用户名: 密码: 验证码:
炭砂滤池的构建技术、处理效果和工艺特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炭砂滤池,即活性炭石英砂双层滤料滤池,替代常规净水工艺中的石英砂滤池,可以在保留滤池原有的对颗粒物去除截留的基础上,通过增加颗粒活性炭对有机物的吸附作用和强化滤层中微生物对污染物的生物降解作用,显著提高对有机物和氨氮的去除效果。
     研究确定了炭砂滤池的构建技术和运行方式,保证滤池出水浊度稳定在0.10NTU以下,效果优于砂滤池。为了解决滤池初滤水浊度较高的难题,研究开发了反冲洗后增加微膨胀冲洗的初滤水浊度控制方法,可把初滤水浊度最大值从现有的0.25-0.45NTU降至0.20NTU以下,并在运行5min内浊度恢复到0.10NTU以下,符合美国环境保护署对于初滤水浊度控制的要求。
     炭砂滤池对CODMn的去除率从砂滤池的不到10%提高到30%以上,对UV254的去除率从砂滤池的基本无去除提高到20%以上,主要依靠活性炭的吸附作用去除有机物。炭砂滤池内生物硝化能力高于砂滤池,出水氨氮浓度均值为0.10mg/L,出水亚硝酸盐氮浓度均值为0.002mg/L,运行效果优于砂滤池。为了解决仅靠进水中的溶解氧不能满足高氨氮硝化耗氧要求的难题,研究开发了在炭砂滤池的滤层中间铺设曝气头的曝气炭砂滤池技术,强化了对氨氮的去除效果,可以把应对氨氮的能力从常规净水工艺的0.5-1.0mg/L提高到3.0mg/L。
     炭砂滤池生物量和生物活性沿滤池深度方向减少。滤池内活性炭中层和底层的微生物多样性较高且两者群落结构相似度最高,活性炭表层和石英砂中层的微生物多样性较低且两者群落结构相似度最低。氨氧化菌的多样性在活性炭层沿深度方向增加,优势菌是一种亚硝化单胞菌。
     炭砂滤池在长期高氨氮条件下运行时,对氨氮的去除负荷主要受到溶解氧的影响,氨氮可能通过硝化和反硝化作用去除。
     炭砂滤池和石英砂滤池制水成本的差异主要是由滤料成本的差异造成的,炭砂滤池比石英砂滤池制水成本高0.02元/t,曝气炭砂滤池比石英砂滤池制水成本高0.03元/t,在经济上具有可行性。
     炭砂滤池在不增加常规处理工艺水厂净水构筑物的条件下,实现了短流程的深度处理,适用于水源水只受到轻度污染或季节性污染,或是受到经济条件或场地条件限制的水厂,在我国具有广阔的应用前景。
Granular activated carbon (GAC)-sand dual media filter, of which the upper layerand the lower layer were filled with GAC and sand respectively, could be used tosubstitute the sand filter in drinking water treatment. GAC-sand dual media filter couldremove turbidity, meanwhile it could also remove organic matter and ammoniumthrough activated carbon adsorption and microbial activity.
     The filter media and operation parameters were determined, and turbidity could bebelow0.10NTU, which was lower than that of sand filter. To solve the problem of poorwater quality during filter ripening period, the method of adding subfluidizationbackwashing after normal backwashing was developed. The maximum turbidity ineffluent was lowered from0.25-0.45NTU to less than0.20NTU, while the turbiditycould be below0.10NTU after5min operation, and the effluent quality could reach thegoal of USEPA on turbidity control during filter ripening period.
     GAC-sand dual media filter could remove more than30%of CODMn, which washigher than the9.2%removal efficiency of sand filter. GAC-sand dual media filtercould remove more than30%of UV254, while sand filter showed no removal. Theorganic matter was mainly removed through GAC adsorption. The nitrifying ability ofGAC-sand dual media filter was strong, and the average effluent concentration ofammonium and nitrite was0.10mg/L and0.002mg/L respectively, which was lowerthan that of sand filter. To solve the short of dissolved oxygen (DO) during nitrification,aeration equipment was set in the GAC layer, the aerated GAC-sand dual media filtercould increase the ammonium removal capacity from0.5-1.0mg/L in conventionalwater treatment process to3.0mg/L.
     The biomass and microbial activity decreased along the filter depth. The microbialdiversity was high in the middle and lower GAC layer, and their microbial communitystructures were similar to each other. While microbial diversity was relatively lower inthe upper GAC layer and sand layer, and their microbial community structures weredistant from each other. The diversity of ammonia oxidizing bacteria (AOB) increasedalong the filter depth, and the dominant AOB in the filter belonged to Nitrsomonas.
     During operation with high ammonium concentration for a long period, theammonium could be removed through nitrification and denitrification. Do was the keyparameter affecting ammonium removal capacity.
     The difference of operation cost between GAC-sand dual media filter and sandfilter was mainly due to higher price of GAC. Extra0.02RMB/t would be cost by usingGAC-sand dual media filter, while0.03RMB/t would be cost by using aerated GAC-sand dual media filter, and could be accepted financially.
     There was no need for the water treatment plants (WTPs) to add more operationprocess when GAC-sand dual media filter was used to substitute the sand filter. Thefilter was advised to be used in the WTPs, whose raw water was slightly polluted orseasonally, or there was little space for the WTPs to expand, or financially limitedWTPs. In conclusion, the GAC-sand dual media filter will be a promising drinkingwater technology in China.
引文
[1]于鑫,张晓健,王占生.水源水及饮用水中的有机物对人体健康的影响.中国公共卫生,2003,19(4):481-482.
    [2]肖羽堂,张晶晶,吴鸣,等.我国水资源污染与饮用水安全性研究.长江流域资源与环境,2001,10(1):51-59.
    [3]刘艳芳,王启山,鲁金凤,等.原水天然有机物化学特性与消毒副产物关系.水处理技术,2010,36(2):25-28.
    [4]侯娟,邵嘉慧,何义亮.荷电超滤膜对天然有机物去除及膜污染行为的影响.环境科学,2010,31(6):1525-1531.
    [5]张永吉,周玲玲,李伟英,等.高锰酸盐复合剂强化混凝对水中天然有机物的去除机制研究.环境科学,2009,30(3):761-764.
