用户名: 密码: 验证码:
并网型风力发电系统的小扰动稳定性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石化能源逐渐枯竭以及全球生态环境的恶化,再生能源的研究和利用已成为全球关注的热点,目前世界各国都在投入巨资大力研究和利用风力发电及其相关技术。风能作为一种常见的再生能源洁净无污染、取之不尽、用之不竭,使得风力发电成为最具商业化发展前景的新能源发电方式之一,将在改善生态环境、优化能源结构、促进社会和国民经济可持续和谐发展方面发挥突出的作用。风电的迅猛发展,在电网中所占的比例日益提高,使风电的大规模并网发电必将对电网产生重大影响,尤其对整个电网的频率和稳定性的影响。因此采取哪些有利措施保证并网后,电网能安全、稳定地运行则是要深入研究和解决的问题。
     基于以上原因,本文研究了风力发电并网后对电力系统小扰动稳定性影响的问题,对常见的两大类——恒速恒频和变速恒频风力发电系统、三种类型——异步感应电机、直驱永磁同步电机和双馈异步感应电机的风力发电系统并网后的小扰动稳定性以及在增加辅助频率控制环节后,风电参与电网频率调节的问题进行了深入的研究;利用Matlab建模,对三种类型的风力发电系统通过时域仿真分析,验证了提出的小扰动稳定分析方法的正确性,取得了一些有意义的成果。
     对于含有异步感应电机的风力发电系统而言,风力发电机组在发出有功功率的同时,还需从电网吸收一定的无功功率励磁,而无功功率与感应电机的机端电压有关,但机端电压事先无法确定,它与电机滑差密切关联,没有考虑异步发电机自身的特性,不能将风力发电系统简单地看做PQ或PV节点。简化RX迭代模型将风电机组等效以滑差为变量的阻抗,能较好地反映含异步电机的风电机组的输出特性。本文采用简化RX迭代模型,通过求解常规潮流迭代和滑差迭代形成的修正扩展方程得到稳态值,既减少了迭代次数,又保留了牛顿法平方收敛性。并在此基础上,分析了参数变化对系统特征值的影响。要保证系统的小扰动稳定性,应尽可能采取各种有利措施:线路电感不宜过大、母线电压适当可提高;采用分组投切的电容器或无功补偿装置,提供足够的无功补偿来维持电压的稳定;电机定、转子的电感和电阻值要尽可能的小,既可降低损耗,提高效率,又可增强稳定性;为加快电压环的动态响应,直流电容取值不宜过大;当风速过大时,应增加桨距角调节,滤除多余的风能以确保系统的稳定;为保证调节的快速性,桨距角调节机构时间常数不宜过大。
     对直驱型永磁同步电机和双馈异步感应电机的风力发电系统,研究了功率控制策略。额定风速以下,采用基于叶尖速比(TSR)的最大功率点追踪控制策略,在任一风速下,风能的利用效率达到最大,使风力发电系统输出最大功率;额定风速以上,采用变桨距恒功率控制,防止风力发电系统输出功率超越其极限,保证风力发电系统的安全、稳定运行。理论分析表明,在较大的风速变化区间内,系统均能保持小扰动稳定性,能够实现不同风速下的功率调节。同时在小扰动分析的过程中考虑负荷动态模型的影响,更好地反映电网的实际运行情况。
     借助微网中微电源控制器的下垂特性原理,针对直驱型永磁同步风力发电系统设计了网侧变换器基于下垂特性的控制方案,研究了频率、幅值下垂特性以及参数变化对直驱型永磁风电系统小扰动稳定性的影响。理论分析表明,幅值和频率下垂特性对系统的小扰动稳定性影响很大,要保证系统的安全、稳定运行,下垂特性系数不宜过大,仿真结果很好的验证了理论分析的正确性。
     风力发电机组通过电力电子接口技术与电网相连,实现了风力机组的机械系统和电磁系统间的解耦,使风电机组无法像常规发电机组那样主动参与电网的频率调节。随着风电穿透功率的增大,风电输出功率的随机波动性对电网频率将产生显著影响。本文研究了直驱永磁型和双馈异步机风电机组在增加辅助调频环节后的小扰动稳定性问题,让风电在一定程度上主动参与电网的频率调节,取得了比较好的效果。从仿真结果可知,引入调频环节后,风力发电系统能及时有效地参与电网的频率调节,一定程度上改善了电网的动态频率特性,稳定了电网的频率,保证了系统安全、稳定地运行。
With the fact of fossil energy exhaustion and global ecology environment deterioration, research and utilization of renewable resources became world concerned focus, now, countries all over the world invested enormous money and strongly researched wind power generation and related technology. Wind energy was a common renewable resource, which was clean, no pollution and inexhaustible, these features made wind power generation become one of the most commercial prospect new energy generation, it played important role in ecology environment improvement, energy structure optimization, sustainable and harmonious development of society and national economy. With rapid development of wind power generation, which greatly increased proportion in grid, large scale power generation connected with grid certainly had important influence on grid, special on grid frequency and stability. Which favourable measures were adopted for gird safe and stable operation when wind power generation system connected with grid, this problem was deeply researched and solved.
