年经济运行分析及2012年展望[M].北京:中华人民共和国工业和信息化部,2012.
    [4]朱成章.煤电关乎中国能源安全刍议[J].中外能源,2012,17(1):29-32.
    [5]GB/3095-2012环境空气质量标准[S].北京:中国标准出版社,2012.
    [6]中华人民共和国国民经济和社会发展第十二个五年规划纲要[M].北京:人民出版社,2011.
    [7]国家能源科技“十二五”规划(2011-2015).国家能源局,2011.
    [8]穆钢,王健,严干贵等.双馈型风电机群近满载王况下连锁脱网事件分析[J].电力系统自动化.2011,35(22):35-40.
    [9]李丹.贾琳,许晓菲等.风电机组脱网原因及对策分析[J].电力系统自动化,2011.35(22):41-44.
    [10]任东明.中国可再生能源配额制和实施对策探讨[J].电力系统自动化,2011,35(22):25-28.
    [11]赵德伟,黄越辉,三伟胜,郭建波.考虑调峰和电网输送约束的省级系统风电消纳能力分析[J].电力系统自动化,2011,35(22):77-81.
    [12]PEPERMANS G DRIESEN J, HAESELDONCKX D, et al. Distributed generation: definition, benefits and issues[J]. Energy Policy,2005.33(6):787-798.
    [13]温家宝.关于科技工作的几个问题[J].求是,2011(14):3-11.
    [14]庄幸,姜克隽.我国纯电动汽车发展路线图的研究[J].汽车工程,2012,34(2):91-97.
    [15]《节能与新能源汽车产业发展规划》获批[DB/OL]. http://news.xinhuanet.com/auto/2012-04/19/c_123003095.htm
    [16]张文亮,武斌,李武峰,来小康.我国纯电动汽车的发展方向及能源供给模式的探讨[J].电网技术,2009,33(4):1-5.
    [17]赵俊华,文福拴,杨爱民,辛建波.电动汽车对电力系统的影响及其调度与控制问题[J].电力系统自动化,2011,35(14):2-10.
    [18]胡泽春,宋永华,徐智威等.电动汽车接入电网的影响与利用[J].中国电机工程学报,2012,32(4):1-10.
    [19]陈良亮,张浩,倪峰,朱金大.电动汽车能源供给设施建设现状与发展探讨[J].电力系统自动化,2011,35(14):11-17.
    [20]周逢权,连湛伟,王晓雷,等.电动汽车充电站运营模式探析[J].电力系统保护与控制,2010,38(21):63-66.
    [21]Chevrolet Volt Website [DB/OL]. http://www.chevrolet.com.cn/brandsite/car_volt.html/
    [22]Toyota Prius plug-in Website[DB/OL]. http://www.toyota.com/prius-plug-in/
    [23]BYD F3DM Website [DB/OL]. http://dm.bydauto.com.cn/
    [24]Nissan Leaf Official Website[DB/OL]. http://www.nissanusa.com/leaf-electric-car/index
    [25]Tesla Roadster Official Website [DB/OL]. http://www.teslamotors.com/goelectric/charging
    [26]BYD E6 Website[DB/OL]. http://www.byd.com/e6.html
    [27]田博.电动汽车及其充换电服务网络发展相关政策研究[J].能源技术经济,2012,24(3):23-27.
    [28]刘振亚.智能电网技术[M].北京:中国电力出版社,2010.
    [29]李惠星,高赐威,梁甜甜.华东区域智能电网环境下的负荷调度[J]华东电力.2012,40(1):82-86.
    [30]段贵恒. 负荷调度将替代传统发电调度[DB/OL].2011-12-05. http://www.cpnn.com.cn/js/201112/t20111205_387528.html
    [31]张佳佳,陈金富,范荣奇.微网高渗透对电网稳定性的影响分析[J].电力科学与技术学报,2009,24(1):25-29.
    [32]曾杰.可再生能源发电与微网中储能系统的构建与控制研究[D].武汉,华中科技大学,2009.
    [33]欧阳武,程浩忠,张秀彬等.考虑分布式电源调峰的配电网规划[J].电力系统自动化,2008,32(22):12-16.
    [34]丁磊.多微网配电系统的分层孤岛运行及保护控制[D].济南:山东大学,2007.
    [35]王成山,肖朝霞,王守相.微网综合控制与分析[J].电力系统自动化,2008,32(7):98-103.