    [6]乔铁军,张锡辉,欧慧婷.饮用水中药品和个人护理用品的研究进展.给水排水,2010,36(4):118-125.
    [7]刘莹,管运涛,水野忠雄,等.药品和个人护理用品类污染物研究进展.清华大学学报:自然科学版,2009,49(3):368-372.
    [8]胡洪营,王超,郭美婷.药品和个人护理用品(PPCPs)对环境的污染现状与研究进展.生态环境,2005,14(6):947-952.
    [9]蔡继晗,沈奇宇,郑向勇,等.氨氮污染对水产养殖的危害及处理技术研究进展.浙江海洋学院学报:自然科学版,2010,29(2):167-172.
    [10] Chen W H, Young T M. Influence of nitrogen source on NDMA formation duringchlorination of diuron. Water research,2009,43(12):3047-3056.
    [11]高廷耀.水污染控制工程.北京:高等教育出版社,1989.
    [12]许保玖.给水处理理论.北京:中国建筑工业出版社,2000.
    [13]白晓慧,贺兰喜.常规饮用水净化技术面临的挑战及对策.水科学进展,2002,13(1):122-127.
    [14]张晓健,牛璋彬.给水管网中铁稳定性问题及其研究进展.中国给水排水,2006,22(2):13-16.
    [15]曲久辉.饮用水安全保障技术原理.北京:科学出版社,2007.
    [16]崔福义,李伟光,张悦,等.哈尔滨气化厂(达连河)供水系统应对硝基苯污染的措施与效果.给水排水,2006,32(6):13-17.
    [17]刘百仓,韩帮军,马军,等.粉末活性炭吸附去除松花江原水中有机物的研究.中国给水排水,2008,24(21):38-41.
    [18]刘成,黄廷林,赵建伟.混凝,粉末活性炭吸附对不同分子量有机物的去除.净水技术,2006,25(1):31-33.
    [19]王建平,黄长均.粉末活性炭吸附技术在水厂的应用.中国给水排水,2006,22(10):17-20.
    [20]谢鹏超.化学预氧化对藻类特性及氯化消毒副产物生成规律的影响[硕士学位论文].哈尔滨:哈尔滨工业大学市政环境工程学院,2011.
    [21]李思思,王启山,何凤华,等.预臭氧化工艺处理高藻水的应用研究.中国给水排水,2011,27(19):32-34.
    [22]丁莎莎,陈德强,王启山,等.预氯化/超滤技术处理滦河水的中试研究.中国给水排水,2010,26(13):98-100.
    [23]蒋绍阶,岳崇峰,赖锐杰.高锰酸钾预氧化技术在宾川二水厂的应用.给水排水,2009,34:5-7.
    [24]刘成,陈卫,黄廷林,等.两种预氧化剂处理高藻水的对比实验研究.西安建筑科技大学学报:自然科学版,2009,41(2):252-256.
    [25]陆少鸣,杨立,陈艺韵,等.高速给水曝气生物滤池预处理微污染原水.中国给水排水,2009,25(18):65-70.
    [26]陆少鸣,黄念禹,杨立,等.叠式曝气生物滤池预处理高氨氮原水.中国给水排水,2009,25(20):49-54.
    [27]陶光华,陆少鸣.悬浮填料流化池预处理原水中氨氮的研究.环境科学与技术,2009,32(5):135-137.
    [28]王文兵,陆少鸣,易慧,等.曝气生物滤池预处理微污染源水的中试研究.水处理技术,2007,33(3):49-51.
    [29]桑军强,王占生. BAF在微污染源水生物预处理中的应用.中国给水排水,2003,19(2):21-23.
    [30]夏四清,徐斌,高廷耀,等.悬浮填料床生物预处理黄浦江原水中试研究.同济大学学报:自然科学版,2003,31(8):977-981.
    [31]许建华,刘辉,张东.微污染水源水生物预处理及后续工艺的生化延伸效应除污染研究.给水排水,2002,28(7):1-5.
    [32]张文妍.微污染水源水生物预处理氨氮去除影响因素探讨.给水排水,2002,28(11):1-3.
    [33]夏四清,高廷耀.受污染饮用水水源生物预处理技术.上海环境科学,2000,19(6):285-287.
    [34]张华.上海惠南水厂生物预处理工艺的运行效果.中国给水排水,2000,16(8):12-14.
    [35]程起跃,薛罡,张良亮.常规工艺强化去除给水系统中的卡马西平.环境科学与技术,2011,34(7):38-41.
    [36]漆文光,陆少鸣,常颖.强化常规工艺对苯酚污染的应急处理技术研究.供水技术,2008,2(6):33-35.
    [37]韩宏大,周玉文,何文杰.强化常规工艺处理黄河原水的试验研究.中国给水排水,2006,22(5):56-59.
    [38]顾玮.强化常规工艺处理微污染水.云南建筑,2005,1(1):55-56.
    [39]岳舜琳.强化常规水处理工艺对降低水的致突变率的影响.净水技术,2002,21(1):2-3.
    [40]岳舜琳.强化常规水处理工艺去除有机污染物探讨.净水技术,2001,20(1):3-6.
    [41]黄晓东.强化常规工艺处理深圳微污染水源水的试验研究.给水排水,2000,2.
    [42]梁聪.强化混凝技术研究[硕士学位论文].上海:同济大学环境科学与工程学院,2006.
    [43]叶少帆,王志伟,吴志超.微污染水源水处理技术研究进展和对策分析.水处理技术,2010,36(6):22.
    [44]郑洪领,刘汝鹏,王全勇,等.给水厂臭氧—生物活性炭深度处理生产性试验研究.给水排水,2012,37(12):11-15.
    [45] Chu W, Gao N, Yin D, et al. Ozone–biological activated carbon integrated treatment forremoval of precursors of halogenated nitrogenous disinfection by-products. Chemosphere,2011,86:1087-1091.
    [46] Gerrity D, Gamage S, Holady J, et al. Pilot-scale evaluation of ozone and biologicalactivated carbon for trace organic contaminant mitigation and disinfection. Water research,2011,45(5):2155-2165.
    [47] Shi C, Yuan R, Zhou B, et al. Study on removal of tastes and odors from drinking waterthrough ozonation-biological activated carbon process. IEEE,2011:4507-4510.
    [48]王占生,刘文君.我国给水深度处理应用状况与发展趋势.中国给水排水,2005,21(9):29-33.
