用户名: 密码: 验证码:
基桩承载力的可靠度分析及可靠度优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩基是土木工程中的重要结构形式之一。考虑不确定因素的影响,是基桩可靠度分析和可靠度优化设计的重要课题。尽管目前诸多学者对基桩承载力和沉降的可靠度开展了大量的研究,但这些工作对不确定因素的研究有待完善,且这些工作对基桩可靠度优化设计和群桩可靠度研究很少。本文着眼于克服这些研究的缺陷,对基桩承载力的可靠度分析方法和可靠度优化设计进行了系统的研究。
     基于最大熵原理提出了一种改进的可靠度指标计算方法。采用最大熵原理将可靠度指标的迭代计算转化为熵密度函数的计算。在计算熵密度函数时采用Newton迭代法,同时证明了Newton迭代法的局部收敛性,避免了计算中可能产生的计算迭代不收敛的情况。为了提高计算效率和计算精度,在进行Newton迭代时,采用Newton下山法进行迭代计算。为了验证该方法的计算精度,采用蒙特卡洛模拟法对各种方法的计算结果进行比较。最后通过两个实例验证了该方法的有效性。
     针对桩基工程中由于数据较少导致无法精确研究模型不确定性这一问题,基于数理统计理论和贝叶斯统计,提出了桩基工程数据处理和优化方法。利用该方法对打入桩和灌注桩承载力的现场试验数据进行分类和优化。同时利用中心点法、验算点法和蒙特卡洛模拟法计算出承载力的可靠度,根据计算结果和美国桥梁荷载抗力设计规范给出了抗力系数的建议值。最后,研究了参数和模型的不确定性对基桩承载力的影响,引入修正因子,修正了承载力的试计比和变异系数,给出了修正后可靠度指标的计算方法。
     利用概率理论,详细地分析了基桩完整性抽样检测的概率分布,建议将总体不合格率作为整批桩质量的评价标准。基于贝叶斯统计,推导出总体不合格率的先验分布和后验分布都服从Beta分布。利用先验分布的期望和方差与后验分布的期望和方差的关系建立了总体不合格率的动态评估模型。同时,利用可靠度理论,给出了基桩完整性检测的可靠度控制模型,使桩基质量控制和结构可靠度设计达到了统一。
     提出了考虑基桩完整性的群桩可靠度分析方法。利用贝叶斯统计,推导出缺陷桩的概率分布。同时利用单桩承载力的折减系数和群桩效应推导出缺陷桩群桩的可靠度计算公式和完整桩群桩的可靠度计算公式。基于全概率理论,推导出含有缺陷桩的群桩承载力的失效概率,并通过算例证明了该方法的有效性。另外,整理了国内外确定单桩极限承载力的失效准则,以国内习惯采用的s-lgt失效准则为基准,定义其他失效准则的偏差系数。同时利用群桩效应和偏差系数给出了不同失效准则下群桩可靠度的计算方法,为统一评价桩基安全提供了理论依据。最后利用偏差系数给出了不同失效准则条件下目标可靠度和安全系数的计算方法。
     针对目前桩基设计规范规定的定值优化设计法不能解决设计参数不确定性的这一不足,基于可靠度理论,利用现有的优化设计研究成果,提出了基桩的可靠度优化设计方法,并详细地给出了竖向荷载下可靠度优化设计过程。在研究竖向荷载下基桩可靠度优化设计时,提出了一种改进的可靠度优化方法,大大提高了优化计算效率。最后通过实例验证本章方法的有效性。
Pile foundation is one of important structural style in civil engineering. Consideringthe influences of uncertainties is an important topic when studying reliability of bearingcapacity and reliability-design optimaization of piles. Though a large number of researcheshave been conducted to investigate the reiliability of bearing capacity and settlement forpiles, the influences of uncertainties on reliability analysis need to be further studied.Additionally, reliability-based optimization design and reliability analysis of pile grouphave rarely been reported till now. In order to overcome these deficiencies, systemicresearches are carried out in this dissertation to analyze reliability-based optimizationdesign and reliability of bearing capacity of piles.
     A modified method for calculating reliability index was put forward based onmaximum entropy principle. To achieve this goal, the maximum entropy principle was usedto transform iterative calculation of reliability index into a maximum entropy densityfunction calculation. Newton iteration method was utilized to calculate entropy densityfunction and its local convergence was proved. The convergence of iteration was ensuredwhen calculating reliability index. To promote calculation efficiency, Newton down-hillalgorithm was incorporated into calculating entropy density function and Monte Carlosimulations were performed to assess the efficiency of the presented method. Finally, twonumerical examples had been presented to verify the validation of the presented method
     According to the mathematical statistics theory and Bayesian technique, a method fordata processing and optimization in pile foundation engineering was put forward to solvethe problem caused by model uncertainty due to lack of enough accurate field data. Thepresented method was employed to classify and optimize the field data of the driven pilesand the bored piles. The first order second moment method, the advanced first order secondmoment method and the Monte Carlo simulation were employed to calculate the reliabilityof the bearing capacity, the recommended values of resistance factors were suggestedaccording to the calculated results and American specifications for load and resistancefactor design. Meanwhile, the effects of parameter uncertainties and model uncertainties on bearing capacity of piles were studied, a modification factor was introduced to calibrate thebias factors and coefficients of variance for bearing capacity, and the modified calculationformula of reliability was presented.
