用户名: 密码: 验证码:
基于流域空间属性的水环境响应关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国外水环境管理发展历程揭示,实行基于流域的水环境管理是我国的发展趋势和必然要求。在管理的技术支撑方面,我国目前面临着从流域环境数据收集提取、到流域环境状况模分析模拟等急需解决的问题。本论文主要在这两方面开展研究工作。
     本论文探索了适合我国国情的流域空间属性数据提取方法。选择单流向法,使用ArcHydro工具生成松花江流域河网结构及相关编码系统;应用ArcGIS工具实现了流域属性的切割以及批量化数据提取;使用美国CN值平衡方程,选择松花江流域水文站点监测数据,拟合退水系数、融雪系数、各土地利用类型CN值等重要水文相关参数,进而利用这些水文参数估计子流域年均径流深,模拟各子流域年均流量;选用NANI插件实现了非点源排放数据由基于区县划分向基于子流域划分的转化。
     本论文利用多元统计方法进行流域环境问题识别。选用描述统计量、相关分析、因子分析、时间序列分析等统计方法,利用流域内25个国控点位、13个指标、2005-2009年逐月数据表征和分析了松花江流域水环境状况。分析结果表明:松花江流域近年水质总体低于国家III类水标准,其中高锰酸盐指数、生化需氧量、总氮、总磷、石油类等指标平均水平低于III级标准,氨氮均值低于国家IV类水标准,化学需氧量均值达劣五类。以化学需氧量为代表的有机物指标以及总氮是松花江流域水环境污染的代表性指标。指标间相关关系表明,溶解氧与耗氧有机物、总氮等主要污染物呈显著负相关,而总氮与耗氧有机物的相关性高于总磷与耗氧有机物的相关性。因子分析结果呈现出三个因子,第一个因子方差贡献率52.18%,为主要污染物表征因子,与氮及耗氧有机物指标高度正相关,与溶解氧高度负相关;第二个因子方差贡献率19.97%,累积贡献率72.14%,为重金属污染物表征因子,与汞、铅、锌高度正相关;第三个因子方差贡献率11.64%,累积贡献率83.79%,为背景因子,反应pH状况。利用每个站点主要水质指标的水质类别百分率进行聚类分析,结合流域内主要超标污染物总氮的污染源普查数据,说明总氮对流域水环境状态有指示作用,以及水质浓度与污染源分布可能存在响应关系。针对松花江流域氮与耗氧有机物为主的水环境状况,进行氨氮与COD的季节性时间序列分析,结果显示,COD于2007年出现拐点,近期其浓度已呈下降趋势;NH3-N尚未见明显好转。
     本论文使用水环境模型进行流域主要污染物的深入分析。选择SPARROW模型对总氮进行模拟。根据我国国情选择模型输入变量,采用Levenberg-Marquardt算法进行非线性优化。在明确模型结构算法、借鉴国外应用经验的基础上,经运行调试,得到了可接受的模型结果。模拟精度R2为0.79,松花江流域对总氮有显著贡献的污染源为点源、农业种植源、畜禽养殖源以及水产养殖源,对总氮传输具有重要影响的环境因子为温度、坡度、降水以及河网密度,对总氮传输具有重要影响的环境过程为河段中的一级衰减反应。
     模拟结果表明,松花江流域河段中,三类水的超标率为63%,五类水的超标率为47%。超标河段为松花江哈尔滨段,牡丹江,伊通河,饮马河,呼兰河,拉林河,汤旺河等。总氮总负荷较高的地区为松花江哈尔滨及其下游、牡丹江流域、呼兰河、拉林河、汤旺河等;其中产率较高的子流域为嫩江东部支流、呼兰河及其支流、拉林河等河段。流域对总氮来源进行解析,松花江流域来自农业种植源的污染物占51.5%;来自点源的污染物占28.8%;来自水产养殖源的污染物占14.0%;来自畜禽养殖源的污染物占5.7%。总氮在子流域河段间的衰减表现出干流衰减比例小,支流衰减大的规律。选择三个代表性子流域,设置三个消减策略,预评估消减策略的效果。在各污染源不同消减时,主要污染源结构可能出现“拐点”,应及时进行主要削减方向调整,保证消减效率。
Based on the developing experience of water resources management in theforeign countries, it reveals that the implementation of basin-based water resourcesmanagement is the development trend and inevitable requirement of China, while weare facing many problems, such as the extraction and collection of watershedenvironmental data and the analysis of watershed environmental situation, etc. Thispaper is focusing on the first two problems.