    [49]曲晓妍.引黄水库水深度处理工艺中臭氧氧化研究[硕士学位论文].济南:山东建筑大学市政与环境工程学院,2011.
    [50]孙丽娜,季民,刘卫华,等.活性炭及臭氧活性炭结合常规工艺处理微污染源水的效果比较.净水技术,2009,28(3):14-17.
    [51] Joe W H, Choi I C, Baek Y A, et al. Advanced treatment for taste and odour control indrinking water: case study of a pilot scale plant in Seoul, Korea. Water science andtechnology,2007,55(5):111-116.
    [52]乔铁军,安娜,尤作亮,等.梅林水厂臭氧/生物活性炭工艺的运行效果.中国给水排水,2006,22(13):10-13.
    [53]孔令宇,张晓健,王占生.臭氧-生物活性炭组合工艺中最佳臭氧投加剂量的确定.环境科学,2006,27(7):1345-1347.
    [54]周云.周家渡水厂臭氧活性炭组合工艺的运行.给水排水,2006,32(5):19-22.
    [55] Von Gunten U. Ozonation of drinking water: Part II. Disinfection and by-product formationin presence of bromide, iodide or chlorine. Water Research,2003,37(7):1469-1487.
    [56]张书芬,王全林,沈坚,等.饮用水中臭氧消毒副产物溴酸盐含量的控制技术探讨.水处理技术,2011,37(1):28-32.
    [57]鲁金凤,张勇,王艺,等.溴酸盐的形成机制与控制方法研究进展.水处理技术,2010,36(11):5-10.
    [58]李继,董文艺,贺彬,等.臭氧投加方式对溴酸盐生成量的影响.中国给水排水,2005,21(4):1-4.
    [59]杜红,董文艺,李继,等.溴酸盐生成水平判断臭氧化工艺适用性.中国给水排水,2005,21(8):47-50.
    [60]祝玲,刘文君,袁永钦,等.生物活性炭工艺颗粒物分布及微生物安全性研究.给水排水,2009,35(3):23-28.
    [61]孙兴滨,崔福义,张金松,等.饮用水中摇蚊幼虫的臭氧灭活及其臭氧-活性炭工艺协同去除.化工学报,2006,57(3):658-662.
    [62]张朝晖.饮用水深度处理工艺的优化研究[博士学位论文].南京:东南大学能源与环境学院,2005.
    [63] Chen W R, Sharpless C M, Linden K G, et al. Treatment of volatile organic chemicals on theEPA contaminant candidate list using ozonation and the O3/H2O2advanced oxidationprocess. Environmental science&technology,2006,40(8):2734-2739.
    [64] Chen W R, Wu C, Elovitz M S, et al. Reactions of thiocarbamate, triazine and ureaherbicides, RDX and benzenes on EPA Contaminant Candidate List with ozone and withhydroxyl radicals. Water research,2008,42(1-2):137-144.
    [65] Esplugas S, Bila D M, Krause L G T, et al. Ozonation and advanced oxidation technologiesto remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal careproducts (PPCPs) in water effluents. Journal of hazardous materials,2007,149(3):631-642.
    [66]莫罹,黄霞.微滤膜处理微污染原水研究.中国给水排水,2002,18(4):40-43.
    [67]顾宇人,曹林春,陈春圣,等.超滤膜法短流程工艺在南通市芦泾水厂提标改造工程中的应用.给水排水,2011,36(11):9-15.
    [68]何寿平,张国宇.以浸没式超滤膜为核心的短流程净水工艺的应用与思考.给水排水,2011,37(1):27-33.
    [69]李永红,张伟,张晓健,等.浸没式超滤膜处理农村微污染地表水试验研究.中国农村水利水电,2010,6:50-53.
    [70]孙丽华,李星,吕谋,等.五种预处理方式对超滤膜处理松花江水的效能比较.给水排水,2007,33(5):133-136.
    [71]郭金涛,李伟英,许京晶,等.粉末活性炭-超滤膜联用去除水体藻类.膜科学与技术,2011,31(5):78-83.
    [72]齐鲁,田家宇,梁恒,等.粉末活性炭/污泥回流工艺强化膜前预处理的研究.中国给水排水,2010,26(7):50-53.
    [73]董秉直,陈艳,高乃云,等.粉末活性炭-超滤膜处理微污染原水试验研究.同济大学学报:自然科学版,2005,33(6):777-780.
    [74]李圭白,田家宇,齐鲁.第三代城市饮用水净化工艺及超滤的零污染通量.给水排水,2010,36(8):11-15.
    [75]李圭白,杨艳玲.第三代城市饮用水净化工艺——超滤为核心技术的组合工艺.给水排水,2007,33(4):1.
    [76]纪洪杰,高伟,常海庆,等.南郊水厂超滤膜组合工艺运行情况评价.供水技术,2011,5(3):1-5.
    [77]张伟,李永红,陈超,等.混凝/浸没式超滤膜工艺处理微污染地表水的运行工况和处理效果研究.清华大学学报:自然科学版,2011,50(11):1885-1889.
    [78]张艳,于丽君,李立秋,等.浸没式超滤膜用于砂滤池的研究.膜科学与技术,2009,29(5):70-73.
    [79]康华,何文杰,韩宏大,等.中空纤维超滤膜处理滦河水中试研究.中国给水排水,2008,24(1):5-8.
    [80]李永红,张伟,张晓健,等. PAC及颗粒物对超滤膜有机物污染的影响.清华大学学报:自然科学版,2010,50(9):1392-1395.
    [81] Meng F, Chae S R, Drews A, et al. Recent advances in membrane bioreactors (MBRs):membrane fouling and membrane material. Water Research,2009,43(6):1489-1512.
    [82] Huang H, Schwab K, Jacangelo J G. Pretreatment for low pressure membranes in watertreatment: A review. Environmental science&technology,2009,43(9):3011-3019.
    [83]孙丽华,李星,杨艳玲,等.浸没式超滤膜处理地表水的膜污染影响因素试验研究.给水排水,2009,35(4):18-22.
    [84]李永红,张伟,张晓健,等.超滤膜的污染控制研究进展.中国给水排水,2009,25(2):1-4.
    [85]张烽,徐平.反渗透,纳滤膜及其在水处理中的应用.膜科学与技术,2003,23(4):241-245.