    [36]薛迎成,邰能灵,刘立群等.微电网孤岛运行模式下的协调控制策略[J].中国电力,2009,42(7):36-40.
    [37]吴艳娟.采用APF和SVC改善微网电能质量[J].电力系统及其自动化学报,2012,24(1):147-150.
    [38]李鹏.分布式发电微网系统暂态仿真方法研究[D].天津:天津大学,2010.
    [39]刘霞.含多种分布式电源和储能的微电网控制技术[D].浙江:浙江大学,2012.
    [40]石庆均.微网容量优化配置与能量优化管理研究[D].浙江:浙江大学,2012.
    [41]徐立中.微网能量优化管理若干问题研究[D].浙江:浙江大学,2011.
    [42]茆美琴,丁明,张榴晨等.多能源发电微网实验平台及其能量管理信息集成[J].电力系统自动化,2010,34(1):106-111.
    [43]赵波,李鹏,童杭伟等.从分布式发电到微网的研究综述[J].浙江电力,2010(3):1-5.
    [44]南麂岛、鹿西岛微网示范工程在温召开实施协调会.[DB/OL].2011-12-23. http://www.zj.sgcc.com.cn/zxzx/gsxw/201112/t20111223_35497.htm
    [45]崇明岛智能电网将全覆盖预计四年内可再生能源发电量将达四成.[DB/OL]. 2011-09-25. http://www.shanghai.gov.cn/shanghai/node2314/node2315/node4411/u21ai543807.html
    [46]王成山,李鹏.2011年国际供电会议系列报道分布式能源发展与用户侧电能的高效利用[J].电力系统自动化,2012,36(2):1-5,25.
    [47]SORTOMME E. Optimal aggregator bidding strategies for vehicle-to-grid[D]. USA: University of Washington,2011.
    [48]HAN S, HAN S, SEZAKI K. Development of an optimal vehicle-to-grid aggregator for frequency regulation[J]. IEEE Trans on Smart Grid,2010,1(1):65-72.
    [49]QIAN K, ZHOU C, ALLAN M, YUAN Y. Modeling of load demand due to EV battery charging in distribution systems[J]. IEEE Trans on Power Systems,2011,26(2):802-810.
    [50]MA Y, HOUGHTON T, CRUDEN A, INFIELD D. Modeling the Benefits of Vehicle-to-Grid Technology to a Power System[J]. IEEE Trans on Power Systems,2012, 27(1):206-213.
    [51]DALLINGER D, KRAMPE D, WIETSCHEL M. Vehicle-to grid regulation reserves based on a dynamic simulation of mobility behavior[J]. IEEE Trans on Smart Grid,2011,2(2): 302-313.
    [52]宋永华,阳岳希,胡泽春.电动汽车电池的现状及发展趋势[J].电网技术,2011,35(4):1-7.
    [53]FERNANDEZ L, ROMAN T, COSSENT R. Assessment of the impact of plug-in electric vehicles on distribution networks[J]. IEEE Trans on Power Systems,2011,26(1):206-213.
    [54]田立亭,史双龙,贾卓.电动汽车充电功率需求的统计学建模方法[J].电网技术,2010,34(11):126-130.
    [55]罗卓伟,胡泽春,宋永华等.电动汽车充电负荷计算方法[J].电力系统自动化,2011,35(14):36-42.
    [56]ASHTARI A, BIBEAU E, SHAHIDINEJAD S, et al. PEV charging profile prediction and analysis based on vehicle usage data[J]. IEEE Trans on Smart Grid,2012,3(1):341-350.
    [57]EPRI. Environmental assessment of plug-in hybrid electric vehicles volume 1:Nationwide greenhouse gas emissions[R]. USA:EPRI,2007.
    [58]EPRI. Environmental assessment of plug-in hybrid electric vehicles volume 2:United States air quality analysis based on Aeo-2006 assumptions for 2030[R]. USA:EPRI,2007.
    [59]来小康.智能电网:电动汽车发展的支撑[N].国家电网报,2010-07-29(6).
    [60]HADLEY S, TSVETKOVA A. Potential impacts of plug-in hybrid electric vehicles on regional power generation[R]. USA:Oak Rige National Labroatory,2008.
    [61]HUBNER M, ZHAO L, MIRBACH T, et al. Impact of large-scale electric vehicle application on the power supply[C]//IEEE Electrical Power & Energy Conference, Oct 22-23,2009, Montreal, Canada:1-6.