     This paper explores the suitable method for China to extract the watershedspatial attribute data in the following steps. First, choose a single flow method whichuses the ArcHydro tools to generate the Songhuajiang River basin river networkstructure and coding system. Second, apply ArcGIS tools to cut the watershedproperty based on the basin river network and extract data in a batch way. Third,according to the CN value balance equation, select the hydrological monitoring dataof Songhuajiang River basin to fit the recession coefficient, snowmelt factor, CNvalues for different land types and other important hydrological parameters, then usethese hydrological parameters to estimate the average annual runoff depth and theaverage annual flow of sub-basins. And at last achieve the division conversing fromcounty-based to basin-based of the non-point source emission data using NANIplug-ins.
     Many statistical methods, such as description the statistics, correlation analysis,factor analysis, and time series analysis are selected in this paper to analyze theSonghua River Basin Water Environment conditions based on a large data set,including13parameters monitoring at25sites from2005to2009. The results showthat water quality of Songhuajiang River is generally lower than the national Class IIIwater standards, in which the average level of permanganate index, BOD, totalnitrogen, total phosphorus, oil and other indicators are lower than Class III standard,the level of ammonia nitrogen is lower than Class IV standard, while the averagelevel of chemical oxygen demand below Class V, the worst of all. The organic chemical oxygen demand and total nitrogen are the two representative pamameters ofwater pollution in Songhuajiang River Basin. The relationships between theparameters show that the dissolved oxygen, oxygen consumption of organic matterand total nitrogen exist a significant negative correlation, while the correlationbetween the total nitrogen and oxygen consumption of organic matter is higher thanwhich between the total phosphorus and oxygen consumption of organic matter. FAidentified three factors capturing52.18%,19.97%and11.64%of the total variance,respectively. Factor1had strong positive loadings on the total nitrogen and oxygenconsumption of organic matter and strong negative loading on the dissolved oxygen,this factor may be interpreted as the dominant pollutants characterization factor.Factor2had strong positive loadings on mercury, lead and zinc, mainly representedthe heavy metal pollution. Factor3is correlated with pH and explained asbackground factor. The dominant pollutions of Songhuajiang River are total nitrogenand oxygen consumption of organic matter, lead to seasonal time series analysis ofammonia nitrogen and COD and the result indicated that the COD with a inflectionpoint in2007occurred downward trend in recent years while the NH3-N has notimproved markedly.
     SPARROW model is used in this paper to simulate the total nitrogen pollution.The model input variables, which are under the consideration of our state situation,are using the Levenberg-Marquardt algorithm for nonlinear optimization. With theunderstanding of model structure and the experience of foreign applications, themodel results are acceptable for the study area. Values of R2for the final TN modelsare0.79, and contaminant sources are included point sources, applied fertilizers foragricultural land, livestock wastes and aquiculture wastes. Coefficients estimated inthe model for temperature, land slope, precipitation and stream density arestatistically significant while the first in-stream decay is the most important processfor the total nitrogen transport.
     The model results showed that there were63%reaches of Songhuajiang Riverbelow Class III as the ratio below Class V was47%. The worst stream reaches mainlylocated in Harbin included Mudanjiang River, Yitong River, Yinma River, HulanRiver, Lalin River, Tangwang River, etc. and the sub-basins with high yield were Nenjiang River eastern tributaries, Hulan River as well as its tributaries and LalinRiver. The application of SPARROW model on Songhuajiang River gave the sourceidentification of this watershed. The share of non-point agricultural source is thehighest,51.5%, the point source contributed approximately28.8%, aquiculture wastesoccupied14.0%and the share of livestock wastes was only5.7%, while the decaypercent in main stream is lower than which in tributaries among sub-basins.