    [86] Glucina K, Alvarez A, Laīné J M. Assessment of an integrated membrane system for surfacewater treatment. Desalination,2000,132(1-3):73-82.
    [87] Magara Y, Kunikane S, Itoh M. Advanced membrane technology for application to watertreatment. Water science and Technology,1998,37(10):91-99.
    [88]俞三传,高从堦,张慧.纳滤膜技术和微污染水处理.水处理技术,2005,31(9):6-9.
    [89]周军,方少明,张宏忠,等.反渗透膜在水处理中的研究进展.过滤与分离,2006,16(2):12-15.
    [90]曾植,杨春平.炭砂滤池与砂滤池处理稳定性微污染地表水对比试验.工业水处理,2008,28(9):43-46.
    [91]范平,吴纯德,陆少鸣,等. GAC-石英砂生物滤池处理微污染原水.水处理技术,2008,34(8):59-62.
    [92]张长,曾光明,余健,等. GAC-石英砂生物过滤处理微污染源水的特性.中国环境科学,2004,24(2):209-213.
    [93]梁汀,吕锡武.应用生物强化活性滤池的滤料选择及效果.城市环境与城市生态,2003,16(6):223-225.
    [94]黄晓东,李德生,王占生,等.生物活性滤池强化过滤的影响因素研究.中国给水排水,2003,19(5):67-69.
    [95]李伟光,公绪金,王广智,等.炭砂滤池中活性炭使用特性研究.给水排水,2011,37(4):19-22.
    [96]邹琳,笪跃武,周圣东.中桥水厂炭砂滤池改造与运行管理.中国给水排水,2011,27(16):99-103.
    [97]谢观体,陆少鸣. BAF预处理强化常规饮用水处理工艺效果研究.净水技术,2011,29(1):27-29.
    [98]罗国荣.炭砂复合滤池短流程深度净水工艺试验研究[硕士学位论文].广州:华南理工大学环境科学与工程学院,2010.
    [99]朱建文.饮用水预处理工艺优化与膜过滤组合工艺的研究[博士学位论文].杭州:浙江大学环境与资源学院,2009.
    [100] Ahmad R, Amirtharajah A. Detachment of particles during biofilter backwashing. Journalof the American Water Works Association,1998,90(12):74-85.
    [101]徐兵,高翔,蒋黎明.活性炭/砂双滤料滤池处理微污染原水.中国给水排水,2007,23(14):23-25.
    [102] Wang J Z, Summers R S, Miltner R J. Biofiltration performance: part1, relationship tobiomass. Journal of the American Water Works Association,1995,87(12):55-63.
    [103] Urfer D, Huck M, Booth S D J, et al. Biological filtration for BOM and particle removal: acritical review. Journal American Water Works Association,1997,89(12):83-98.
    [104] Kim J, Kang B. DBPs removal in GAC filter-adsorber. Water research,2008,42(1-2):145-152.
    [105] Tobiason J E, Edzwald J K, Reckhow D A, et al. Effect of pre-ozonation on organics removalby in-line direct filtration. Water Science&Technology,1993,27(11):81-90.
    [106]杨开,周涛.生物活性炭—砂滤处理微污染原水研究.中国给水排水,2000,16(12):54-56.
    [107]李英,张晓健.生物活性滤池用于直接过滤净水工艺的研究.给水排水,2004,30(9):115.
    [108]冯令艳,袁一星,吕炳南.炭砂滤池去除硝基苯等微污染有机物的研究.中国给水排水,2010,26(15):58-60.
    [109] Rechard G S. Secondary utilization of trace organic by biofilms on porous. J AWWA,1983,75(9):463-469.
    [110]邹伟国,江宏文,沈裘昌,等.普通快滤池改成生物滤池的试验研究.中国给水排水,2003,19(13):98-100.
    [111] Elhadi S L N, Huck P M, Slawson R M. Factors affecting the removal of geosmin and MIBin drinking water biofilters. Journal-American Water Works Association,2006,98(8):108-119.
    [112] Kommineni S, Westerhoff P, Sinha S, et al. Taste and odor compounds in potable waters:how to remove them using ozone-assisted biofiltration?//AWWA Annual Conference.Anaheim, CA,2003.
    [113]乔铁军,张晓健,于鑫.反冲洗对生物滤池中生物活性的影响试验.中国给水排水,2003,19(13):77-80.
    [114]戴明.生物强化过滤处理微污染饮用水的试验研究[硕士学位论文].南京:河海大学环境科学与工程学院,2007.
    [115]余健.生物过滤去除饮用水中有机物,铁和锰的特性与机理研究[博士学位论文].长沙:湖南大学环境科学与工程系,2004.
    [116] Krasner S W, Sclimenti M J, Coffey B M. Testing biologically active filters for removingaldehydes formed during ozonation. Journal-American Water Works Association,1993,85(5):62-71.
    [117] Coffey B M, Krasner S W, Sclimenti M J, et al. A Comparison of Biologically Active Filtersfor the Removal of Ozone By-Products, Turbidity, and Particles.//Proc. AWWA WaterQuality Technology Conference. New Orleans,1995.
    [118] Liu X, Huck P M, Slawson R M. Factors affecting drinking water biofiltration: Filtration.Journal-American Water Works Association,2001,93(12):90-101.
    [119] Zhang S, Huck P M. Removal of AOC in biological water treatment processes: a kineticmodeling approach. Water Research,1996,30(5):1195-1207.
    [120] Lechevallier M W, Becker W C, Schorr P, et al. Evaluating the performance of biologicallyactive rapid filters. Journal American Water Works Association,1992,84(4):136-146.
    [121]漆文光,林浩添,罗锋,等.砂滤强化技术用于自来水厂的生产性试验研究.中国给水排水,2010,26(23):48-50.
    [122] Sontheimer H, Crittenden J C, Summers R S. Activated carbon for watertreatment.DVGW-Forschungsstelle, Engler-Bunte-Institut, Universitat Karlsruhe (TH),1988.
    [123]田家宇,陈伟雄,王威,等.滤料粒径对生物活性滤池除污染效能的影响.工业水处理,2007,27(11):15-18.
    [124] Niquette P, Prevost M, Maclean R G, et al. Backwashing first-stage sand-BAC filters.Journal-American Water Works Association,1998,90(1):86-97.
    [125]陈超,胡文容,张群. O3预氧化-生物活性滤池直接过滤工艺处理黄河微污染原水.净水技术,2004,23(1):10-12.