     Consideration for these facts, the effects of wind power generation system which connected with grid on power system, two types—constant speed constant frequency and variable speed constant frequency, three kinds of wind power generation systems—asynchronous induction machine, permanent magnet synchronous motor and doubly fed induction machine were researched, two questions were deeply studied: small signal stability of these wind power generation systems connected with grid and wind power generation system participated in grid primary frequency regulation after auxiliary frequency link was added; simulation model was established by MATLAB, three types wind power generation systems were analyzed by time domain simulation, correctness of small signal stability analysis was tested, some meaningful conclusions were received.
     For wind power generation system which included asynchronous induction generator, active power was delivered by wind power generation sets, some reactive power was absorbed from grid for field excitation at same time, reactive power was related to induction machine terminal voltage, which could not be determined in advance because closely associated with slip. Wind power generation system could not be simply regarded as PQ or PV node because induction machine itself characteristic was not considered. Wind power generation sets was equivalent to a impedance which variable to slip by simplified RX iteration method, stable state values were obtained after extended equations which included conventional power flow iteration equation and slip iteration equation were solved, iteration numbers were decreased and quadratic convergence of Newton algorithm was kept. On this base, the effects of parameters variation on system eigenvalues were analyzed, favourable measures are taken as much as possible for increasing system small signal stability:line inductance value is not suitable for large value, bus voltage value is properly raised; in order to keep terminal voltage stable, group switching capacitor compensation or reactive power compensation equipment is adopted for providing enough reactive compensation; induction motor stator、rotor inductance value and resistance value are as much as possible small, low loss and high efficiency are realized, stability is enhanced at same time; direct current capacitor value is suitable for quickening voltage loop dynamic response; pitch adjust system is applied to wind power generation system for filtering out redundant wind energy when wind speed too large, in order to ensure system stability; pitch adjust system time constant value is chosen suitably for ensuring adjustment rapidity.
     For direct driven permanent magnet synchronous machine and doubly fed induction machine wind power generation systems, their power control strategies were studied. Maximum power point tracking strategy based on tip speed ratio was applied, maximum wind energy utilization efficiency and maximum output power were reached under any wind speed when low rated wind speed; in order to protect wind power generation system safe and stable operation, variable pitch constant power strategy was used for avoiding output power exceed utmost limit when above rated wind speed. Theory analysis shows, system small signal stability is commendably kept in large wind speed variable section, power adjustment is realized under different wind speed. Load dynamic model was taken into consideration in small signal stability analysis process, which well reflects grid actual operation state
     For direct driven permanent magnet synchronous machine wind power generation system, grid side converter controller structure was designed based on droop characteristics by droop characteristics principle of micro power source controller in micro-grid, the effects of frequency and amplitude droop characteristics and parameters variation on system small signal stability were researched. Theory analysis shows, frequency and amplitude droop characteristics have greatly influence on system small signal stability, droop characteristics coefficient is chosen suitably in order to keep system safe and stable operation, theory analysis correctness was well tested by simulation results.
