用户名: 密码: 验证码:
基于信息熵和互信息的流域水文模型不确定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对水文过程研究的日益深入,水文模拟日益精细;与此同时,水文模拟和预报不确定性受到愈来愈广泛的关注。目前,水文预报的不确定性研究普遍认为模型输入、结构和参数是不确定性的三个主要来源。由于并非所有不确定性均与模型有关,已有的研究不足以区分独立于和依赖于水文模型的不确定性。论文引入信息熵和互信息的概念,通过计算水文数据中的信息量,以区分独立于模型的随机不确定性,依赖于模型的认知不确定性;在此基础上,提出了基于信息熵和互信息的水文模拟不确定性分析框架,并进行了初步应用。
     首先,论文借鉴了信息论的最新研究成果,度量三种信息量:径流模拟需要的信息量、数据提供的可用信息量、水文模型利用的信息量。针对研究流域和采用的水文模型而言,实测流量系列的信息熵就是该流域径流模拟需要的信息量,气象、前期径流及流域土壤含水量等数据与实测径流数据之间的互信息即为该流域水文数据为径流模拟提供的可用信息量,模拟径流与实测径流系列之间互信息即为水文模型利用的信息量。前两者之差是径流模拟需要而水文数据没有提供的信息量,称为随机不确定性;后两者的差是数据已经提供而模型没有利用的信息量,称为认知不确定性。
     针对高维水文变量互信息计算中的维数灾现象,论文首次尝试了采用Leonenko方法,绕过联合分布直接计算信息熵。结果表明,Leonenko方法在低维和高维低相关情况下表现稳定,但不适用于高维高相关情况。论文进一步尝试了ISOMAP方法和SVM方法,研究表明ISOMAP方法对水文数据信息量的相对大小具有识别能力;SVM方法对确定性降雨径流关系有较强的拟合能力。使用人工合成数据测试,结果表明这两种方法能够稳定的识别水文数据提供的信息量。
     论文的方法应用于多个数据质量不同的流域和结构复杂度不同的模型,结果表明该方法能有效识别随机和认知不确定性,能够判断水文模拟不确定性在多大程度上来源于模型结构的不完备性,对改进水文模型具有指导意义。
     论文的主要创新性在于,提出了基于信息熵和互信息的水文模拟不确定性分析框架;以现有方法为基础,提出了适用于高维高相关数据的互信息计算方法;通过在不同流域和采用不同模型的应用分析,提出了水文预报中模型选择和改进的策略。
With the growing knowledge of hydrological processes and finer hydrologicalsimulation, the issue of hydrological model uncertainty attracts more and more attention.Currently the hydrological model uncertainty is classified into three sources: input,parameter and structure uncertainty. However, not all “model uncertainty” depends on“model”. Current uncertainty qualification methods depend on one (or multiple) specificmodel, which are lack of the ability to distinguish the two categories thatindependent/depend on model. The concepts of information entropy and mutualinformation is introduced in order to qualify the information content of hydrologicalvariables and distinguish aleatory uncertainty that independent to model and epistemicuncertainty that dependent on model. A framework of uncertainty analysis based oninformation theory is proposed and primary case studies are carried out in order to showthe applicability of the new framework.
     First, the proposed framework uses the most up to date methods to explicitlycompute three kinds of information: the information required by streamflow simulation,the information offered by currently available hydrological observation data, and theinformation expressed by a specific model. For a specific catchment and model, theinformation entropy of observed streamflow is the information required by streamflowsimulation; the mutual information that meteorological data, previous streamflow andsoil moisture data contributes to streamflow observation data is the availableinformation for streamflow simulation offered by currently available data; the mutualinformation between simulated and observed streamflow is the amount of informationused by a model. The difference between the first two is aleatory uncertainty, which theinformation is required by simulation but not offered by data; the difference between thelast two is epistemic uncertainty, which the information has been offered by data but notproperly utilized by the model.