    [62]YU X. Impacts assessment of PHEV charge profiles on generation expansion using national energy modeling system[C]//IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, July 20-24,2008, Pittsburgh, USA:1-5.
    [63]DENHOLM P, SHORT W. An evaluation of utility system impacts and benefits of optimally dispatched plug-in hybrid electric vehicles[R]. USA:National Renewable Energy Laboratory,2006.
    [64]KINTNER-MEYER M, SCHNEIDER K, PRATT R. Impacts assessment of plug-in hybrid vehicles on electric utilities and regional U.S. power grids part 1:technical analysis[R]. USA:Pacific Northwest National Laboratory,2007.
    [65]MCCARTHY D, WOLFS P. The HV System Impacts of large scale electric vehicle deployments in a metropolitan area[C]//20th Australasian Universities Power Engineering Conference, Dec 5-8,2010, Christchurch, Australia:1-6.
    [66]陆翌,陈新琪.2011年国际供电会议系列报道电动汽车和智能电网的标准化工作[J].电力系统自动化,2012,36(1):6-9,95.
    [67]SCHNEIDER K, GERKENSMEYER C, KINTNER-MEYER M, FLETCHER R. Impact assessment of plug-in hybrid vehicles on Pacific Northwest Distribution Systems[C]//IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, July 20-24,2008, Pittsburgh, USA:1-6.
    [68]ZHAO L, AWATER P, SCHAFER A, et al. Scenarion-based evaluation on the impacts of electric vehicle on the municipal energy supply systems[C]//IEEE Power and Energy Society General Meeting, Jul 24-28,2011, Detroit, USA:1-8.
    [69]PECAS LOPES J, SOARES F, ROCHA ALMEIDA P. Identifying management procedures to deal with connection of electric vehicles in the grid[C]//IEEE Power Tech Conference, Jun 28-Jul 2,2009, Bucharest, Romania:1-8.
    [70]SMOLKA T, DEDERICHS T, PROUSCH S, et al. Technical and ecological impacts of the network integration of electric vehicles in a distribution network of a major city in Germany[C]//Proceedings of CIRED 2011, Jun 6-9,2011, Frankfurt, Germany.
    [71]陈新琪,李鹏,胡文堂等.电动汽车充电站对电网谐波的影响分析[J].中国电力,2008,41(9):31-36.
    [72]李俄收,吴文民.电动汽车蓄电池对电力系统的影响及对策[J].华东电力,2010,38(1):109-113.
    [73]GOMEZ J, MORCOS M. Impact of EV battery chargers on the power quality of distribution systems[J]. IEEE Trans on Power Delivery,2003,18(3):975-981.
    [74]李惠玲,白晓民.电动汽车充电对配电网的影响及对策[J].电力系统自动化,2011,35(17):38-42.
    [75]徐立中,杨光压,许昭等.电动汽车充电负荷对丹麦配电系统的影响[J].电力系统自动化,2011 35(14):18-23.
    [76]GREEN R, WANG L, ALAM M. The impact of plug-in hybrid electric vehicles on distribution networks:a review and outlook[J]. Renewable and Sustainalbe Energy Reviews,2011,15(1):544-553.
    [77]FALAHATI B, FU Y, DARABI Z, WU L. Reliability assessment of power systems considering the large-scale PHEV integration[C]//IEEE Vehicle Power and Propulsion Conference, Sept 6-9,2011, Chicago, USA:1-6.
    [78]KEMPTON W, LETENDRE S. Electric vehicles as a new power source for electric utilities[J]. Transportation Research Part D,1997,2(3):157-175.
    [79]KEMPTON W, DHANJU A. Electric vehicles with V2G:storage for large-scale wind power[J]. Windtech International,2006,2(1):18-21.
    [80]王辉,文福拴,辛建波.电动汽车充放电特性及其对配电系统的影响分析[J].华北电力大学学报,2011,38(5):17-24.
    [81]薛飞,雷宪章,张野飚等.电动汽车与智能电网从V2G到B2G的全新结合模式[J].电网技术,2012,36(2):29-34.
    [82]Kempton W, Tomic J. Vehicle-to-grid power fundamentals:from stabilizing the grid to supporting large-scale renewable energy[J]. Journal of Power Sources,2005,144(1): 280-294.
    [83]Kempton W, Tomic J. Vehicle to grid fundamentals:Calculating capacity and net revenue[J]. Journal of Power Sources,2005,144(1):268-279.