     Based on probability theory, a systematic method was proposed to estimate theoccurrence probability of defective piles from a site according to non-destructive integrityinspection. The factors influencing on sampling inspection were analyzed based onprobability theory and engineers’ experiences, and the occurrence probability of defectivepiles from a site was suggested to be as the criterion to evaluate the performance of a pilefoundation. To estimate occurrence probability of defective piles, its prior distribution andupdating distribution were deduced to follow Beta distributions, and a dynamic estimationmodel was established based on the relationship between prior mean and variance andupdating mean and variance to calibrate the occurrence probability of defective piles. Thereliability-control method dealing with uncertainties arising from quality assurance ininspection was formalized to judge whether all the bored piles from a site can be accepted,and uniform quality criterion for construction and design in pile foundation engineeringwas established.
     A method was presented to evaluate the reliability of pile group considering theintegrity of pile. Based on the Bayesian Statistical Theory, the probability distribution ofdefected piles was deduced. Meanwhile, the calculation formulas of reliability for defectedpile group(DPG) and intact pile group(IPG) were obtained according to the reduction factorand the pile group effect. Finally, the failure probability of the pile group containingdefected piles was formulated using the total probability theory. Additionally, the differentfailure criteria from various countries were examined, and a bias factor defined with respectto s-lgt criterion widely used in China was introduced. Meanwhile, the calculation methodof reliability of pile group considering different criteria was presented using the bias factorsand pile group effect, which provided a theoretical basis to calibrate the reliability levels ofpile foundation associated with various failure criteria. The calculation formula of targetreliability index of bearing capacity of single piles and factor of safety was presented using bias factor.
     Currently, deterministic optimization design recommended in prevailing codes for pilefoundations cannot take the uncertainties of design parameters into account. To overcomethis deficiency, based on reliability theory and the existing research achievements ofoptimization design, the reliability-based optimization design of piles was presented, andthe detailed optimization procedures of pile under axial load were established. A modifiedreliability optimization method was put forward to improve the design of piles under axialload, which greatly enhanced the computational efficiency. Finally, the adopted method wasvalidated by a case study.
引文
[1] GB50068-2001.建筑结构可靠度设计统一标准.北京:中国建筑工业出版社,2008.
    [2]贡金鑫,仲伟秋,赵国藩.工程结构可靠性基本理论的发展与应用.建筑结构学报,2002,23(4):1-10.
    [3] ISO/DIS2394. General Reliability Principles for Structures,1th Edition. Sydney:Standards Australia,1986.
    [4] ISO/DIS2394. General Reliability Principles for Structures,3th Edition. Sydney:Standards Australia,1998.
    [5] EN I990:2002. Basis of Structural Design. London, UK: Taylor&Francis,2002.
    [6] GB50153-92.工程结构可靠度设计统一标准.北京:中国计划出版社,1992.
    [7] AASHTO. LRFD for Bridge Design Specifications,4th ed. Washington: AmericanAssociation of State Highway and Transportation Officials,2007.
    [8] Whitman R V. Evaluating calculated risk in geotechnical engineering. Journal ofGeotechnical Engineering, ASCE,1984,110(2),143-188.
    [9] JGJ94-2008.建筑桩基技术规范.北京:中国建筑工业出版社,2008.
    [10] GB50158-92.港口工程结构可靠度设计统一标准.北京:中国计划出版社,1992.
    [11] Phoon K K. Reliability-based Design in Geotechnical Engineering: Computations andApplications. New York: Taylor&Francis,2008.
    [12] Juang C H, Fang S Y, Khor E H. First-order reliability method for probabilisticliquefaction triggering analysis using CPT. Journal of Geotechnical andGeoenvironmental Engineering,2006,132(3):337-350.
    [13] Huang J S, Griffiths D V. Observations on FORM in a simple geomechanics example.Structural Safety,2011,33(1):115-119.
    [14] Xiang Y B, Liu Y M. Inverse first-order reliability method for probabilistic fatigue lifeprediction of composite laminates under multiaxial loading. Journal of AerospaceEngineering,2011,24(2):189-198.
    [15]罗书学.桩基概率极限状态的研究及工程应用[博士学位论文].成都:西南交通大学,2004.