引文
1.孙钰,切实保障饮用水安全全面推进水污染防治——访国家环境保护总局局长周生贤.环境保护,2007(01B): p.4-8.
    2.张德尧and程晓冰,我国水环境问题及对策刍议.中国水利,2000.6: p.14-16.
    3.胡洪营,王超, and郭美婷,药品和个人护理用品(PPCPs)对环境的污染现状与研究进展.生态环境,2005.14(6): p.947-952.
    4. Fent, K., C. Escher, and D. Caminada, Estrogenic activity of pharmaceuticals andpharmaceutical mixtures in a yeast reporter gene system. Reproductive Toxicology,2006.22(2): p.175-185.
    5.巩莹, et al.,美国饮用水水源地保护的启示.环境保护,2010(012): p.25-28.
    6. Mostert, E., International co-operation on Rhine water quality1945–2008: An example tofollow? Physics and Chemistry of the Earth, Parts A/B/C,2009.34(3): p.142-149.
    7. Lindemann, S., Water regime formation in Europe: A research framework with lessons fromthe Rhine and Elbe river basins.2006.
    8.安德森L, S. and格林菲斯M,欧盟《水框架指令》对中国的借鉴意义.人民长江,2009.40(008): p.50-62.
    9.王海燕and孟伟,欧盟流域水环境管理体系及水质目标.世界环境,2009(002): p.61-63.
    10.徐敏,王东, and赵越,我国水污染防治发展历程回顾.环境保护,2012.1.
    11.张继承,我国流域水环境管理手段的发展趋势及政策建议.中国水利,2006(4): p.14-16.
    12.姜文来,我国水环境管理趋势.科技资讯,2004(009): p.21.
    13.钟玉秀and刘宝勤,对流域水环境管理体制改革的思考.水利发展研究,2008(7): p.10-14.
    14.杜梅and马中,流域水环境保护管理存在的问题及对策.社会科学家,2005(2): p.55-57.
    15.钱翌and刘莹,中国流域环境管理体制研究.生态经济,2010(001): p.161-165.
    16.林秋奇,段舜山, and韩博平,流域水质管理系统构建的理论,方法和实践.生态学杂志,2001.20(4): p.46-51.
    17.孟伟, et al.,流域水质目标管理技术研究(Ⅱ)——水环境基准,标准与总量控制.环境科学研究,2008.21(1): p.1-8.
    18.孟伟, et al.,流域水质目标管理技术研究(Ⅲ)——水环境流域监控技术研究.环境科学研究,2008.21(001): p.9-16.
    19.孟伟,王海燕, and王业耀,流域水质目标管理技术研究(Ⅳ)——控制单元的水污染物排放限值与削减技术评估.环境科学研究,2008.21(2): p.1-9.
    20.盂伟,张楠, and张远,流域水质目标管理技术研究(I):控制单元的总量控制技术.环境科学研究,2007.20(4): p.1-8.
    21.孟伟, et al.,流域水质目标管理技术研究: Ⅴ.水污染防治的环境经济政策.环境科学研究,2008.21(4): p.1-9.
    22.李恒鹏,陈雯, and刘晓玫,流域综合管理方法与技术.湖泊科学,2004.16(1).
    23.程炯, et al.,非点源污染模型研究进展.生态环境,2006.15(3): p.641-644.
    24.董丽华,河流水质发展模型研究.2010,天津大学.
    25.郭红岩, et al.,太湖流域非点源氮污染对水质影响的定量化研究.农业环境科学学报,2003.22(002): p.150-153.
    26. Osborne, L.L. and M.J. Wiley, Empirical relationships between land use/cover and streamwater quality in an agricultural watershed. Journal of Environmental Management,1988.26(1): p.9-27.
    27. Chang, C., et al., Relationship between landscape characteristics and surface water quality.Environmental monitoring and assessment,2008.147(1): p.57-64.