     To mitigate the influence of curse of dimensionality on computing mutualinformation of high-dimensional hydrological variables, Leonenko’s method that cancompute information content without estimating joint probability density function isintroduced and applied for the first time in the context of hydrology. The result shows that Leonenko’s method performs well in low-dimension and high-dimensionlow-correlation case, but not applicable to the high-dimensional high-correlation case.Further tests are carried out and another two methods: ISOMAP and SVM are able toqualify information content of hydrological variables. ISOMAP can identify the relativeinformation content of hydrological datasets, while SVM is good at regressing to theinformation while eliminating the random error so that one can compute the informationcontent from the regression result. The result of numerical experiment based onhydrological model demonstrated that both of the two methods are capable ofidentifying the information content of hydrological observation data.
     The framework is applied in multiple catchments that have different data qualityand multiple models that have different model structure complexity. The result ofapplication shows that the framework is able to distinguish aleatory and epistemicuncertainty, identify how much of the uncertainty comes from model structureinadequacy, and potentially guide model structure improvement in the future.
     The novel contribution of this thesis is1) proposing a hydrological modeluncertainty qualification framework based on information entropy and mutualinformation;2) improving current methods of entropy and mutual informationestimation by proposing new method that applicable to high-dimensionalhigh-correlated cases;3) applying the framework to various catchments and models andproposed a model selection and improvements strategy in hydrological prediction.
引文
[1] Gupta H V, Wagener T, Beven K J. Model Calibration and Uncertainty Estimation:Encyclopedia of hydrological sciences. Anderson M G, Mcdonnell J J. John Wiley&Sons,Ltd,20051~17
    [2] Beven K. Changing Ideas in Hydrology-The Case of Physically-Based Models. Journal ofHydrology,1989,105(1-2):157~172
    [3] Beven K, Binley A. The Future of Distributed Models-Model Calibration and UncertaintyPrediction. Hydrological Processes,1992,6(3):279~298
    [4] Beven K. Prophecy, Reality and Uncertainty in Distributed Hydrological Modeling. Advancesin Water Resources,1993,16(1):41~51
    [5] Beven K, Freer J. Equifinality, Data Assimilation, and Uncertainty Estimation in MechanisticModelling of Complex Environmental Systems Using the Glue Methodology. Journal ofHydrology,2001,249(1-4):11~29
    [6] Mantovan P, Todini E. Hydrological Forecasting Uncertainty Assessment: Incoherence of theGlue Methodology. Journal of Hydrology,2006,330(1-2):368~381
    [7] Beven K, Smith P, Freer J. Comment On "Hydrological Forecasting Uncertainty Assessment:Incoherence of the Glue Methodology" by Pietro Mantovan and Ezio Todini. Journal ofHydrology,2007,338(3-4):315~318
    [8] Duan Q Y, Gupta V K, Sorooshian S. Shuffled Complex Evolution Approach for Effectiveand Efficient Global Minimization. Journal of Optimization Theory and Applications,1993,76(3):501~521
    [9] Sorooshian S, Duan Q Y, Gupta V K. Calibration of Rainfall-Runoff Models-Application ofGlobal Optimization to the Sacramento Soil-Moisture Accouting Model. Water ResourcesResearch,1993,29(4):1185~1194