    [16] Ditlevsen O. Uncertainty Modeling: With Applications to Multidimensional CivilEngineering Systems. New York: McGraw-Hill,1981.
    [17] Shinozuka M. Basic analysis of structural safety. Journal of Structural Engineering,ASCE,1983,109(3):721-740.
    [18] Ang A H S, Tang W H. Probability Concepts in Engineering: Emphasis onApplications to Civil and Environmental Engineering.2nd edition. New York: JohnWiley&Sons,2006.
    [19] Madsen H O, Krenk S, Lind N C. Methods of Structural Safety. Englewood:Prentice-Hall,1986.
    [20] Tichy M. Applied Methods of Structural Reliability. Boston: Kluwer Academic,1993.
    [21] Melchers R E. Structural Reliability Analysis and Prediction,2nd edition. New York:John Wiley,1999.
    [22] Haldar A, Mahadevan S. Probability, Reliability and Statistical Methods inEngineering Design. New York: John Wiley,1999.
    [23] Nowak A S, Collins K R. Reliability of Structures. Boston: McGraw-Hill,2000.
    [24]贡金鑫,赵国藩.结构可靠度分析中的最小方差抽样.上海力学,1996,17(3):245-252.
    [25]梁波.一次二阶矩法在工程中应用中的改进.铁道学报,1994,16(4):104-109.
    [26]张建国.一次二阶矩可靠度方法及其软件.北京航空航天大学学报,1999,25(5):605-606.
    [27]赵衍刚,江近仁.一个推广的一次二阶矩方法.地震工程与工程震动,1992,12(4):49-57.
    [28] Kiureghian D A, Lin H Z, Hwang S J. Second-order reliability approximations. Journalof Engineering Mechanics,1987,113(8):1208-1225.
    [29] Chen X, Lind N C. Fast probability integration by three-parameter normal tailapproximations. Structural Safety,1985,2(3):269-276.
    [30] Wu Y T, Wirsching P H. New algorithm for structural reliability estimation. Journal ofEngineering Mechanics, ASCE,1987,113(9):1319-1335.
    [31] Zhao Y G, Ono T. New approximations for SORM: Part1. Journal of EngineeringMechanics, ASCE,1999,125(1):79-85.
    [32] Zhao Y G, Ono T. New approximations for SORM: Part2. Journal of EngineeringMechanics, ASCE,1999,125(1):86-93.
    [33] Zhao Y G, Ono T. Moment methods for structural reliability. Structural Safety,2001,23(1):47-75.
    [34] Low B K, Tang W H. Efficient spreadsheet algorithm for first-order reliability method.Journal of Engineering Mechanics, ASCE,2007,133(12):1378-1387.
    [35]贡金鑫,仲伟秋,赵国藩.结构可靠度指标计算的通用方法.计算力学学报,2003,20(1):12-18.
    [36]郑俊杰,刘勇,郭嘉.可靠度指标的等步长求法及其收敛性证明.华中科技大学学报(自然科学版),2008,36(8):129-132.
    [37]黄小娟,赵新铭,孙健,等.沉管灌注桩竖向承载力可靠度分析.浙江工业大学学报,2010,38(5):542-545.
    [38]邓志勇,路培毅,王成华.钻孔灌注桩单桩承载力的可靠度研究.岩土力学,2003,24(1):83-87.
    [39] Zhang L M. Reliability verification using proof pile load tests. Journal of Geotechnicaland Geoenvironmental Engineering, ASCE,2004,130(11):1203-1213.
    [40]张小敏,郑俊杰. CFG桩复合地基承载力可靠度分析.岩土力学,2002,23(6):810-812.
    [41]郑俊杰,郭嘉,刘勇.多元复合地基承载力的可靠度分析.华中科技大学学报(自然科学版),2007,35(10):119-122.
    [42] Br1aud J L, Tucker L M. Measured and predicted axial response of98piles. Journal ofGeotechnical Engineering, ASCE,1988,114(9):984-1001.
    [43] Ronold K O, Bjerager P. Model uncertainty representation in geotechnical reliabilityanalysis. Journal of Geotechnical Engineering, ASCE,1992,118(3):363-376.
    [44] Phoon K K, Quek S T, Lee S L. Reliability analysis of pile settlement. Journal ofGeoteehnieal Engineering, ASCE,1990,116(11):1717-1735.
    [45] Hansen P F, Madsen H O, Tjelta T I. Reliability analysis of a pile design. Reliability ofMarine Structures,1995,8(2):171-198.
    [46] Ruiz S E. Reliability index for offshore piles subjected to bending. Structural Safety,1984,2(2):83-90.
    [47] Folse M D. Reliability Analysis for Laterally Loaded Piling. Journal of StructuralEngineering, ASCE,1989,115(5):1011-1020.
    [48] Barakat S A, Abdallah I. Husein, et al. Reliability based optimization of laterallyloaded piles. Structural Safety,1999,21(4):45-64.