    28. Bengra n e, K. and T.F. Marhaba, Using principal component analysis to monitor spatial andtemporal changes in water quality. Journal of hazardous materials,2003.100(1): p.179-195.
    29. Gangopadhyay, S., A. Das Gupta, and M. Nachabe, Evaluation of ground water monitoringnetwork by principal component analysis. Ground Water,2001.39(2): p.181-191.
    30. Boyacioglu, H., Surface water quality assessment using factor analysis. Water SA,2007.32(3): p.389-393.
    31. Wang, Y., et al., Water quality change in reservoirs of Shenzhen, China: detection usingLANDSAT/TM data. Science of the total Environment,2004.328(1-3): p.195-206.
    32. Yin, Q., et al., METHOD OF SATELLITE REMOTE SENSING OF LAKE WATER QUALITYAND ITS APPLICATIONS [J]. Journal Infrared Millimeter and Waves,2005.3.
    33. Duan, H., et al., Assessment of chlorophyll-a concentration and trophic state for Lake Chaganusing Landsat TM and field spectral data. Environmental monitoring and assessment,2007.129(1): p.295-308.
    34. Duan, H., et al., Estimation of chlorophyll‐a concentration and trophic states for inlandlakes in Northeast China from Landsat TM data and field spectral measurements.International Journal of Remote Sensing,2008.29(3): p.767-786.
    35.夏壑, et al.,京杭大运河无锡段水质和土地利用的响应关系.自然资源学报,2011.26(3):p.364-372.
    36.夏觳, et al.,基于遥感的无锡市土地利用与过境水质响应关系的研究.地理科学,2010(001): p.129-133.
    37.乔平林,流域面源污染径流模拟方法研究.中国测绘科学研究院,2007.
    38.沈晔娜,流域非点源污染过程动态模拟及其定量控制.2010,浙江大学.
    39. Bates, B., et al., Climate change and water.2008: Intergovernmental Panel on ClimateChange (IPCC).
    40. Carvalho, L., et al., Water quality of Loch Leven: responses to enrichment, restoration andclimate change. Hydrobiologia,2012: p.1-13.
    41. Murdoch, P.S., J.S. Baron, and T.L. Miller, POTENTIAL EFFECTS OF CLIMATE CHANGEON SURFACE‐WATER QUALITY IN NORTH AMERICA1. JAWRA Journal of the AmericanWater Resources Association,2000.36(2): p.347-366.
    42.孔彦龙, et al.,新立城水库水质与气候及人类活动的相互响应分析.中国环境管理丛书,
    2007.2.
    43. Carroll, C., L. Merton, and P. Burger, Impact of vegetative cover and slope on runoff, erosion,and water quality for field plots on a range of soil and spoil materials on central Queenslandcoal mines. Soil Research,2000.38(2): p.313-328.
    44.刘金涛and梁忠民,坡地径流入渗机制对水文模拟的影响分析.水科学进展,2009(4): p.467-472.
    45. Basnyat, P., et al., Relationships between landscape characteristics and nonpoint sourcepollution inputs to coastal estuaries. Environmental Management,1999.23(4): p.539-549.
    46. Fisher, D., et al., The relationship of land use practices to surface water quality in the UpperOconee Watershed of Georgia. Forest Ecology and Management,2000.128(1-2): p.39-48.
    47. Galbraith, L.M. and C.W. Burns, Linking land-use, water body type and water quality insouthern New Zealand. Landscape Ecology,2007.22(2): p.231-241.
    48. Kang, J.H., et al., Linking land-use type and stream water quality using spatial data of fecalindicator bacteria and heavy metals in the Yeongsan river basin. Water Research,2010.44(14): p.4143-4157.
    49. Li, S., et al., Water quality in relation to land use and land cover in the upper Han RiverBasin, China. Catena,2008.75(2): p.216-222.
    50. Tong, S.T.Y. and W. Chen, Modeling the relationship between land use and surface waterquality. Journal of Environmental Management,2002.66(4): p.377-393.