    [10] Duan Q Y, Sorooshian S, Gupta V. Effective and Efficient Global Optimization forConceptual Rainfall-Runoff Models. Water Resources Research,1992,28(4):1015~1031
    [11] Yapo P O, Gupta H V, Sorooshian S. Multi-Objective Global Optimization for HydrologicModels. Journal of Hydrology,1998,204(1-4):83~97
    [12] Gupta H V, Sorooshian S, Yapo P O. Toward Improved Calibration of Hydrologic Models:Multiple and Noncommensurable Measures of Information. Water Resources Research,1998,34(4):751~763
    [13] Vrugt J A, Gupta H V, Bouten W, et al. A Shuffled Complex Evolution Metropolis Algorithmfor Optimization and Uncertainty Assessment of Hydrologic Model Parameters. WaterResources Research,2003,39(12018):1201
    [14] Vrugt J A, Gupta H V, Bastidas L A, et al. Effective and Efficient Algorithm forMultiobjective Optimization of Hydrologic Models. Water Resources Research,2003,39(12148):1214
    [15] Vrugt J A, ter Braak C, Clark M P, et al. Treatment of Input Uncertainty in HydrologicModeling: Doing Hydrology Backward with Markov Chain Monte Carlo Simulation. WaterResources Research,2008,44(W00B09): W9B
    [16] Thiemann M, Trosset M, Gupta H, et al. Bayesian Recursive Parameter Estimation forHydrologic Models. Water Resources Research,2001,37(10):2521~2535
    [17] Kavetski D, Kuczera G, Franks S W. Bayesian Analysis of Input Uncertainty in HydrologicalModeling:1. Theory. Water Resources Research,2006,42(W034073)
    [18] Kavetski D, Kuczera G, Franks S W. Bayesian Analysis of Input Uncertainty in HydrologicalModeling:2. Application. Water Resources Research,2006,42(W034083)
    [19] Ajami N K, Duan Q Y, Sorooshian S. An Integrated Hydrologic Bayesian MultimodelCombination Framework: Confronting Input, Parameter, and Model Structural Uncertainty inHydrologic Prediction. Water Resources Research,2007,43(W014031): W1403
    [20] Vrugt J A, ter Braak C J F, Gupta H V, et al. Equifinality of Formal (Dream) and Informal(Glue) Bayesian Approaches in Hydrologic Modeling? Stochastic Environmental Researchand Risk Assessment,2009,23(7):1011~1026
    [21] Mcmillan H, Jackson B, Clark M, et al. Rainfall Uncertainty in Hydrological Modelling: AnEvaluation of Multiplicative Error Models. Journal of Hydrology,2011,400(1-2):83~94
    [22] Renard B, Kavetski D, Kuczera G, et al. Understanding Predictive Uncertainty in HydrologicModeling: The Challenge of Identifying Input and Structural Errors. Water ResourcesResearch,2010,46(W05521)
    [23] Renard B, Kavetski D, Leblois E, et al. Toward a Reliable Decomposition of PredictiveUncertainty in Hydrological Modeling: Characterizing Rainfall Errors Using ConditionalSimulation. Water Resources Research,2011,47(W11516)
    [24] Hoeting J A, Madigan D, Raftery A E, et al. Bayesian Model Averaging: A Tutorial.Statistical Science,1999,14(4):382~401
    [25] Neuman S P. Accounting for Conceptual Model Uncertainty Via Maximum LikelihoodBayesian Model Averaging: Calibration and reliability in groundwater modelling: a few stepscloser to reality. Wallingford: Int Assoc Hydrological Sciences,2003303~313
    [26] Neuman S P. Maximum Likelihood Bayesian Averaging of Uncertain Model Predictions.Stochastic Environmental Research and Risk Assessment,2003,17(5):291~305