    [49] Basma A A. Reliability-based design of sheet pile structures. Reliability Engineering&System Safety,1991,33(2):215-230.
    [50] Bea R G, Jin Z, Valle C, et al. Evaluation of reliability of platform pile foundation.Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1999,125(8):696-704.
    [51] Tang W H, Kulhawy F H. Uncertainties in offshore axial pile capacity. FoundationEngineering, ASCE,1989:833-847.
    [52] Tang W H, Woodford D L, Pelletier J H. Performance reliability of offshore piles.Proceeding of22th Offshore Technology Conference, Houston,1990:299-307.
    [53] Kulhaway F H. From Casagrande’s calculated risk to reliability-based design infoundation engineering. Boston Society of Civil Engineering Section,1996,11(2):43-56.
    [54] Yoon G L, O’neill M W. Design model bias factors for driven piles from experimentsat NGES-UH. Proceedings of the1996Conference on Uncertainty in the GeologicEnvironment, Geotechnical Special Publication, ASCE, Madison,1996:759-773.
    [55] Whitman J L. Load and resistance factor design for highway bridge substructures.FHWA Report DTFH61-94-C-00098. Washington: Federal Highway Administration,1997.
    [56] Mcvay M C, Birgisson B, Zhang L M., et al. Load and resistance design for drivenpiles using dynamic methods-A Florida perspective. Geotechnical Testing Journal,2000,23(1):55-66.
    [57] Paikowsky S G, Stenersen K L. Performance of the dynamic methods, their controllingparameters and deep foundation specifications. Proceeding of6th Application ofStress-wave Theory to Piles. Rotterdam,2000:281-304.
    [58] Haldar S, Sivakuma G L. Load resistance factor design of axially loaded pile based onload test results. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2008,134(8):1106-1117.
    [59] Haldar S, Sivakuma G L. Reliability measures for pile foundations based on conepenetration test data. Canadian Geotechnical Journal, ASCE,2008,45(12):1699-1714.
    [60] Kwak K, Kim K J, Hub J, et al. Reliability-based calibration of resistance factors forstatic bearing capacity of driven steel pipe piles. Canadian Geotechnical Journal,2010,47(4):528-538.
    [61] Zhao W Y, Xu Z J, Zheng J J. Reliability analysis of vertical bearing capacity of pileusing random-fuzzy entropy principle.6th International conference on NaturalComputation and7th International Conference on Fuzzy System and KnowledgeDiscovery, Yantai, Yantai University Press,2010:4189-4193.
    [62]傅旭东.钻孔灌注桩可靠度理论研究和工程应用[博士学位论文].成都:西南交通大学,1997.
    [63]赵新铭,王晓伟,赵春润.南京江北地区PHC桩竖向承载力可靠度分析.岩土力学,2008,29(3):785-789.
    [64]张航,钱德玲.挤扩支盘桩单桩竖向承载力可靠度分析.岩石力学与工程学报,2005,24(22):4197-4201.
    [65]蒋冲,赵明华,周科平,等.基于区间理论的基桩响应面法可靠度分析.岩土工程学报,2011,33(增2):282-286.
    [66] Tandjira V, The C I, Low B K. Reliability analysis of laterally loaded piles usingresponse surface methods. Structural Safety,2000,22(4):335-355.
    [67]洪平,洪汉平.水平荷载下桩的可靠度分析.岩土力学,2004,25(7):1111-1115.
    [68] Barakat S A, Malkawi A I H, et al. Reliability-based optimization of laterally loadedpiles. Structural Safety,1999,21(5):45-64.
    [69] Turner M J. Integrity testing in piling practice. London: Construction IndustryResearch and Information Association (CIRIA),1997.
    [70] Cameron G, Chapman T. Quality assurance of bored pile foundations. GroundEngineering,2004,37(2):35-40.
    [71] O’neill M W, Sarhan H A. Structural resistance factors for drilled shafts consideringconstruction flaws. Current Practices and Future Trends in Deep Foundations.Geotechnical Special Publication. ASCE, Reston,2004:166-185.
    [72] Davis A G, Dunn C S. From theory to field experience with the non-destructivevibration testing of piles. Proceedings of the Institution of Civil Engineers, Part1-Design&Construction,1974,57(2):571-593.
    [73] Ellway K. Practical guidance on the use of integrity tests for quality control of castin-situ piles. Proceedings of the first international conference on foundations andtunnels, London,1987:228-234.
    [74] Thasnanipan N, Maung A W, Baskaran G. Sonic integrity test on piles founded inBangkok subsoil signal characteristics and their interpretations. Proceedings of the4thInternational Conference on Case Histories in Geotechnical Engineering. Rolla:University of Missouri-Rolla Press,1988:1086-1092.