    [126]于鑫,张晓健.外加磷源提高饮用水生物滤池对有机物的去除效率研究.给水排水,2003,29(1):13-16.
    [127] Scholz M, Martin R J. Ecological equilibrium on biological activated carbon. Water Research,1997,31(12):2959-2968.
    [128]朱亮.供水水源保护与微污染水体净化化学工业出版社,2005.
    [129]王磊磊.饮用水深度处理活性炭工艺水质安全性研究[硕士学位论文].南京:河海大学环境科学与工程学院,2007.
    [130]乔铁军,张锡辉,张金松.三种深度处理工艺出水的微生物安全性比较.中国给水排水,2010,26(7):30-33.
    [131] Rittmann B E, Crawford L A, Tuck C K, et al. In situ determination of kinetic parameters forbiofilms: isolation and characterization of oligotrophic biofilms. Biotechnology andbioengineering,1986,28(11):1753-1760.
    [132] Cunliffe D A. Bacterial nitrification in chloraminated water supplies. Applied andenvironmental microbiology,1991,57(11):3399-3402.
    [133] Moll D M, Summers R S, Breen A. Microbial characterization of biological filters used fordrinking water treatment. Applied and environmental microbiology,1998,64(7):2755-2759.
    [134] Norton C D, Lechevallier M W. A pilot study of bacteriological population changes throughpotable water treatment and distribution. Applied and Environmental Microbiology,2000,66(1):268-276.
    [135]于鑫,张晓健,刘晓玲,等.生物滤池中微生物的SOUR活性研究.中国给水排水,2004,20(3):16-20.
    [136]于鑫,张晓键,王占生.饮用水生物处理中生物量的脂磷法测定.给水排水,2002,28(5):1-5.
    [137]乔铁军,张晓健.原位基质摄取速率法检测微生物活性.中国给水排水,2002,18(7):80-82.
    [138]杨小茹,苏建强,郑小伟,等.基于分子技术的1株产毒藻藻际细菌多样性分析.环境科学,2009,30(1):271-279.
    [139]陈平,李辉,牟伯中.油藏水样细菌群落16S rRNA基因的RFLP分析.微生物学杂志,2006,25(6):1-5.
    [140]王晓慧,文湘华,马娜,等.不同规模污水处理系统中微生物群落结构.清华大学学报:自然科学版,2010,50(3):411-414.
    [141]王晓慧,文湘华,杨宁宁,等.污水处理工艺对氨氧化菌及细菌群落的影响.中国环境科学,2009,29(6):622-628.
    [142]余素林,吴晓磊,钱易.环境微生物群落分析的T-RFLP技术及其优化措施.应用与环境生物学报,2007,12(6):861-868.
    [143]史青,柏耀辉,李宗逊,等.应用T-RFLP技术分析滇池污染水体的细菌群落.环境科学,2011,32(6):1786-1792.
    [144]单国彬,金文标,林佶侃,等.变性梯度凝胶电泳在环境微生物生态学中的应用.生态学杂志,2008,25(10):1257-1264.
    [145]王振宇,张昱,刘新春,等. O3-BAC工艺的微生物群落结构解析.中国给水排水,2006,22(1):1-4.
    [146]叶姜瑜,丁维,何强,等. TISTD反应器中的菌群结构及生态变化.土木建筑与环境工程,2011,33(1):147-152.
    [147]杜宇峰,叶央芳. DGGE/TGGE方法在土壤微生物群落研究中的应用.江苏环境科技,2006,18(B12):128-131.
    [148]刘小琳,刘文君,金丽燕,等.北京市给水管网管壁微生物膜群落.清华大学学报:自然科学版,2009,48(9):1458-1461.
    [149]米文秀,谢冰,徐亚同. PCR-SSCP技术用于脱臭微生物群落结构的研究.环境科学,2008,29(7):1992-1997.
    [150]刘小琳,刘文君.生物陶粒与生物活性炭上微生物群落结构的PCR-SSCP技术解析.环境科学,2007,28(4):924-928.
    [151]赵阳国,王爱杰,任南琪,等. SSCP技术分析不同废水处理系统中微生物群落结构.环境科学,2006,27(7):1429-1433.
    [152]韩涛,尹华群,刘毅,等.某低品位硫化铜矿混合菌浸出研究.金属矿山,2011,9:82-86.
    [153]赵大勇,燕文明,冯景伟.实时荧光定量PCR技术对氨氧化细菌的研究.环境科学与技术,2010,33(12):8-13.
    [154] Geets J, De Cooman M, Wittebolle L, et al. Real-time PCR assay for the simultaneousquantification of nitrifying and denitrifying bacteria in activated sludge. Appliedmicrobiology and biotechnology,2007,75(1):211-221.
    [155]费学宁,曹阳,郝亚超,等.荧光原位杂交技术在活性污泥菌群识别中的研究进展.化学通报,2011,74(6):520-527.
    [156]陈瑛,任南琪,宋佳秀.荧光原位杂交技术解析发酵产氢细菌群落结构.中国环境科学,2007,27(3):295-299.
    [157]李华芝,李秀艳,徐亚同.荧光原位杂交技术在微生物群落结构研究中的应用.净水技术,2006,25(1):16-20.
    [158]李建婷,纪树兰,刘志培,等.16S rDNA克隆文库方法分析好氧颗粒污泥细菌组成.环境科学研究,2009,22(10):1218-1223.
    [159]刘玮琦,茆振川,杨宇红,等.应用16S rRNA基因文库技术分析土壤细菌群落的多样性.微生物学报,2008,48(10):1344-1350.
    [160]杨芊葆,范分良,王万雄,等.长期不同施肥对暗棕壤甲烷氧化菌群落特征与功能的影响.环境科学,2010,31(11):2756-2762.
    [161]彭科峰,曹立群,吴韶平,等. DGGE和T—RFLP在堆肥微生物群落结构研究中的应用.生物信息学,2007,5(1):31-33.
    [162]赵勇,周志华,李武,等.土壤微生物分子生态学研究中总DNA的提取.农业环境科学学报,2006,24(5):854-860.
    [163]孙寓姣,左剑恶,杨洋,等.好氧亚硝化颗粒污泥中硝化细菌群落结构分析.环境科学,2006,27(9):1858-1861.