     Decoupling between Mechanical system and electromagnetic system of wind power generation sets was achieved because wind power generation sets connected with grid by power electronic interface technology, which did not participate actively in grid primary frequency regulation as convention power generation sets. With the increase of wind power penetration in gird, wind power output power random fluctuation property had greatly effect on grid frequency. Small signal stability of direct driven permanent magnet and doubly fed asynchronous wind power generation sets which added auxiliary frequency link were studied, wind power generation system proactively participated in grid primary frequency regulate, good effectiveness was reached. Simulation results show, wind power generation system timely and effectively participate in grid primary frequency regulation after auxiliary frequency link was introduced, grid dynamic frequency characteristic is improved in a certain extent, grid frequency is kept stable, system safe and stable operation is guaranteed
引文
[1]李俊峰,施鹏飞,高虎.2010中国风电发展报告[D].海口:海南出版社.2010,10,3-24.
    [2]Global wind energy outlook 2010[D]. Global Wind Energy Council. Brussels, Belgium,2010,1-10.
    [3]2010年中国风电整机制造业市场格局及发展态势[D].北京:中国可再生能源学会风能委员会.2010,34-37.
    [4]吴聂根,程小华.变速恒频风力发电技术综述[J].微电机,2009,42(8):69-73.
    [5]沙非,马成廉,刘闯.变速恒频风力发电系统及其控制技术研究[J].电网与清洁能源,2009,25(1):44-70.
    [6]李德孚.我国离网型风力发电行业发展状况[J].可再生能源,2009,27(3):4-6.
    [7]蒋超奇,严强.水平轴与垂直轴风力发电机的比较研究[J].上海电力,2007,(3):163-165.
    [8]孙云峰,田德,王海宽.垂直轴风力发电机的发展概况及趋势[J].农村牧区机械化,2008,(3):42-44.
    [9]李珊珊,何凤有,吕现钊.变速恒频交流电机风力发电技术[J].电机与控制应用,2008,35(4):13-20.
    [10]包广清,施进浩,江建中.大功率直驱式变速恒频风力发电技术综述[J].微特电机,2008,(9):52-60.
    [11]何东升,刘永强,王亚.并网型风力发电系统的研究[J].高电压技术,2008,34(2):142-150.
    [12]朱诗顺,杨春宝,李建文.混合励磁永磁同步发电机等效磁路分析研究[J].防爆电机,2009,44(4):8-11.
    [13]董萍,吴捷,陈渊睿.新型发电机在风力发电系统中的应用[J].微特电机,2004,(7):13-17.
    [14]龙腾飞,丁宣浩,蔡如华.MPPT的三点比较法与登山法比较[J].大众科技,2007,(2):48-50.
    [15]吴政球,干磊,曾议.风力发电最大风能追踪综述[J].电力系统及其自动化学报,2009,21(4):88-93.
    [16]Esmaili R, Xu L, Nichols D K. A new control method of permanent magnet generator for maximum power tracking in wind turbine application[C]. In:IEEE Power Engineering Society General Meeting. San Francisco, USA,2005, 45-49.
    [17]鲁闯,朱东柏,沈中元.直驱风力发电系统MPPT控制方法的研究[J].电测与仪表,2008,45(512):61-64.
    [18]计崔.大型风力发电场并网接入运行问题综述[J].华东电力,2008,36(10):71-63.
    [19]王天施,苑舜.风力发电对电网的影响及对策[J].高压电器,2010,46(8):89-94.
    [20]魏伟.风力发电及相关技发展现状和趋势[J].电气技术,2008, (8):5-11.
    [21]马幼捷,杨海珊,周雪松.风电系统的电压稳定性分析[J].电力系统及其自动化学报,2010,22(3):22-30.
    [22]何潜,苟旭,史成钢.电力系统电压稳定分析方法及应用[J].后勤工程学院学报,2010,26(2):75-81.
    [23]苏永春,程时杰,文劲宇.电力系统电压稳定性及其研究现状(一)[J].电力自动化设备,2006,26(6):98-102.
    [24]苏冰.电力系统电压稳定性研究综述[J].电气开关,2008,(6):8-14.
    [25]Ma Jian, Dong Zhongyang, Zhang Pei. Comparison of BR and QR eigenvalue algorithms for power system small signal stability anlysis[J]. IEEE Transaction on Power Systems.2006,21(4):1848-1855.
    [26]王康,金宇清,甘德强.电力系统小信号稳定性分析与控制综述[J].电力自动化设备,2009,29(5):10-24.
    [27]孙金龙,田海峰.风电场并网对电力系统的影响分析[J].太阳能,2008,(8):30-32.