    [27] Georgakakos K P, Seo D J, Gupta H, et al. Towards the Characterization of StreamflowSimulation Uncertainty through Multimodel Ensembles. Journal of Hydrology,2004,298(1-4):222~241
    [28] Ajami N K, Duan Q Y, Gao X G, et al. Multimodel Combination Techniques for Analysis ofHydrological Simulations: Application to Distributed Model Intercomparison Project Results.Journal of Hydrometeorology,2006,7(4):755~768
    [29] Duan Q Y, Ajami N K, Gao X G, et al. Multi-Model Ensemble Hydrologic Prediction UsingBayesian Model Averaging. Advances in Water Resources,2007,30(5):1371~1386
    [30] Clark M P, Slater A G, Rupp D E, et al. Framework for Understanding Structural Errors(Fuse): A Modular Framework to Diagnose Differences Between Hydrological Models. WaterResources Research,2008,44(W00B02)
    [31] Bulygina N, Gupta H. Estimating the Uncertain Mathematical Structure of a Water BalanceModel Via Bayesian Data Assimilation. Water Resources Research,2009,45(W00B13)
    [32] Bulygina N, Gupta H. Correcting the Mathematical Structure of a Hydrological Model ViaBayesian Data Assimilation. Water Resources Research,2011,47(W05514): W5514
    [33] Bulygina N, Gupta H. How Bayesian Data Assimilation Can be Used to Estimate theMathematical Structure of a Model. Stochastic Environmental Research and Risk Assessment,2010,24(6SI):925~937
    [34] Young P C. Real-Time Updating in f ood Forecasting and Warning. Oxford, UK:Wiley-Blackwell.,2010.163~195
    [35] Young P C, Ratto M. A Unified Approach to Environmental Systems Modeling. StochasticEnvironmental Research and Risk Assessment,2009,23(7SI):1037~1057
    [36] Young P C, Mckenna P, Bruun J. Identification of Non-Linear Stochastic Systems by StateDependent Parameter Estimation. International Journal of Control,2001,74(18):1837~1857
    [37] Wagener T, Mcintyre N, Lees M J, et al. Towards Reduced Uncertainty in ConceptualRainfall-Runoff Modelling: Dynamic Identifiability Analysis. Hydrological Processes,2003,17(2):455~476
    [38] Lin Z, Beck M B. On the Identification of Model Structure in Hydrological andEnvironmental Systems. Water Resources Research,2007,43(W024022)
    [39] Reichert P, Mieleitner J. Analyzing Input and Structural Uncertainty of Nonlinear DynamicModels with Stochastic, Time-Dependent Parameters. Water Resources Research,2009,45(W10402)
    [40] Gupta H V, Wagener T, Liu Y Q. Reconciling Theory with Observations: Elements of aDiagnostic Approach to Model Evaluation. Hydrological Processes,2008,22(18):3802~3813
    [41] Yilmaz K K, Gupta H V, Wagener T. A Process-Based Diagnostic Approach to ModelEvaluation: Application to the Nws Distributed Hydrologic Model. Water Resources Research,2008,44(W094179)
    [42] Gupta H V, Herbst M, Casper M C. Diagnostic Evaluation of Monte-Carlo ModelSimulations Using Self-Organizing Maps:2009
    [43] de Vos N J, Rientjes T, Gupta H V. Diagnostic Evaluation of Conceptual Rainfall-RunoffModels Using Temporal Clustering. Hydrological Processes,2010,24(20):2840~2850
    [44] Martinez G F, Gupta H V. Toward Improved Identification of Hydrological Models: ADiagnostic Evaluation of the "Abcd" Monthly Water Balance Model for the ConterminousUnited States. Water Resources Research,2010,46(W08507)
    [45]刘艳丽,王国利,周惠成.洪水预报不确定性分析及其在水库调度决策中的应用研究.水力发电学报,2010,(1):92~96
    [46]刘艳丽,梁国华,周惠成.水文模型不确定性分析的多准则似然判据GLUE方法.四川大学学报(工程科学版),2009,(4):89~96