    [164] Paerl H W, Dyble J, Moisander P H, et al. Microbial indicators of aquatic ecosystem change:current applications to eutrophication studies. FEMS Microbiology Ecology,2003,46(3):233-246.
    [165] De Wever A, Muylaert K, Van der Gucht K, et al. Bacterial community composition in LakeTanganyika: vertical and horizontal heterogeneity. Applied and environmental microbiology,2005,71(9):5029-5037.
    [166] Lindstr m E S. Bacterioplankton community composition in five lakes differing in trophicstatus and humic content. Microbial ecology,2000,40(2):104-113.
    [167] Crump B C, Kling G W, Bahr M, et al. Bacterioplankton community shifts in an arctic lakecorrelate with seasonal changes in organic matter source. Applied and EnvironmentalMicrobiology,2003,69(4):2253-2268.
    [168] Li X, Upadhyaya G, Yuen W, et al. Changes in the Structure and Function of MicrobialCommunities in Drinking Water Treatment Bioreactors upon Addition of Phosphorus.Applied and environmental microbiology,2010,76(22):7473-7481.
    [169] Emtiazi F, Schwartz T, Marten S M, et al. Investigation of natural biofilms formed during theproduction of drinking water from surface water embankment filtration. Water research,2004,38(5):1197-1206.
    [170]中华人民共和国卫生部,中国国家标准化管理委员会. GB/T5750-2006.生活饮用水标准检验方法.北京:中国标准出版社,2007.
    [171]王占生,刘文君.微污染水源饮用水处理.中国建筑工业出版社,1999.
    [172] Amburgey J E, Amirtharajah A, Brouckaert B M, et al. An enhanced backwashing techniquefor improved filter ripening. Journal-American Water Works Association,2003,95(12):81-94.
    [173] Amirtharajah A. The interface between filtration and backwashing. Water Research,1985,19(5):581-588.
    [174]何纯提,路琦.初滤水回用途径探索.给水排水,2007,33(8):43-45.
    [175]郜玉楠,李伟光,黄晓东,等.正交试验法优选控制初滤水浊度最佳工艺.给水排水,2008,34(6):19-22.
    [176] Soucie W J, Sheen B J. Filter-to-waste optimization. Journal American Water WorksAssociation,2007,99(5):148-157.
    [177] Amburgey J E. Optimization of the extended terminal subfluidization wash (ETSW) filterbackwashing procedure. Water research,2005,39(2-3):314-330.
    [178] Amburgey J E, Brouckaert B M. Practical and theoretical guidelines for implementing theextended terminal subfluidization wash (ETSW) backwashing procedure. Journal of watersupply: research and technology. AQUA,2005,54(5):329-337.
    [179]蒋绍阶,刘宗源. UV254作为水处理中有机物控制指标的意义.重庆建筑大学学报,2002,24(2):61-65.
    [180]巢猛,陈贻球,戴晓莹.吹扫-捕集/气质联用法测定水中硫醚类致嗅物.中国给水排水,2011,27(6):94-96.
    [181] Pelekani C, Snoeyink V L. Competitive adsorption in natural water: role of activated carbonpore size. Water Research,1999,33(5):1209-1219.
    [182]张晓健.生物活性炭法生物降解与炭吸附有机物关系的研究[博士学位论文].北京:清华大学,1986.
    [183]丁卫,胡小芳,张建国,等.次氯酸钠氧化法去除水体中亚硝酸盐的应急技术研究.供水技术,2010,4(3):9-11.
    [184] Yapsakli K, Mertoglu B, e en F. Identification of nitrifiers and nitrification performance indrinking water biological activated carbon (BAC) filtration. Process Biochemistry,2010,45(9):1543-1549.
    [185] Camper A K, Lechevallier M W, Broadaway S C, et al. Growth and persistence of pathogenson granular activated carbon filters. Applied and environmental microbiology,1985,50(6):1378-1382.
    [186]罗佳捷,李丽立,张彬. T-RFLP技术及其在微生物群落结构研究中的应用.中国畜牧兽医,2009,36(7):75-78.
    [187] Huang Y, Zou L, Zhang S Y, et al. Comparison of Bacterioplankton Communities in ThreeHeavily Polluted Streams in China. Biomedical and Environmental Sciences,2011,24(2):140-145.
    [188] Ashelford K E, Chuzhanova N A, Fry J C, et al. New screening software shows that mostrecent large16S rRNA gene clone libraries contain chimeras. Applied and EnvironmentalMicrobiology,2006,72(9):5734-5741.
    [189] Liao L, Xu X, Wang C, et al. Bacterial and archaeal communities in the surface sedimentfrom the northern slope of the South China Sea. Journal of Zhejiang University-Science B,2009,10(12):890-901.
    [190] Wang Q, Garrity G M, Tiedje J M, et al. Naive Bayesian classifier for rapid assignment ofrRNA sequences into the new bacterial taxonomy. Applied and environmental microbiology,2007,73(16):5261-5267.
    [191] Niemi R M, Heiskanen I, Heine R, et al. Previously uncultured [beta]-Proteobacteriadominate in biologically active granular activated carbon (BAC) filters. Water research,2009,43(20):5075-5086.
    [192] Magic Knezev A, Wullings B, Van der Kooij D. Polaromonas and Hydrogenophaga speciesare the predominant bacteria cultured from granular activated carbon filters in watertreatment. Journal of applied microbiology,2009,107(5):1457-1467.
    [193] Griffiths R I, Thomson B C, James P, et al. The bacterial biogeography of British soils.Environmental Microbiology,2011,13(6):1642-1654.
    [194] Sudini H, Liles M R, Arias C R, et al. Exploring Soil Bacterial Communities in DifferentPeanut-Cropping Sequences Using Multiple Molecular Approaches. Phytopathology,2011,101(7):819-827.
    [195]王敏,尚海涛,郝春博,等.饮用水深度处理活性炭池中微生物群落分布研究.环境科学,2011,32(5):1497-1504.
    [196]王晓丹,李艳红.分子生物学方法在水体微生物生态研究中的应用.微生物学通报,2007,34(4):777-780.
    [197] Barbera M J, Mateo E, Monkaityte R, et al. Biodegradation of methyl tert-butyl ether bynewly identified soil microorganisms in a simple mineral solution. World Journal ofMicrobiology and Biotechnology,2011,27(4):813-821.