    [84]樊扬,余欣梅,王路.南方电网区域发展电动汽车综合效益分析[J].南方电网技术,2011,5(4):51-54.
    [85]韩海英.V2G参与电网调峰和调频控制策略研究[D].北京:北京交通大学,2011.
    [86]ROGERS K, KLUMP R, KHURANA H, et al. An authenticated control framework for distributed voltage support on the smart grid[J]. IEEE Trans on Smart Grid,2010,1(1): 40-47.
    [87]ZHOU C, QIAN K, ALLAN M, ZHOU W. Modeling of the cost of EV battery wear due to V2G application in power systems[J]. IEEE Trans on Energy Conversion,2011,26(4): 1041-1050.
    [88]TURTON H, MOURA F. Vehicle-to-grid systems for sustainable development:an integrated energy analysis[J]. Technological Forecasting and Social Change,2008, 75(8):1091-1108.
    [89]LETENDRE B, KEMPTON W. The V2G concept:A new model for power[Z]. Public Utilities Fortnightly, Feb 15,2002:16-26.
    [90]BEER S, GOMEZ T, DALLINGER D, et al. An economic analysis of used electric vehicle batteries integrated into commercial building microgrids[J]. IEEE Trans on Smart Grid, 2012,3(1):517-525.
    [91]CUI S, LIU X, TIAN D, et al. The construction and simulation of V2G system in micro-grid[C]//International Conference on Electrical Machines and Systems, Aug 20-23, 2011, Beijing, China:1-4.
    [92]CHUKWU U, MAHAJAN S. V2G electric power capacity estimation and ancillary service market evaluation[C]//IEEE Power and Energy Society General Meeting, July 24-29,2011, San Diego, USA:1-8.
    [93]ERSAL T, AHN C, HISKENS I, et al. Impact of controlled plug-in EVs on microgrids:a military microgrid example[C]//IEEE Power and Energy Society General Meeting, July 24-29,2011, San Diego, USA:1-7.
    [94]CARRADORE L, TURRI R. Electric vehicles participation in distribution network voltage regulation[C]//45th Universities Power Engineering Conference, Aug 31-Sept 3,2010, Cadiff, Wales:1-6.
    [95]张丽英,叶廷路,辛耀中等.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010,30(25):1-9.
    [96]朱凌志,陈宁,韩华玲.风电消纳关键问题及应对措施分析[J].电力系统自动化,2011,35(22):29-34.
    [97]于大洋,宋曙光,张波,韩学山.区域电网电动汽车充电与风电协同调度的分析[J].电力系统自动化,2011,35(14):24-29.
    [98]YOKOYAMA R, YOSHIMI K, MASUDA T, KONDOU H.发电不确定性条件下电动汽车对智能家居能量管理的贡献[J].电力系统自动化,2011,35(22):18-24.
    [99]TAKAGI M, IWAFUNE Y, YAMAMOTO H, et al. Energy storage of PV using batteries of battery-switch stations[C]//IEEE International Symposium on Industrial Electronics, July 4-7,2010, Bari, Italy:3413-3419.
    [100]OTA Y, TANIGUCHI H, NAKAJIMA T, et al. Autonomous distributed vehicle-to-grid for ubiquitous power grid and its effect as a spinning reserve[J]. Journal of International Council on Electrical Engineering,2011,1(2):214-221.
    [101]OTA Y, TANIGUCHI H, NAKAJIMA T, et al. Effect of autonomous distributed vehicle-to-grid (V2G) on power system frequency control[C]//5th International Conference on Industrial and Information Systems, Jul 29-Aug 01,2010, India:481-485.
    [102]LUNDA H, KEMPTON W. Integration of renewable energy into the transport and electricity sectors through V2G[J]. Energy Policy,2008,36(9):3578-3587.
    [103]CALLAWAY D, HISKENS I. Achieving controllability of electric loads[J]. Proceedings of the IEEE,2011,99(1):184-199.
    [104]许佳佳,艾欣,金鹏,魏鑫.区域电动汽车充放电控制策略[J].华东电力,2011,39(12):2045-2049.
    [105]LOPES J, SOARES F, ALMEIDA P. Integration of Electric Vehicles in the Electric Power System[J]. Proceedings of the IEEE,2011,99(1):168-183.
    [106]张伯明,吴文传,郑太一,孙宏斌.消纳大规模风电的多时间尺度协调的有功调度系统设计[J].电力系统自动化,2011,35(1):1-6.