    [28]王志新,张华强.风力发电及其控制技术新进展[J].低压电器,2009,(19):2-9.
    [29]刘珊,句丽华,刘燕.海上风力发电[J].中国科技博览,2010,(21):104.
    [30]林组建.风力发电技术及其发展动向[J].电力与电工,2010,30(2):34-40.
    [31]高佳亮.电力电子系统在风能电网中应用与展望[J].中国科技博览,2009,(2):78-79.
    [32]王晓雪.发电机在风力发电系统中的应用[J].大电机技术,2009,(4):1-4.
    [33]肖劲松,倪维斗.大型风力发电机组的建模与仿真[J].太阳能学报,1997,18(2):117-127.
    [34]Steinbuch M. Dynamic modelling and robust nontrol of a wind energy conversion system:[Dissertation]. Biliotheek Technische University, Netherland,1989:140-190.
    [35]王成山,孙玮.含大型风电场的电力系统最大输电能力计算[J].电力系统自 动化,2007,31(2):17-21.
    [36]吴义纯,丁明.含风电场的电力系统潮流计算[J].中国电机工程学报,2006,25(4): 37-39.
    [37]徐娇,李兴源.异步风力发电机组的简化RX模型及其潮流计算[J].电力系统自动化,2008,32(1):22-25.
    [38]陈海焱,陈金富,段献忠.含分布式电源的配电网潮流计算[J].电力系统自动化,2006,30(1):35-40.
    [39]李建林,王立乔,熊宇.三相电压型变流器系统静态数学模型[J].电工技术学报,2004,7:19(7):11-16.
    [40]徐德鸿.电力电子系统建模及控制[M].北京:机械工业出版社,2005,30-50.
    [41]姚骏,廖勇,庄凯.永磁直驱风电机组的双PWM变换器协调控制策略[J].电力系统自动化,2008,32(20):88-94.
    [42]Amirnaser Y, Reza I. A neutral point clamped converter system for direct drive variable speed wind power unit[J]. IEEE Transactions on Energy Conversion, 2006,21(2):596-608.
    [43]黄荣赓,茆美琴,喻莉.高电感永磁同步风力发电机的设计和分析[J].微电机,2010,43(7):17-22.
    [44]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003,100-120.
    [45]贺敬.适用于微电网的逆变电源并联组网控制技术研究:[合肥工业大学硕士学位论文].合肥:合肥工业大学,2009,5-7.
    [46]Paolo Piagi. Microgrid control:[Dissertation]. Wisconsin University, Madison, USA,2005,190-220.
    [47]孙春顺,王耀南,李欣然.飞轮辅助的风力发电系统功率和频率综合控制[J].中国电机工程学报,2008,28(29):111-116.
    [48]曹军,王虹富,邱家驹.变速恒频双馈风电机组频率控制策略[J].电力系统自动化,2009,33(13):78-81.
    [49]Juan M M, Alejandro M, Antonio G E. Frequency regulation contribution through variable speed wind energy conversion systems[J]. IEEE Transaction on Power System,2009,24(1):173-181.
    [50]冯学敏,林礼清,温步瀛.双馈风电机组参与系统辅助频率控制的仿真[J].电力与电工,2009,29(3):9-15.
    [51]Rogerio G, Pecas L. Primary frequency control participation provided by doubly fed induction Generators[C]. In:IEEE 15th PSCC. Liege, Greece,2005, 22-26.
    [52]Rogerio G, Pecas L. Participation of doubly fed induction wind generators in system frequency regulation[J]. IEEE Transaction on Power System,2007: 22(3):944-951.
    [53]Khaki B, Asgari M H, Sirjan R. Contribution of DFIG wind turbines to system frequency control[C]. In:Conference on Sustainable Power Generation and Supply. Nanjing, China,2009,1-8.
    [54]Ramtharan G, Ekanayake J B, Jenkins N. Frequency support from doubly fed induction generator wind turbines[J]. IET Renew. Power Gener,2007, (1): 3-9.
    [55]尹明,李庚银,张建成.直驱式永磁同步风力发电机组建模及其控制策略[J].电网技术,2007:31(15):61-66.
    [56]赵仁德,王永军,张加胜.永磁式直驱同步风力发电系统最大功率追踪控制[J].中国电机工程学报,2009,29(27):106-112.