    51.欧洋,密云水库上游流域多尺度景观与水质响应关系研究.2011,首都师范大学.
    52. Amundson, R., Y. Guo, and P. Gong, Soil diversity and land use in the United States.Ecosystems,2003.6(5): p.470-482.
    53. Baker, A., Land use and water quality. Encyclopedia of Hydrological Sciences,2005.
    54. Shih, J.S., et al., An Initial SPARROW Model of Land Use and In-Stream Controls on TotalOrganic Carbon in Streams of the Conterminous United States.
    55.顾用红and舒振文, DEM在流域水文特征分析中的应用.人民珠江,2001(4): p.5-6.
    56.姚志宏,基于GIS的区域水土流失过程模拟研究.2010,中国科学院研究生院(教育部水土保持与生态环境研究中心).
    57.叶爱中, et al.,基于数字高程模型的河网提取及子流域生成.水利学报,2005.36(5): p.531-537.
    58.张荔,分布式水文模型构建及在渭河流域水环境解析中的应用研究.2010,西安建筑科技大学.
    59.朱红春, et al.,基于DEM的流域地形因子提取与量化关系研究——以陕北黄土高原的实验为例.测绘科学,2007.32(2): p.138-140.
    60.王剑利, GIS与水质评价和预测模型集成研究[D].2009,重庆大学.
    61.李晶, et al.,基于DEM的太湖流域水文特征提取.环境科学与管理,2009.34(005): p.138-142.
    62.李丽and郝振纯,基于DEM的流域特征提取综述.地球科学进展,2003.18(2): p.251-256.
    63.朱思蓉and吴华意, Arc Hydro水文数据模型.测绘与空间地理信息,2006.29(005): p.87-90.
    64. Jobson, H.E. and G. Survey, Prediction of traveltime and longitudinal dispersion in rivers andstreams.1996: US Geological Survey Reston, VA.
    65. Spitz, F.J., Simulation of Surface-Water Conditions in the Nontidal Passaic River Basin, NewJersey.2007, U. S. Geological Survey.
    66. Liu, D., et al., Land use/cover changes and environmental consequences in Songnen Plain,Northeast China. Chinese Geographical Science,2009.19(4): p.299-305.
    67. Wang, H. and J. Sun, Variability of Northeast China river break-up date. Advances inAtmospheric Sciences,2009.26(4): p.701-706.
    68. Zhang, Y. and L. Bao, Cretaceous Phytoplankton Assemblages from Songke Core‐1, Northand South (SK‐1, N and S) of Songliao Basin, Northeast China. Acta Geologica Sinica‐English Edition,2009.83(5): p.868-874.
    69. Li, Y., L. Xu, and S. Li, Water Quality Analysis of the Songhua River Basin UsingMultivariate Techniques. Journal of Water Resource and Protection,2009.1(2): p.110-121.
    70. Lin, C., et al., Distribution and contamination assessment of heavy metals in sediment of theSecond Songhua River, China. Environmental monitoring and assessment,2008.137(1): p.329-342.
    71. Liu, J.R., et al., Genotoxicity of water from the Songhua River, China, in1994-1995and2002-2003: Potential risks for human health. Environmental Pollution,2009.157(2): p.357-364.
    72. Liu, J.R., et al., Organic pollution from the Songhua River induces NIH3T3celltransformation: Potential risks for human health. Journal of Toxicology and EnvironmentalHealth Sciences,2009.1(4): p.060-067.
    73. Wang, C., et al., A dynamic contaminant fate model of organic compound: A case study ofNitrobenzene pollution in Songhua River, China. Chemosphere,2012.
    74. Zhang, B., et al., Fluorine distribution in aquatic environment and its health effect in theWestern Region of the Songnen Plain, Northeast China. Environmental monitoring andassessment,2007.133(1): p.379-386.
    75. Zhang, W., X. Lin, and X. Su, Transport and fate modeling of nitrobenzene in groundwaterafter the Songhua River pollution accident. Journal of Environmental Management,2010.91(11): p.2378-2384.