    [107]沈伟,吴文传,张伯明等.消纳大规模风电的在线滚动调度策略与模型[J].电力系统自动化,2011,35(22):136-140.
    [108]王魁,张步涵,周杨,李俊芳.基于混沌量子粒子群算法的含风电场电力系统实时调度[J].电力系统自动化,2011,35(22):141-146.
    [109]杨洪明,熊脶成,刘保平.插入式混合电动汽车充放电行为的概率分析[J].电力科学与技术学报,2010,25(3):8-12.
    [110]赵俊华,文福拴,薛禹胜等.计及电动汽车和风电出力不确定性的随机经济调度[J].电力系统自动化,2010,34(20):22-29.
    [111]蔡秋娜,文福拴,薛禹胜,辛建波.基于SCUC的可入网混合电动汽车优化调度方法[J].电力系统自动化,2012,36(1):38-46.
    [112]王洪涛,何成明,房光华,傅磊.计及风电预测误差带的调度计划渐进优化模型[J].电力系统自动化,2011,35(22):131-135.
    [113]WANG Y, XIA Q, KANG C. Unit Commitment with volatile node injections by using interval optimization [J]. IEEE Trans on Power Systems,2011,26(3):1705-1713.
    [114]刘晓,艾欣,杨俊.考虑未来碳排放交易的需求侧备用竞价与调度模式设计[J].电力系统自动化,2011,35(2):38-42.
    [115]CLEMENT-NYNS K, HAESEN E, DRIESEN J. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid[J]. IEEE Transactions on Power Systems, 2010,25(1):371-380.
    [116]CLEMENT-NYNS K, HAESEN E, DRIESEN J. The impact of vehicle-to-grid on the distribution grid[J]. Electric Power Systems Research,2011,81(1):185-192.
    [117]茆美琴,孙树娟,苏建徽.包含电动汽车的风/光/储微电网经济性分析[J].电力系统自动化,2011,35(14):30-35.
    [1]陈良亮,张浩,倪峰,朱金大.电动汽车能源供给设施建设现状与发展探讨[J].电力系统自动化,2011,35(14):11-17.
    [2]国家电网公司2011年社会责任报告[R],2012, http://www.sgcc.com.cn/sgcc_csr
    [3]KEMPTON W, LETENDRE S. Electric vehicles as a new power source for electric utilities[J]. Transportation Research (Part D),1997,2(3):157-175.
    [4]赵俊华,文福拴,杨爱民等.电动汽车对电力系统的影响及其调度与控制问题[J].电力系统自动化,2011,35(14):2-10,29.
    [15]别朝红,李更丰,王锡凡.含微网的新型配电系统可靠性评估综述[J].电力自动化设备,2011,31(1):1-6.
    [6]汪少勇.基于分布式电源的微网的设计与运行[J].电力自动化设备.2011,31(4):120-123.
    [7]茚美琴,孙树娟,苏建徽.包含电动汽车的风/光/储微电网经济性分析[J].电力系统动化,2011.35(14):30-35.
    [8]田立亭,史双龙,贾卓.电动汽车充电功率需求的统计学建模方法[J].电网技术,2010,34(11):126-130.
    [9]蔡秋娜,文福拴,薛禹胜,辛建波.基于SCUC的可入网混合电动汽车优化调度方法[J].电力系统自动化,2012,36(1):38-46.
    [10]SORTOMME E, MOHAMMAD M, MACPHERSON S. VENKATA S. Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses[J]. IEEE Trans on Smart Grid,2011,2(1):198-205.
    [11]徐立中,杨广亚,许昭等.考虑风电随即性的微电网热电联合调度[J].电力系统自动化,2011,35(9):53-60.
    [12]WAS A. SANT1NI D. Use of National surveys for estimating'Full' PHEV potential for Oil Use Reduction[C]//Plug-In Conference. July 21-24,2008, San Jose. USA.
    [13]QI AN K, ZHOU C, ALLAN M. YUAN Y. Modeling of load demand due to EV battery charging in distribution systems[J]. IEEE Trans on Power Systems,2011,26(2):802-810.
    [14]CARRION M, ARROYO J. A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem [J]. IEEE Trans on Power Systems,2006,21(3): 1371-1378.
    [15]MA Y, HOUGHTON T, CRUDEN A, INFIELD D. Modeling the Benefits of Vehicle-to-Grid Technology to a Power System [J]. IEEE Trans on Power Systems,2012, 27(1):206-213.