    [75] Preiss K and Shapiro J. Statistical estimation of the number of piles to be tested on aproject. RILEM Commission on Non-Destructive Testing, Stockholm,1979.
    [76] Poulos H. Pile behavior-consequences of geological and construction imperfections.Journal of Geotechnical and Geoenvironmental and Engineering, ASCE,2005,131(5):538-563.
    [77] Sarhan H A, O’neill M W, Hassan K M. Flexural performance of drilled shafts withminor flaws in stiff clay. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2002,128(12):974-985.
    [78] O’neill M W, Tabsh S W, Sathan H A. Response of drilled shafts with minor flaws toaxial and lateral loads. Engineering structures,2003,25(1):47-56.
    [79] Iskander M, Roy D, Kelley S, et al. Drilled shafted defects: detection, and effects oncapacity in varied clay. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2003,129(12):1128-1137.
    [80] Wong Y W. Behaviors of large diameter bored pile groups with defects[Master'sThesis]. Hong Kong: Hong Kong University of Science and Technology, China,2004.
    [81] Hoit M I, Mcvay M C, Hays C O, et al. FB-Pier Users Guide and Manual. Gainesville:University of Florida Press,2001.
    [82] Li D Q, Tang W H, Zhang L M. Updating occurrence probability and size of defect forbored piles. Structural Safety,2008,30(2):130-143.
    [83] Zhang L M, Li D Q, Tang W H. Impact of routine quality assurance on reliability ofbored piles. Journal of Geotechnical and Geoenvironmental and Engineering, ASCE,2005,132(5):622-630.
    [84] Kwong S M, Lee M K, Tse S H. Foundation design and construction aspects inmarble-an overview of geotechnical control. Proceedings of the Nineteenth AnnualSeminar, Geotechnical Division. Hong Kong: Hong Kong Institution of Engineers,1997:231-238.
    [85] Linkins G. Pile testing selection and economy of safety factors. Current Practices andFuture Trends in Deep Foundations. Geotechnical Special Publication, ASCE,2004:239-252.
    [86] JGJ106-2003《建筑基桩检测技术规范》.北京:中国工业建筑出版社,2003.
    [87]郑俊杰,刘勇,郭嘉,等.基桩检测合格率的概率分析及可靠度评估.岩土工程学报,2009,31(11):1660-1664.
    [88]甘幼琛.当前桩基工程质量合格控制存在的问题与随机控制新模式的探讨.土木工程学报,2004,37(1):84-91.
    [89]甘幼琛,李天棉,邹泓荣.桩基工程质量随机抽样检测的新理论及其工程应用.工程质量,2000,18(1):28-30.
    [90]王军辉.基桩检测中的概率和统计学规律探讨.北京工业大学学报,2007,33(2):178-184.
    [91]甘幼琛.桩基不重复随机抽样不合格桩数概率分布研究及其工程应用.土木工程学报,1999,32(2):62-70.
    [92]郑建国.桩基承载力概率分析方法的研究[博士学位论文].杭州:浙江大学,1998.
    [93]郑建国,张苏民,吴世明.桩基承载力概率分析的Bayesian方法.岩土工程技术,1999,23(2):34-38.
    [94] Liu Y, Zheng J J, Guo J. Statistical evaluation for strength of pile by deep mixingmethod. Proceedings of the Second International Conference on GeotechnicalEngineering for Disaster Mitigation and Rehabilitation, Nanjing,2008:195-201.
    [95]李典庆,鄢丽丽.考虑桩底沉渣的灌注桩可靠度分析方法.岩土力学,2008,29(1):155-160.
    [96]张继周,缪林昌,王华敬.土性不确定性描述方法的探讨.岩土工程学报,2009,31(12):1936-1940.
    [97] Phoon K K, Kulhawy F H. Characterization of geotechnical variability. CanadianGeotechnical Journal,1999,36(4):612-624.
    [98] National Research Council. Geological and Geotechnical Engineering in the NewMillennium: opportunities for research and technological innovation. Washington:National Academies Press,2006.
    [99] Poulos H G, Davis E H. Pile Foundation Analysis and Design. New York: Wiley,1980.
    [100] Whitman R V. Organizing and evaluating uncertainties in geotechnical engineering.Journal of Geotechnical and Geoenvironment Engineering, ASCE,2000,126(7):583-593.
    [101] Baecher G B. Geotechnical error analysis. Transportation Research Record.Washington: Transportation Research Board,1986:23-31.
    [102] Phoon K K. Reliability-based design of foundations for transmission linestructures[Ph.D. dissertation]. New York: Cornell University,1995.
    [103] Dithide M, Phoon K K, Wet D M, et al. Characterization of model uncertainty in thestatic pile design formula. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2010,137(1):70-85.
    [104] Zhang L M, Tang W H, Zhang L L, et al. Reducing uncertainty of prediction fromempirical correlations. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2004,130(5):526-534.