    [57]James F C, Rick W. Frequency response capability of full converter wind turbine generators in comparison to conventional generation[J]. IEEE Transaction on Power System,2008:23(2):649-657.
    [58]Janaka E, Nick J. Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency[J]. IEEE Transactions on Energy Conversion,2004,19(4):800-803.
    [59]Johan M, Sjoerd W H, Wil L K. Wind turbines emulating inertia and support primary frequency control [J]. IEEE Transactions on Power System,2006: 21(1):433-434.
    [60]邹贤求.变速恒频风电机组参与一次调频的控制方法研究:[湖南大学硕士学位论文].长沙:湖南大学,2010:20-23.
    [61]林舜江.负荷特性的建模及其对电压稳定性的影响研究:[湖南大学博士学位论文].长沙,湖南大学,2008:48-51.
    [62]韩民晓,尹忠东,徐永海.柔性电力电子技术——电力电子在电力系统中的应用[M].北京:中国水利水电出版社,2007,81-84.
    [63]曾志勇.交流励磁双馈风力发电系统建模与仿真研究:[安徽理工大学硕士学位论文].淮南:安徽理工大学,2009:13-14.
    [64]张叶明.基于双馈感应电机的风力发电系统研究:[青岛大学硕士学位论文].青岛:青岛大学,2009:16-17.
    [65]苑国锋,李永东,柴建云.1.5MW变速恒频双馈风力发电机组励磁控制系统实验研究[J].电工技术学报,2009,24(2):42-47.
    [66]汤宏,吴俊玲,周双喜.包含风电场电力系统的小干扰稳定分析与建模[J].电 网技术,2004,28(1):38-41.
    [67]樊艳芳,晁勤.水电-风电系统的小扰动稳定分析[J].水力发电,2008,34(5):97-99.
    [68]孙东华,周孝信.计及感应电动机负荷的静态电压稳定性分析[J].中国电机工程学报,2005,25(24):1-7.
    [69]李辉,赵斌.风力发电机组暂态模型和稳定性分析方法评价[J].重庆大学学报,2008,31(5):481-485.
    [70]侯书红,蔺红.风力发电机的建模及动态仿真[J].中小型电机,2000,27(4):5-9.
    [71]Ahmadre, Tabesh, Reza I. Small-signal dynamic model and analysis of a fixed-speed wind farm a frequency response approach[J]. IEEE Transactions on Power Delivery,2006,21(2):778-787.
    [72]Yuri U L, Jose A. Small signal stability analysis of wind turbine with squirrel cage induction generators[C]. In:IEEE Transmission and Dsitributed Conference and Exopistion. Bogota, Colombia,2008,1-10.
    [73]Hong-bin Wu, Ming Ding. Modeling and control of distributed system with wind turbine generators[C]. In:the third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Nanjin, China 2008, 2498-2503.
    [74]Ishchenko A, Myrzik J M. Linearization of dynamic model of squirrel cage induction generator wind turbine[C]. In:Power Engineering Society General Meeting. Tampa, USA,2007,1-8.
    [75]胡书举,李建林,许洪华.永磁直驱风电系统变流器拓扑分析[J].电力自动化设备,2008,28(4):77-82.
    [76]胡书举,赵栋利,李建林.基于永磁同步发电机的直驱风电双脉宽调制变流器的研制[J].动力工程,2009,29(2):195-201.
    [77]谢震,张兴,曹仁贤.双馈风力发电用交直交变流器控制策略的研究[J].太阳能学报,2007,28(8):825-830.
    [78]姚骏,廖勇,瞿兴鸿.直驱永磁同步风力发电机的最佳风能跟踪控制[J].电网技术,2008,32(10):11-17.
    [79]裘迅,方宇,王儒.三相高功率因素电压型PWM整流器控制策略[J].电工技术学报,2008,23(11):96-103.
    [80]王久和,李华德,王立明.电压型PWM整流器直接功率控制系统[J].中国电机工程学报,2006,26(18):54-61.
    [81]瞿兴鸿,廖勇,姚骏.永磁同步直驱风力发电系统的并网变流器设计[J].电 力电子技术,2008,42(3):22-25.
    [82]邓秋林,黄守道,肖锋.变速直驱永磁同步发电机风力发电系统的控制[J].微特电机,2008,(3):51-55.