    [16]VYAS A, SANTINI D, JOHNSON L. Plug-In Hybrid Electric Vehicles'Potential for Petroleum Use Reduction:Issues Involved in Developing Reliable Estimates[EB/OL]. [2009]. http://www.Transportation.anl.gov/pdfs/TA/621.pdf
    [17]W. Kempton and J. Tomic. Vehicle to grid fundamentals:Calculating capacity and net revenue[J]. Journal of Power Sources,2005,144(1):268-279.
    [18]TSIKALAKIS A, HATZIARGYRIOU N. Centralized control for optimizing microgrids operation[J]. IEEE Trans on Energy Conversion,2008,23(1):241-248.
    [19]IBM ILOG CPLEX 12.1 User's Manual[Z]. IBM Corporation,2009.
    [1]赵俊华.文福拴,场爱民,辛建波.电动汽车对电力系统的影响及其调度与控制问题[J].电力系统自动化,2011,35(14):2-10,29.
    [2]张文亮,武斌,李武峰,来小康.我国纯电动汽车的发展方向及能源供给模式的探讨[J].电网技术,2009,33(4):1-5.
    [3]http://www.betterplace.com
    [4]陈良亮,张浩,倪峰.朱金大.电动汽车能源供给设施建设现状与发展探讨[J].电力系统自动化,2011,35(14):11-17.
    [5]国家电网公司2010年社会责任报告[R].2011,http://www.sgcc.com.cn/sgcc_csr
    [6]KEMPTON W, LETENDRE S. Electric vehicles as a new power source for electric utilities[J]. Transportation Research (Part D).1997,2(3):157-175.
    [7]LUNDA H, KEMPTON W. Integration of renewable energy into the transport and electricity sectors through V2G[J]. Energy Policy.2008,36(9):3578-3587.
    [8]PETERSON S. WHITACREA J, APT J. The economics of using plug-in hybrid electric vehicle battery packs for grid storage[J]. Journal of Power Sources,2010.195(8): 2377-2384.
    [9]赵俊华,文福拴,薛禹胜等.计及电动汽车和风电出力不确定性的随机经济调度[J].电力系统自动化,2010,34(20):22-29.
    [10]TAKAGI M. IWAFUNE Y, YAMAMOTO H, et al. Energy storage of PV using batteries of battery-switch stations[C]//IEEE International Symposium on Industrial Electronics. July 4-7.2010. Bari, Italy:3413-3419.
    [11]丁明,徐宁舟,毕锐.用于平抑可再生能源功率的储能电站建模及评价[J].电力系统自动化,2011.35(2):66-72.
    [12]FRANGIONI A, GENTILE C, LACALANDRA F. Tighter approximated MILP formulations for unit commitment problems[J]. IEEE Trans on Power Systems,2009,24(1): 105-113.
    [13]IBM ILOG CPLEX 12.1 User's Manual[Z]. IBM Corporation,2009.
    [1]张文亮,武斌,李武峰,来小康.我国纯电动汽车的发展方向及能源供给模式的探讨[J].电网技术,2009,33(4):1-5.
    [2]ANDERSON R. BOULANGER A. POWELL W, SCOTT W. Adaptive stochastic control for the smart grid[J]. Proceedings of the IEEE,2011,99(6):1098-1115.
    [3]别朝红,李更丰,王锡凡.含微网的新型配电系统可靠性评估综述[J].电力自动化设备,2011,31(1):1-6.
    [4]三成山,杨占刚,三守相,车延博.微网实验系统结构特征及控制模式分析[J].电力系统自动化,2010,34(1):99-105.
    [5]鲁鸿毅,何奔腾.超级电容器在微型电网中的应用[J].电力系统自动化,2009,33(2):87-91.
    [6]陈良亮,张浩,倪峰,朱金大.电动汽车能源供给设施建设现状与发展探讨[J].电力系统自动化,2011,35(14):11-17.
    [7]周逢权,连湛伟,王晓雷,等.电动汽车充电站运营模式探析[J].电力系统保护与控制,2010,38(21):63-66.
    [8]王建学,王锡凡.王秀丽.电力市场可中断负荷合同模型研究[J].中国电机工程学报,2005,25(9):11-16.
    [9]LOMBARDIP. HEUER M, STYCZYNSKI Z. Battery switch station as storage system in an autonomous power system:optimization issue[C]//Proceedings of Power Engineering Society General Meeting, July 25-29,2010, Minneapolis, MN. USA:1-6.