    [105] Schuppener B. Geotechnical design-Part1: General rules-its implementation in theEuropean Member states. proceedings of14th European Conference on SoilMechanics and Geotechnical Engineering, Madrid,2007:279-284.
    [106] Jones A L, Kramer, S L, Arduino P. Estimation of uncertainty in geotechnicalproperties for performance earthquake engineering. Berkeley: Pacific EarthquakeEngineering Research Center,2002.
    [107] Kulhawy F K, Trutmann C H. Estimation of in-situ test uncertainty. Proceeding ofUncertainty in the Geologic Environment: from theory to practice, Reston, AmericanSociety Civil Engineering,1996:269-286.
    [108] Lacasse E S, Nadim F. Model uncertainty in pile axial capacity calculations.Proceeding of28th Offshore Technology Annual Conference. Houston: OffshoreTechnology Center,1996:369-380.
    [109] Meyerhof G G. Bearing capacity and settlement of pile foundations. Journal of theGeotechnical Engineering Division, ASCE,1976,102(3):197-228.
    [110] Garland L. Pile testing-selection and economic of safety factors. Current Practicesand Future Trends in Deep Foundation. Geotechnical Special Publication, ASCE,2004:239-252.
    [111] Zhang J, Zhang L M, Tang W H. Reliability based design of pile foundationsconsidering both parameter and model uncertainties. Journal of GeoEngineering,2009,4(3):119-127.
    [112] Zhang J. Characterizing Geotechnical Model Uncertainty[Ph.D. dissertation]. HongKong: Hong Kong University of Science and Technology,2009.
    [113] Ching J, Liao H J, Sue C W. Calibration of reliability-based resistance factors forflush drilled soil anchors in RaiPei Basin. Journal of Geotechnical andGeoenvironment Engineering, ASCE,2008,134(9):1348-1363.
    [114] Zhang J, Zhang L M, Tang W H. Bayesian framework for characterizing geotechnicalmodel uncertainty. Journal of Geotechnical and Geoenvironment Engineering, ASCE,2009,135(7):932-940.
    [115] Zhang L M, Tang W H. Bias in axial capacity of single bored piles arising fromfailure criteria. International Conference on Structural Safety and Reliability.California: Balkema A A,2001:330-339.
    [116] Davisson M T. High capacity piles. Proceeding of ASCE Lecture Series, Innovationsin Foundation Construction. New York: America Society of Civil Engineers,1972.
    [117] Reese L C, O’NEILL M W. Drilled Shafts: Construction Procedures and DesignMethods. Publication No. FHWA-HI-88-042, Washington: Federal HighwayAdministration,1988.
    [118] ISSMFE. Axial pile loading test part Ⅱ: static loading. Geotechnical Testing Journal,1985,8(2):79-82.
    [119]周建方,李典庆.采用不同失效准则的桩基可靠度分析.岩土力学,2007,28(3):540-544.
    [120]刘金砺.桩基础设计与计算.北京:中国建筑工业出版社,1990.
    [121] Zhang L M, Li D Q, Tang W H. Reliability of bored pile foundations considering biasin failure criteria. Canadian Geotechnical Journal,2005,42(4):1086-1093.
    [122]刘金砺.竖向荷载下的群桩效应和群桩基础概念设计若干问题.土木工程学报,2004,37(1):78-83.
    [123]刘金砺.粉土中钻孔群桩承台-桩-土的相互作用特性和承载力计算.岩土工程学报,1987,9(6):1-15.
    [124]刘金砺,黄强,李华,等.竖向荷载下群桩变形形状及计算.岩土工程学报,1995,17(6):1-13.
    [125] Focht J A, O’Neill M W. Piles and other deep foundations. Proceeding of11thICSMFE, Rotterdam,1985:187-209.
    [126] Department of the Navy. Foundations and Earth Structures Design Manual7.2.NAVFACDM-7.3, Alexandria,1982.
    [127] Poulos H G. Behavior of pile groups with defects piles. Proceeding of the14thInternational Conference on Soil Mechanics and Foundation Engineering. Rotterdam:Balkema A A,1997:871-876.
    [128] Withiam J L. Load and resistance factor design(LRFD) for highway bridgesubstructures. FHWA Report, DTFH61-94-C-00098. Washington: Federal HighwayAdministration,1997.
    [129] Leonards G A. Investigation of failures. Journal of Geotechnical Engineering, ASCE,1982,108(2):185-246.
    [130] Zhang L M, Tang W H, Ng C W W. Reliability of axially loaded driven pile groups.Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2001,127(12):1051-1060.
    [131] Aggarwal R K, Litton R W, Cornell, C A, et al. Development of pile foundation biasfactors using observed behavior of platforms during Hurricane Andrew. Proceedings of28th Annual Offshore Technology Conference. Houston,1996:445-455.