    [83]Hong W K, Sung S K, Hee S K. Modeling and control of PMSG based varible speed turbine[J]. Electric Power Systems Research,2010,80:46-52.
    [84]Jingya Dai, Dewei Xu, Bin Wu. Dynamic performance analysis and improvements of a current source converter based PMSM wind energy system[C]. In:IEEE meeting. Rhodes, Greece,2008,99-106.
    [85]Amirnaser Y, Reza I. A neutral point clamped coverter system for direct dirve vaiable speed wind power unit[J]. IEEE Transactions on Energy Conversion, 2006:21(2):596-607.
    [86]Tian H T, Kun M C, Jin G H. A new WECS of half direct coupling structure and its MPPC control strategy on back to back PWM converters[C]. In:IEEE International Symposium on Industrial Electronics. Seoul, Korea,2009, 1093-1099.
    [87]Ramon C P, Maangeles M P, Jose I L. Modeling strategy for back-to-back three level converters applied to high power wind turbines[J]. IEEE Transactions on Industrila Elecronics,2006,53(5):1483-1491.
    [88]ZongWei, Haisheng Yu, Yuliang Tang. Maximum output power control of PMSM based on energy shaping and PWM control principle[C]. In:Proceedings of the IEEE International Conference on Automation and Logistics. qing dao, China, 2008,1156-1161.
    [89]Alan Mullane, Mark O M. The inertia response of induction machine based wind turbine[J]. IEEE Transaction on Power System,2005,20(3):1496-1504.
    [90]Moore I, Janaka E. Frequency response from wind turbines[C]. In:IEEE Universities Power Engineering Conferece,2009 Proceedings of the 44th International. Glasgow, Scotland,2009,1-5.
    [91]Johan M, Jan P, Sjoerd W H. Inertia response of variable speed wind turbine[J]. Electric Power System Research,2006, (76):980-987.
    [92]Rogerio A, Edgardo D C, Pecas L. Optimum generation control in wind parks when carrying out system operator requests[J]. IEEE Transaction on Power System,2006,21(2):718-726.
    [93]Gillian L, Alan M, Mark O. Frequency control and wind turbine technologies[J]. IEEE Transaction on Power System,2005,20(4):1905-1914.
    [94]Nayeem R U, Torbjorn T, Daniel K. Temporary primary frequency control support by variable speed wind turbines potential and application[J]. IEEE Transactions on Power System,2008,23(2):601-613.
    [95]Emmanouil L, loannis M, Panayiotis. Frequency control support and participation methods provided by wind generation[C]. In:IEEE Conference on Electrical Power and Energy. Montreal, Canada,2009,1-6.
    [96]Akie U, Tomonobu S, Atsushi Y. Frequency control by coordination control of WTG and battery using load estimation[C]. In:IEEE Conference on Power Electronics and Driver System. Taipei, Taiwain,2009,216-221.
    [97]Badrul H C, Hong T M. Frequency regaultion with wind power plants[C]. In: IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. Pittsburgh, USA,2008,972-977.
    [98]刘其辉,贺益康,张建华.并网型交流励磁变速恒频风力发电系统控制研究[J].中国电机工程学报,2006,26(23):109-115.
    [99]刘其辉,贺益康,赵仁德.交流励磁变速恒频风力发电系统的运行与控制[J].电工技术学报,2008,23(1):129-136.
    [100]马袆炜,俞俊杰,吴国祥.双馈风力发电系统最大功率点跟踪控制策略[J].电工技术学报,2009,24(4): 202-208.
    [101]曾志勇,冯婧,周宏范.基于功率给定的双馈风力发电最大风能捕获策略[J].电力自动化设备,2010,30(6):25-30.
    [102]张志,王清灵,朱一凡.变速恒频双馈风力发电系统最大风能捕获控制[J].电机控制与应用,2010,37(3):18-21.
    [103]郭金东,赵栋利,林资旭.兆瓦级变速恒频风力发电机组控制系统[J].中国电机工程学报,2007,27(6):1-6.
    [104]徐大平,肖运启,秦涛.变桨距型双馈风电机组并网控制及建模仿真[J].电网技术,2008,32(6):100-108.
    [105]肖运启.双馈风电机组线性建模及特性分析[J].电机控制与应用,2010,37(5): 7-13.