    [198] Chen S, Hu M, Liu J, et al. Biodegradation of beta-cypermethrin and3-phenoxybenzoic acidby a novel Ochrobactrum lupini DG-S-01. Journal of hazardous materials,2011,187(1-3):433-440.
    [199] Arulazhagan P, Vasudevan N. Biodegradation of polycyclic aromatic hydrocarbons by ahalotolerant bacterial strain Ochrobactrum sp. VA1. Marine pollution bulletin,2011,62(2):388-394.
    [200] Burrell P C, Keller J, Blackall L L. Microbiology of a nitrite-oxidizing bioreactor. Appliedand environmental microbiology,1998,64(5):1878-1883.
    [201] Brettar I, Hofle M G. Molecular assessment of bacterial pathogensá--áa contribution todrinking water safety. Current opinion in biotechnology,2008,19(3):274-280.
    [202] Berry D, Xi C, Raskin L. Microbial ecology of drinking water distribution systems. Currentopinion in biotechnology,2006,17(3):297-302.
    [203] Han X Y, Han F S, Segal J. Chromobacterium haemolyticum sp. nov., a strongly haemolyticspecies. International journal of systematic and evolutionary microbiology,2008,58(6):1398-1403.
    [204] Durán M, Faljoni-Alario A, Durán N. Chromobacterium violaceum and its importantmetabolites—review. Folia microbiologica,2010,55(6):535-547.
    [205] Baldi M, Morales J A, Hernández G, et al. Chromobacterium violaceum infection in afree-ranging Howler monkey in Costa Rica. Journal of Wildlife Diseases,2010,46(1):306-310.
    [206] Toh H S, Tay H T, Kuar W K, et al. Risk Factors Associated with Sphingomonaspaucimobilis Infection. Journal of Microbiology, Immunology and Infection,2011,44(4):289-295.
    [207] Bowman J P, Nowak B. Salmonid gill bacteria and their relationship to amoebic gill disease.Journal of fish diseases,2004,27(8):483-492.
    [208] Zhang D Y, Li W G, Zhang S M, et al. Bacterial Community and Function of BiologicalActivated Carbon Filter in Drinking Water Treatment. Biomedical and EnvironmentalSciences,2011,24(2):122-131.
    [209] Cao H, Hong Y, Li M, et al. Lower abundance of ammonia-oxidizing archaea thanammonia-oxidizing bacteria detected in the subsurface sediments of the Northern SouthChina Sea. Geomicrobiology Journal,2012,29(4):332-339.
    [210] Cao H, Li M, Dang H, et al. Responses of aerobic and anaerobic ammonia/ammoniumoxidizing microorganisms to anthropogenic pollution in coastal marine environments.Methods in enzymology,2011,496(Part B):35-62.
    [211] Cao H, Li M, Hong Y, et al. Diversity and abundance of ammonia-oxidizing archaea andbacteria in polluted mangrove sediment. Systematic and Applied Microbiology,2011,34(7):513-523.
    [212] Ying J Y, Zhang L M, He J Z. Putative ammonia‐oxidizing bacteria and archaea in anacidic red soil with different land utilization patterns. Environmental Microbiology Reports,2010,2(2):304-312.
    [213] Van Der Wielen P W J J, Voost S, Van Der Kooij D. Ammonia-oxidizing bacteria andarchaea in groundwater treatment and drinking water distribution systems. Applied andenvironmental microbiology,2009,75(14):4687-4695.
    [214] Zhang T, Jin T, Yan Q, et al. Occurrence of ammonia‐oxidizing Archaea in activatedsludges of a laboratory scale reactor and two wastewater treatment plants. Journal of appliedmicrobiology,2009,107(3):970-977.
    [215] Francis C A, Roberts K J, Beman J M, et al. Ubiquity and diversity of ammonia-oxidizingarchaea in water columns and sediments of the ocean. Proceedings of the National Academyof Sciences of the United States of America,2005,102(41):14683-14688.
    [216] Li M, Cao H, Hong Y, et al. Spatial distribution and abundances of ammonia-oxidizingarchaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments. Appliedmicrobiology and biotechnology,2011,89(4):1243-1254.
    [217] Horz H P, Rotthauwe J H, Lukow T, et al. Identification of major subgroups ofammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCRproducts. Journal of microbiological methods,2000,39(3):197-204.
    [218] Zhang S, Wang Q, Wan R, et al. Changes in bacterial community of anthracenebioremediation in municipal solid waste composting soil. Journal of ZhejiangUniversity-Science B,2011,12(9):760-768.
    [219] Schloss P D, Handelsman J. Introducing DOTUR, a computer program for definingoperational taxonomic units and estimating species richness. Applied and environmentalmicrobiology,2005,71(3):1501-1506.
    [220] Kasuga I, Nakagaki H, Kurisu F, et al. Predominance of ammonia-oxidizing archaea ongranular activated carbon used in a full-scale advanced drinking water treatment plant. Waterresearch,2010,44(17):5039-5049.
    [221] Limpiyakorn T, Kurisu F, Sakamoto Y, et al. Effects of ammonium and nitrite oncommunities and populations of ammonia‐oxidizing bacteria in laboratory‐scalecontinuous‐flow reactors. FEMS microbiology ecology,2007,60(3):501-512.
    [222] Mills D E K, Fitzgerald K, Litchfield C D, et al. A comparison of DNA profiling techniquesfor monitoring nutrient impact on microbial community composition during bioremediationof petroleum-contaminated soils. Journal of microbiological methods,2003,54(1):57-74.
    [223] Zhang T, Ye L, Tong A H Y, et al. Ammonia-oxidizing archaea and ammonia-oxidizingbacteria in six full-scale wastewater treatment bioreactors. Applied microbiology andbiotechnology,2011,91(4):1215-1225.
    [224] Suwa Y, Sumino T, Noto K. Phylogenetic relationships of activated sludge isolates ofammonia oxidizers with different sensitivities to ammonium sulfate. Journal of General andApplied Microbiology,1997,43(6):373-379.
    [225] Purkhold U, Wagner M, Timmermann G, et al.16S rRNA and amoA-based phylogeny of12novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposalof a new lineage within the nitrosomonads. International journal of systematic andevolutionary microbiology,2003,53(5):1485-1494.