    [132] Hannigan P J, Goble G G, Thendean G, et al. Design and Construction of Driven PileFoundations: Workshop Manual. FHWA-HI-97-014. Washington: Federal HighwayAdministration,1997.
    [133] Lam W Y. Reliability of bored piles with defects, Final Year Report. Hong Kong:Hong Kong University of Science and Technology,2004.
    [134] Kong L G, Zhang L M. Centrifuge modeling of torsionally loaded pile groups. Journalof Geotechnical and Geoenvironmental Engineering, ASCE,2007,133(11):1374-1384.
    [135] Ismael N F. Axial load tests on bored piles and pile groups in cemented sands. Journalof Geotechnical and Geoenvirmental Engineering, ASCE,2001,127(9):766-773.
    [136] Mccabe B A, Lehane B M. Behavior of axially loaded pile group driven in clayey silt.Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2006,132(3):401-410.
    [137] O’Neill M W. Group action in offshore piles. Proceeding of Geotechnical Practice inOffshore Engineering. New York: American Society Civil Engineering,1983:25-64.
    [138] Whitaker T. Some experiments on model pile foundations in clay. Proceeding of PileFoundation, International Association for Bridge and Structural Engineering.Stockholm,1960.
    [139] Sowers G F, Martin C B, Wilson L L, et al. The bearing capacity of friction pilegroups in homogeneous clay from model studies. Proceeding of5th ICSMFE, Paris,1961:155-159.
    [140] Kishida H. Ultimate bearing capacity of piles driven into loose sand. Soils andFoundations,1967,7(3):20-29.
    [141] De Mello V F B. Foundation of buildings on clay. Proceeding of7th ICSMFE,Mexico,1969:49-136.
    [142] Brand E W, Muktabhant C, Taechathummarak A. Load tests on small foundations insoft clays. Proceeding of Perfect Earth and Earth-Supported Structure. New York,1972:903-928.
    [143] Vesic A S. Design of Pile Foundations. NCHRP Synthesis of Highway Practice.Washington: National Research Council,1977.
    [145] Tang W H, Gilbert R B. Case study of offshore pile system reliability. Proceedings of25th Offshore Technology and Conference of Society of Petroleum Engineers.Richardson, Tex,1993:677-686.
    [146] Bea R G. Characterization of the reliability of offshore piles subjected to axialloadings. Proceedings of ASCE Structure Congress, New York: American SocietyCivil Engineering,1983.
    [147] Pandey M D. Direct estimation of quantile functions using the maximum entropyprinciple. Structural Safety,2000,22(1):61-79.
    [148] Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of speciesgeographic distributions. Ecological Modeling,2006,190(3-4):231-259.
    [149]郑俊杰,徐志军,刘勇,等.基于最大熵原理的基桩竖向承载力的可靠度分析.岩土工程学报,2010,32(11):1643-1647.
    [150] Shannon C E. The mathematical theory of communication. Urbana: The University ofIllinois Press,1948.
    [151] Jaynes E T. Information theory and statistical mechanics. Physic Review,1957,106(4):620-30.
    [152] Taylor M E. Partial Differential Equation III: nonlinear equations. New York:Springer Science&Business Media, LLC,2011.
    [153] EN1997-1EN1997. Geotechnical Design-Part I: General rules. Brussels: EuropeanCommittee for Standardization(CEN),2004.
    [154] GB50009-2001.建筑结构荷载规范.北京:中国建筑工业出版社,2002.
    [155] Barker R M, Duncan J M. Load Factor Design Criteria for Highway StructureFoundations. Final Report, NCHRP Project24-4. Blacksburg: Virginia PolytechnicInstitute and State University,1991.
    [156] Meyerhof G G. Safety factors in soil mechanics. Canadian Geotechnical Journal,1970,7(4):349-355.
    [157] Douglas J K. Engineering and design, introduction to probability and reliabilitymethods for use in geotechnical engineering. Washington: US Army Corps ofEngineers,1997.
    [158] Phoon K K, Kulhawy F H. Characterization of model uncertainties for laterallyloaded rigid drilled shafts. Geotechnique,2005,55(1):45-54.
    [159] Sidi I D. Probabilistic prediction of friction pile capacities. Urbana-Champaign:University of Illionois at Urbana-Champaign,1985.
    [160] Orchant C J, Kulhawy F H, Trautmann C H. Reliability-based Foundation Design forTransmission Line Structures, Critical evaluation of in-situ test methods. California:Electrical Power Institute,1998.
    [161]刘勇,郑俊杰,郭嘉. β分布的参数确定及其在岩土工程中的应用.岩土工程技术,2006,20(5):240-243.
    [162] Baecher G B, Christhan J T. Reliability and Statistics in Geotechnical Engineering.New York: John Wiley&Sons,2003.