    [106]李晶,宋家骅,王伟胜.大型变速恒频风力发电机组建模与仿真[J].中国电机工程学报,2004,24(6):100-105.
    [107]Yao-zhou Lei. Alan M, Gordon. Modeling of the wind turbine with a doubly fed induction generation for grid integration studies[J]. IEEE Transactions on energy conversion,2006,21(1):257-264.
    [108]洪敏,李兴源.双馈风力发电的小信号稳定性分析及其控制研究[J].继电器,2007,35(14):1-7.
    [109]Hong-mei Li, Dai Yi. Small signal stability analysis of grid connected doubly fed induction generator under decoupled P-Q control[C]. In:IEEE Asia-Pacific Power and Energy Engineering Conferernce. Wuhan, China,2009,1-4.
    [110]Yateendra M, Mishra S, Fangxing Li. Small signal stability analysis of a DFIG based wind power system under different modes of operation[J]. IEEE Transactions on energy conversion,2009,24(4):972-982.
    [111]Shan-ying Li, Yu Sun, Tao Wu. Analysis of small stability of grid connected doubly fed induction generators[C]. In:IEEE Asia-Pacific Power and Energy Engineering Conferernce. Chengdu, China,2010,1-4.
    [112]Jorge M, Philip C, Remus T. DFIG turbine representation for small signal voltage control studies[C]. In:IEEE the 12th International Conference on Optimization of Electrical and Electronic Equipment. Brasov, Romania,2010, 30-40.
    [113]Francoise M, Bikash C. Modelling and small signal analysis of a grid connected doubly fed induction generator[C]. In:IEEE Power Engineering Society General Meeting. San Francisco, USA,2005,2101-2108.
    [114]Chen Wang, Li-bao Shi, Li-ming Wang. Small signal stability analysis considering grid connected wind farms of DFIG type[C]. In:IEEE Power Engineering Society General Meeting. Pittsburg, USA,2008,1-6.
    [115]冯学敏, 林礼清, 温步瀛. 双馈风电机组参与系统辅助频率控制的仿真[J].电力与电工,2009,29(3):9-15.
    [116]Juan M M, Alejandro M. Freuency regulation contribution through variable speed wind energy conversion systems[J]. IEEE Transactions on Power Systems,2009,24(1):173-180.
    [117]Janaka E, Nick J. Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency[J]. IEEE Transactions on Energy Conversion,2004,12:19(4):800-803.
    [118]Rogerio G, Pecas L. Participation of doubly fed induction wind generation in system frequency regulation[J]. IEEE Transactions on Power System,2007, 22(3):944-950.
    [119]Wu F, Zhang X P, Godfrey K. Small signal stability analysis and optimal control of a wind turbine with doubly fed induciton generator[J]. IET Generation, Transmission and Distribution,2007,1(5):751-760.
    [120]Neyeem R U, Torbjorn T, Daniel K. Temporary primary frequency control sopport by variable speed wind turbines-potential and application[J]. IEEE Transactions on Power Systems,2008,23(2):601-611.
    [121]Yin Ming, Li Gengyin, Zhou Ming. Analysis and comparison of dynamic models for the doubly fed induction generator wind turbine[J]. Automation of Electic Power Systems,2006,30(13):22-27.
    [122]Lei Y, Mullance G, Yacamini R. Modeling of the wind turbine with a doubly fed induction generator for grid integration studies[J]. IEEE Transactions on Energy Conversion,2006,21(1):257-264.
    [123]Mishra Y, Mishra S, Bansal R C. Small signal stability analysis of a DFIG based wind power system under different modes of operation[J]. IEEE Transactions on Energy Conversion,2009,24(4):972-982.
    [124]Massing J R, Pinherio H. Small signal stability of DFIG with series grid side converter[C]. In:IEEE Power Electronics Conference. Brazilian, Brazil, 2009,711-718.
    [125]Yang L, Yang G Y, Xu Z. Optimal controller design of a doubly fed induction gerenator wind turbine system for small signal stability enhancement[J]. IET Generation, Transmission and Distribution,2010,4(5):579-597.
    [126]Zhang Xiang yu, Li He ming, Wang Yi. Control of DFIG based wind farms for power network frequency support[C]. In:IEEE Conference on Power Pystem Technology. Hangzhou, China,2010,1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700