    [226] Qin Y Y, Li D T, Yang H. Investigation of total bacterial and ammonia‐oxidizing bacterialcommunity composition in a full‐scale aerated submerged biofilm reactor for drinkingwater pretreatment in China. FEMS microbiology letters,2007,268(1):126-134.
    [227]魏复盛.水和废水监测分析方法(第四版增补版).北京:中国科学出版社,2002.
    [228] Turk O, Mavinic D S. Benefits of using selective inhibition to remove nitrogen from highlynitrogenous wastes. Environmental technology,1987,8(1-12):419-426.
    [229] Walters E, Hille A, He M, et al. Simultaneous nitrification/denitrification in a biofilm airliftsuspension (BAS) reactor with biodegradable carrier material. Water research,2009,43(18):4461-4468.
    [230] Hellinga C, Schellen A, Mulder J W, et al. The SHARON process: an innovative method fornitrogen removal from ammonium-rich waste water. Water Science and Technology,1998,37(9):135-142.
    [231] Van de Graaf A A, Mulder A, de Bruijn P, et al. Anaerobic oxidation of ammonium is abiologically mediated process. Applied and environmental microbiology,1995,61(4):1246-1251.
    [232] Vlaeminck S E, Terada A, Smets B F, et al. Aggregate size and architecture determinemicrobial activity balance for one-stage partial nitritation and anammox. Applied andenvironmental microbiology,2010,76(3):900-909.
    [233] Sliekers A O, Derwort N, Gomez J L, et al. Completely autotrophic nitrogen removal overnitrite in one single reactor. Water Research,2002,36(10):2475-2482.
    [234] Kuai L, Verstraete W. Ammonium removal by the oxygen-limited autotrophicnitrification-denitrification system. Applied and Environmental Microbiology,1998,64(11):4500-4506.
    [235] Strous M, Van Gerven E, Kuenen J G, et al. Effects of aerobic and microaerobic conditionson anaerobic ammonium-oxidizing (anammox) sludge. Applied and EnvironmentalMicrobiology,1997,63(6):2446-2448.
    [236] Hippen A, Rosenwinkel K H, Baumgarten G, et al. Aerobic deammonification: A newexperience in the treatment of waste waters. Water Science and Technology,1997,35(10):111-120.
    [237] Yuan X, Gao D. Effect of dissolved oxygen on nitrogen removal and process control inaerobic granular sludge reactor. Journal of hazardous materials,2010,178(1-3):1041-1045.
    [238] He S, Xue G, Wang B. Factors affecting simultaneous nitrification and de-nitrification (SND)and its kinetics model in membrane bioreactor. Journal of hazardous materials,2009,168(2-3):704-710.
    [239] Gómez M A, Hontoria E, González-López J. Effect of dissolved oxygen concentration onnitrate removal from groundwater using a denitrifying submerged filter. Journal ofhazardous materials,2002,90(3):267-278.
    [240] Yoo H, Ahn K H, Lee H J, et al. Nitrogen removal from synthetic wastewater bysimultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aeratedreactor. Water Research,1999,33(1):145-154.
    [241] Gao D, Yuan X, Liang H, et al. Comparison of biological removal via nitrite with real-timecontrol using aerobic granular sludge and flocculent activated sludge. Applied microbiologyand biotechnology,2011,89(5):1645-1652.
    [242] Joss A, Salzgeber D, Eugster J, et al. Full-scale nitrogen removal from digester liquid withpartial nitritation and anammox in one SBR. Environmental science&technology,2009,43(14):5301-5306.
    [243] Mekinia J, Stensel H D, Czerwionka K, et al. Nitrogen transformations and mass balances inanaerobic/anoxic/aerobic batch experiments with full-scale biomasses from BNR activatedsludge systems. Water Science and Technology,2009,60(9):2463-2470.
    [244] Yu X, Qi Z, Zhang X, et al. Nitrogen loss and oxygen paradox in full-scale biofiltration fordrinking water treatment. Water research,2007,41(7):1455-1464.
    [245] Pollice A, Tandoi V, Lestingi C. Influence of aeration and sludge retention time onammonium oxidation to nitrite and nitrate. Water Research,2002,36(10):2541-2546.
    [246] Strous M, Kuenen J G, Jetten M S M. Key physiology of anaerobic ammonium oxidation.Applied and Environmental Microbiology,1999,65(7):3248-3250.
    [247] Brenner D J. Bergey's manual of systematic bacteriology. East Lansing, Springer,2005.
    [248] Hovanec T A, Taylor L T, Blakis A, et al. Nitrospira-like bacteria associated with nitriteoxidation in freshwater aquaria. Applied and environmental microbiology,1998,64(1):258-264.
    [249] De Vet W, Dinkla I, Muyzer G, et al. Molecular characterization of microbial populations ingroundwater sources and sand filters for drinking water production. Water Research,2009,43(1):182-194.
    [250] Liu Z P, Wang B J, Liu Y H, et al. Novosphingobium taihuense sp. nov., a novelaromatic-compound-degrading bacterium isolated from Taihu Lake, China. Internationaljournal of systematic and evolutionary microbiology,2005,55(3):1229-1232.
    [251] Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto andthree new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis ofphylogenetic and chemotaxonomic analyses. International journal of systematic andevolutionary microbiology,2001,51(4):1405-1417.
    [252] Khardenavis A A, Kapley A, Purohit H J. Simultaneous nitrification and denitrification bydiverse Diaphorobacter sp. Applied microbiology and biotechnology,2007,77(2):403-409.
    [253] Ginige M P, Keller J, Blackall L L. Investigation of an acetate-fed denitrifying microbialcommunity by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situhybridization-microautoradiography. Applied and environmental microbiology,2005,71(12):8683-8691.
    [254] Adav S S, Lee D J, Lai J Y. Microbial community of acetate utilizing denitrifiers in aerobicgranules. Applied microbiology and biotechnology,2010,85(3):753-762.
    [255] Bock E, Schmidt I, Stüven R, et al. Nitrogen loss caused by denitrifying Nitrosomonas cellsusing ammonium or hydrogen as electron donors and nitrite as electron acceptor. Archivesof Microbiology,1995,163(1):16-20.
    [256]代荣. O3-BAC处理水质及活性炭寿命跟踪研究.给水排水,2011,37(12):16-20.
    [257]张健.粒状活性炭在饮用水深度处理中的应用及再生.供水技术,2007,1(5):44-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700