    [163] Sivakumar B G L, Rajaparthy S R. Reliability measures for buried flexible pipes.Canadian Geotechnical Journal,2005,42(2):541-549.
    [164]马克生.柔性桩复合地基沉降可靠度分析[博士学位论文].杭州:浙江大学,2000.
    [165]刘勇.可靠性分析在多桩型复合地基中的应用[硕士学位论文].武汉:华中科技大学,2007.
    [166] Fleming W G K, Weltman A J, Randolph M F, et al. Piling Engineering. New York:Taylor&Francis,2008.
    [167] Lew M, Zadoorian C J, Carpenter L D. Integrity testing of drilled piles for tallbuildings. Structure Magazine, National Council of Structural Engineers and the ASCE,2002.
    [168] Li D Q, Zhang L M, Tang W H. Reliability evaluation of cross-hole sonic logging forbored pile integrity. Journal of Geotechnical and Geoinvirenment Engineering, ASCE,2005,131(9):1130-1138.
    [169] Gambino S J, Gilbert R B. Modeling spatial variability in pile capacity forreliability-based design. Analysis, Design, Construction, and Testing of DeepFoundations, ASCE, Reston,1999:135-149.
    [170] Sarhan H A, O’Neill M, W, Tabsh S W. Structural capacity reduction for drilled shaftswith minor flaws. ACI Structural Journal,2004,101(3):291-297.
    [171]陈斌,卓家寿,周力军.嵌岩桩垂直承载力的有限元分析(下).水运工程,2001,333(10):25-27.
    [172]肖建勇,刘运华.单桩竖向承载力与桩底沉渣土厚度的关系.长沙铁道学院学报,2001,19(2):45-47.
    [173]蒋建平,汪明武,高广运.桩端岩土差异对超长桩影响的对比研究.岩石力学与工程学报,2004,23(18):3190-3195.
    [174] O’neill M W, Reese L C. Drilled shafts: construction procedures and design methods.Washington: Federal Highway Administration,1999.
    [175] Paikowsky S G. Load and resistance factor design(LRFD) for deep foundation.Master’s thesis. Lowell: University of Massachusetts Lowell,2004.
    [176] Kuo C L, McVay M C, Birgisson B. Calibration of load and resistance factordesign-resistance factor for drilled shaft design. Transportation Research Record,2002,(1808):108-111.
    [177] FDOT. Standard Specifications for Road and Bridge Construction. Florida: FloridaDepartment of Transportation (FDOT),1999.
    [178]李典庆.打入桩承载力确定方法对安全系数的影响.岩土力学,2006,27(10):1732-1737.
    [179] Zhang L M, Li D Q, Tang W H. Level of construction control and safety of drivenpiles. Soils and Foundations,2006,46(4):415-425.
    [180] Gabr M A, Borden R H. LTBASE: a computer program for analysis of laterallyloaded piers including base and slope effects manual. Raleigh: North Carolina StateUniversity,1987.
    [181] Gabr M A, Borden R H. LTBASE: a computer program for analysis of laterallyloaded piers including base and slope effects. Transportation Research Record,1988,1169:83-93.
    [182] Gabr M A, Borden R H. Lateral load analysis of piers constructed on slopes. Journalof Geotechnical Engineering, ASCE,1990,116(12):1831-1850.
    [183] Reese L C, Welch R C. Lateral loading of deep foundations in stiff clay. Journal ofGeotechnical Engineering Division, ASCE,1975,101(GT7):633-649.
    [184] Reese LC, Alleh J D. Structural analysis and design for lateral loading. In: Drilledshaft manual, US Department of Transportation, Federal Highway Administration.Washington: Offices of Research and Development,1977.
    [185] Reese L C. Laterally loaded piles: program documentation. Journal of GeotechnicalEngineering Division,1977,103(GT4):287-305.
    [186] Reese L C. Handbook on Design of Piles and Drilled Shafts under Lateral Loads.McLean, Virginia: US Department of Transportation,1984.
    [187] Reese L C, Cox W R, Koop F D. Analysis of laterally loaded piles in sand. SixthAnnual Offshore Technology Conference, Houston,1974.
    [188] Parker J F. Reese L C. Experimental and analytical studies of behavior of single pilesin sand under lateral and axial loading. Austin: University of Texas,1970.
    [189] Murchison J M, O'Neill N M. Evaluation of p-y relationships in cohesionless soils.Proceedings of ASCE Symposium on analysis and design of pile foundations. SanFrancisco: American Society Civil Engineering,1984:174-191.
    [190]赖琼华.桩基沉降实用计算方法.岩石力学与工程学报,2004,23(6):1015-1019.
    [191] Zhang J, Zhang L M, Tang W H, et al. Reliability-based optimization of geotechnicalsystems. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2011,137(11):1211-1221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700