    [10]HASSANZADEHFARD H. MOGHADDAS-TAFRESH1 S, HAKIMI S. Effect of energy storage systems on optimal sizing of islanded micro-grid considering interruptible loads[C]//Proceedings of the 3rd International Youth Conference on Energetics, July 7-9. 2011, Leiria, Portugal:1-7.
    [11]TSIKALAKIS A. HATZ1ARGYRIOU N. Centralized control for optimizing microgrids operation[J]. IEEE Trans on Energy Conversion,2008.23(1):241-248.
    [12]丁明,张颖媛,茆美琴,等.包含钠硫电池储能的微网系统经济运行优化[J].中国电机工程学报,2011,31(4):7-14.
    [13]王卿然,谢国辉.张粒子.含风电系统的发用电一体化调度模型[J].电力系统自动化,2011,35(5):15-18,30.
    [14]IBM ILOG CPLEX 12.1 User's Manual[Z]. IBM Corporation.2009.
    [1]赵俊华,文福拴.杨爱民等.电动汽车对电力系统的影响及其调度与控制问题[J].电力系统自动化,2011,35(14):2-10.29.
    [2]国家电网公司2010年社会责任报告[R].2011. http://www.sgcc.com.cn/sgcc_csr
    [3]KEMPTON W. LETENDRE S. Electric vehicles as a new power source for electric utilities[J]. Transportation Research (Part D),1997.2(3):157-175.
    [4]汪少勇.基于分布式电源的微网的设计与运行[J].电力自动化设备,2011,31(4):120-123.
    [5]别朝红,李更丰,三锡凡。含微网的新型配电系统可靠性评估综述[J].电力自动化设备, 2011.31(1):1-6.
    [6]陈海焱,陈金富.段献忠.含风电场电力系统经济调度的模糊建模及优化算法[J].电力系统自动化,2006,30(2):22-26.
    [7]孙元章.吴俊,李国杰等.基于风速预测和随机规划的含风电场电力系统动态经济调度[J].中国电机工程学报.2009,29(4):41-47.
    [8]王成福,梁军,张利等.基于机会约束规划的风电预测功率分级处理[J].电力系统自动化,2011,35(17):14-18.
    [9]WANG Y, XIA Q, KANG C. Unit Commitment with volatile node injections by using interval optimization [J]. IEEE Trans on Power Systems,2011.26(3):1705-1713.
    [10]UMMELS B, GIBESCU M. PELGRUM E, et al. Impacts of wind power on thermal generation unit commitment and dispatch[J]. IEEE Trans on Energy Conversion.2007, 22(1):44-51.
    [11]WU L. SHAHIDEHPOUR M, LI T. Stochastic security-constrained unit commitment[J]. IEEE Trans on Power Systems,2007.22(2):800-811.
    [12]徐立中,杨光亚,许昭等.考虑风电随机性的微电网热电联台调度[J].电力系统自动化,2011,35(9):53-60.
    [13]赵俊华,文福拴,薛禹胜等.计及电动汽车和风电出力不确定性的随机经济调度[J].电力系统自动化, 2010,34(20):22-29.
    [14]CHINNECK J, RAMADAN K. Linear programming with interval coefficients[J]. Journal of the Operational Research Society,2000,51:209-220.
    [15]刘宝碇,赵瑞清.随机规划与模糊规划[M].北京:清华大学出版社,1998.
    [16]BLUDSZUWEIT H, DOMINGUEZ-NAVARRO J, LLOMBART A. Statistical analysis of wind power forecast error[J]. IEEE Trans on Power Systems,2008,23(3):983-991.
    [17]KARAKI S, CHEDID R, RAMADAN R. Probabilistic performance assessment of autonomous solar-wind energy conversion systems[J]. IEEE Trans on Energy Conversion, 1999,14(3):766-772.
    [18]CHARYTONIUK W, CHEN M, KOTAS P. OLINDA P. Demand forecasting in power distribution systems using nonparametric probability density estimation[J]. IEEE Trans on Power Systems,1999,14(4):1200-1206.
    [19]田立亭,史双龙,贾卓.电动汽车充电功率需求的统计学建模方法[J].电网技术,2010,34(11):126-130.
    [20]IBM ILOG CPLEX 12.1 User's Manual[Z]. IBM Coiporation,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700