    76. Zhi‐qiang, F., et al., Tectonostratigraphic units and stratigraphic sequences of thenonmarine Songliao basin, northeast China. Basin Research,2010.22(1): p.79-95.
    77. Zhu, H., et al., Risk assessment for methylmercury in fish from the Songhua River, China:30years after mercury-containing wastewater outfalls were eliminated. Environmentalmonitoring and assessment,2012.184(1): p.77-88.
    78. Zhu, H., et al., Geochemical characteristics of heavy metals in riparian sediment pore waterof Songhua River, Northeast China. Chinese Geographical Science,2011.21(2): p.195-203.
    79. He, H. and W. Zhang. Risk assessment of organic pollution of artificial recharge togroundwater environment takes an experimental site at Eastern region of China as anexample.2011: IEEE.
    80. Wu, L., Dilemmas downstream from the Songhua River spill. Journal of Medical Toxicology,2006.2(3): p.112-113.
    81.冯梅and徐浙峰,京杭大运河淮安段水质的多元统计分析.环境科学与管理,2008.33(6): p.113-116.
    82.苏杰,辽河流域水环境时空差异性评价.2011,辽宁大学.
    83.孙国红, et al.,基于多元统计分析的黄河水质评价方法.农业环境科学学报,2011.30(6):p.1193-1199.
    84.赵英,地表水源水质预测模型数据挖掘技术及其适用性研究.2008,哈尔滨工业大学.
    85.周丰, et al.,基于多元统计方法的河流水质空间分析.水科学进展,2007.18(4): p.544-551.
    86. Coskun, H.G., et al., Determination of environmental quality of a drinking water reservoir byremote sensing, GIS and regression analysis. Water, Air,&Soil Pollution,2008.194(1): p.275-285.
    87. Johnson, R.A. and D.W. Wichern, Applied multivariate statistical analysis. Vol.4.2002:Prentice hall Upper Saddle River, NJ.
    88. Krishna, A.K., M. Satyanarayanan, and P.K. Govil, Assessment of heavy metal pollution inwater using multivariate statistical techniques in an industrial area: A case study fromPatancheru, Medak District, Andhra Pradesh, India. Journal of hazardous materials,2009.167(1-3): p.366-373.
    89. Yu, S., et al., Factor analysis and dynamics of water quality of the Songhua River, northeastChina. Water, Air,&Soil Pollution,2003.144(1): p.159-169.
    90. Astel, A., et al., Chemometrics in monitoring spatial and temporal variations in drinkingwater quality. Water Research,2006.40(8): p.1706-1716.
    91. Chang, H. and W.T. Kwon, Spatial variations of summer precipitation trends in South Korea,1973–2005. Environmental Research Letters,2007.2: p.045012.
    92. Lau, S. and S. Lane, Biological and chemical factors influencing shallow lake eutrophication:a long-term study. The Science of the Total Environment,2002.288(3): p.167-181.
    93. Marhaba, T.F., A.D. Borgaonkar, and K. Punburananon, Principal component regressionmodel applied to dimensionally reduced spectral fluorescent signature for the determinationof organic character and THM formation potential of source water. Journal of hazardousmaterials,2009.169(1): p.998-1004.
    94. Kowalkowski, T., et al., Application of chemometrics in river water classification. WaterResearch,2006.40(4): p.744-752.
    95. Bhangu, I. and P.H. Whitfield, Seasonal and long-term variations in water quality of theSkeena River at Usk, British Columbia. Water Research,1997.31(9): p.2187-2194.
    96. Ouyang, Y., et al., Assessment of seasonal variations in surface water quality. Water Research,2006.40(20): p.3800-3810.
    97.薛薇, SPSS统计分析方法及应用.2004:电子工业出版社.
    98. Smith, R.A., G.E. Schwarz, and R.B. Alexander, Regional interpretation of water-qualitymonitoring data. Water Resources Research,1997.33(12): p.2781-2798.
    99.解莹, et al., SPARROW模型研究及应用进展.水文,2012.1.
    100.吴在兴and王晓燕,流域空间统计模型SPARROW及其研究进展.环境科学与技术,2010.33(9).
    101. Alexander, R.B., et al., Atmospheric nitrogen flux from the watersheds of major estuaries ofthe United States: An application of the SPARROW watershed model. COASTAL ANDESTUARINE STUDIES,2001: p.119-170.
    102. Lindenschmidt, K.E., The effect of complexity on parameter sensitivity and model uncertaintyin river water quality modelling. Ecological Modelling,2006.190(1): p.72-86.
    103. Mannina, G. and G. Viviani. Parameter uncertainty analysis of water quality model for smallriver.2009.
    104. Alexander, R.B., R.A. Smith, and G.E. Schwarz, Effect of stream channel size on the deliveryof nitrogen to the Gulf of Mexico. Nature,2000.403(6771): p.758-761.
    105. Alexander, R.B., et al., Differences in phosphorus and nitrogen delivery to the Gulf of Mexicofrom the Mississippi River Basin. Environmental Science&Technology,2007.42(3): p.822-830.
    106. Brakebill, J.W., S.W. Ator, and G.E. Schwarz, Sources of Suspended‐Sediment Flux inStreams of the Chesapeake Bay Watershed: A Regional Application of the SPARROW Model1.JAWRA Journal of the American Water Resources Association,2010.46(4): p.757-776.
    107. Preston, S.D., J.W. Brakebill, and G. Survey, Application of spatially referenced regressionmodeling for the evaluation of total nitrogen loading in the Chesapeake Bay watershed.1999:US Department of the Interior, US Geological Survey.
    108. Smith, R.A., G.E. Schwarz, and R.B. Alexander, SPATIALLY REFERENCED REGRESSIONMODELING OF NUTRIENT LOADING IN THE CHESAPEAKE BAY WATERSHED.
    109. Moore, R.B. and G. Survey, Estimation of total nitrogen and phosphorus in New Englandstreams using spatially referenced regression models.2004: US Department of the Interior,US Geological Survey.
    110. Hoos, A.B. and G. McMahon, Spatial analysis of instream nitrogen loads and factorscontrolling nitrogen delivery to streams in the southeastern United States using spatiallyreferenced regression on watershed attributes (SPARROW) and regional classificationframeworks. Hydrological Processes,2009.23(16): p.2275-2294.
    111. Alexander, R.B., et al., Estimating the sources and transport of nutrients in the Waikato RiverBasin, New Zealand. Water Resources Research,2002.38(12): p.1268.
    112. Grizzetti, B., et al., A statistical method for source apportionment of riverine nitrogen loads.Journal of Hydrology,2005.304(1): p.302-315.
    113.黄象鼎,曾钟钢, and马亚南,非线性数值分析的理论与方法.2004:武汉大学出版社.
    114.王新洲,非线性模型参数估计理论与应用.2002:武汉大学出版社.
    115. Bj rck,., Numerical methods for least squares problems.1996: Society for IndustrialMathematics.
    116. Gill, P.E. and W. Murray, Algorithms for the solution of the nonlinear least-squares problem.SIAM Journal on Numerical Analysis,1978: p.977-992.
    117. Hartley, H.O., The modified Gauss-Newton method for the fitting of non-linear regressionfunctions by least squares. Technometrics,1961.3(2): p.269-280.
    118. Madsen, K., H. Bruun, and O. Tingleff, Methods for non-linear least squares problems.1999.
    119. Marquardt, D.W., An algorithm for least-squares estimation of nonlinear parameters. Journalof the society for Industrial and Applied Mathematics,1963.11(2): p.431-441.
    120. More, J., The Levenberg-Marquardt algorithm: implementation and theory. Numericalanalysis,1978: p.105-116.
    121. Ranganathan, A., The levenberg-marquardt algorithm. Tutoral on LM Algorithm,2004.
    122. Roweis, S., Levenberg-marquardt optimization. Notes, University Of Toronto,1996.
    123. Delwiche, L.D. and S.J. Slaughter, The little SAS book: a primer.2008: SAS Publishing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700