    [47]刘艳丽.径流预报模型不确定性研究及水库防洪风险分析:[博士学位论文].大连理工大学,2008
    [48]程春田,李向阳.三水源新安江模型参数不确定性分析PAM算法.中国工程科学,2007,(09):47~51
    [49]曹飞凤.基于MCMC方法的概念性流域水文模型参数优选及不确定性研究:[博士学位论文].浙江大学,2010
    [50]董磊华,熊立华,万民.基于贝叶斯模型加权平均方法的水文模型不确定性分析.水利学报,2011,(09):1065~1074
    [51] Sivakumar B. Undermining the Science Or Undermining Nature? Hydrological Processes,2008,22(6):893~897
    [52] Beven K. On Doing Better Hydrological Science. Hydrological Processes,2008,22(17):3549~3553
    [53] Jackson B, Schaefli B, Gupta H V. What is the Information Content of Hydrologic Data?Advances in Water Resources,2010, submitted
    [54] Weijs S V, van de Giesen N. Accounting for Observational Uncertainty in ForecastVerification: An Information-Theoretical View On Forecasts, Observations, and TruthB-5010-2008. Monthly Weather Review,2011,139(7):2156~2162
    [55] Weijs S V, van Nooijen R, van de Giesen N. Kullback-Leibler Divergence as a Forecast SkillScore with Classic Reliability-Resolution-Uncertainty Decomposition. Monthly WeatherReview,2010,138(9):3387~3399
    [56] Weijs S V, Schoups G, van de Giesen N. Why Hydrological Predictions Should be EvaluatedUsing Information Theory. Hydrology and Earth System Sciences,2010,14(12):2545~2558
    [57]王栋,朱元甡.信息熵在水系统中的应用研究综述.水文,2001,(02):9~14
    [58]张继国,刘新仁.水文水资源中不确定性的信息熵分析方法综述.河海大学学报(自然科学版),2000,(06):32~37
    [59] Singh V P. The Entropy Theory as a Tool for Modelling and Decision-Making inEnvironmental and Water Resources. Water Sa,2000,26(1):1~11
    [60] Singh V P. The Use of Entropy in Hydrology and Water Resources. Hydrological Processes,1997,11(6):587~626
    [61] Amorocho J, Espildor. B. Entropy in Assessment of Uncertainty in Hydrologic Systems andModels. Water Resources Research,1973,9(6):1511~1522
    [62] Chapman T G. Entropy as a Measure of Hydrologic Data Uncertainty and Model Performance.Journal of Hydrology,1986,85(1-2):111~126
    [63]王振亚,任立良,袁飞.信息熵在新安江模型和NAM模型比较中的应用.水文,2007,(02):30~33
    [64]刘娜,任立良.基于信息熵对新安江水文模型参数及预报结果不确定性的量化分析.西北水电,2010,(03):88~91
    [65] Mishra S. Uncertainty and Sensitivity Analysis Techniques for Hydrologic Modeling. Journalof Hydroinformatics,2009,11(3-4):282~296
    [66] Jaynes E T. Information Theory and Statistical Mechanics. Physical Review,1957,106(4):620~630
    [67] Jowitt P W. A Maximum-Entropy View of Probability-Distributed Catchment Models.Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,1991,36(2):123~134
    [68] Solana-Ortega A, Solana V. Entropy-Based Inference of Simple Physical Models for RegionalFlood Analysis. Stochastic Environmental Research and Risk Assessment,2001,15(6):415~446
    [69] Al-Hamdan O Z, Cruise J F. Soil Moisture Profile Development From Surface Observationsby Principle of Maximum Entropy. Journal of Hydrologic Engineering,2010,15(5):327~337
    [70] Singh V P. Entropy Theory for Derivation of Infiltration Equations. Water ResourcesResearch,2010,46(W03527): W3527
    [71] Sonuga J O. Entropy Principle Applied to Rainfall-Runoff Process. Journal of Hydrology,1976,30(1-2):81~94
    [72] Mays D C, Faybishenko B A, Finsterle S. Information Entropy to Measure Temporal andSpatial Complexity of Unsaturated Flow in Heterogeneous Media. Water Resources Research,2002,38(131312):1313
    [73] Koutsoyiannis D. Uncertainty, Entropy, Scaling and Hydrological Stochastics.2. TimeDependence of Hydrological Processes and Time Scaling. Hydrological SciencesJournal-Journal Des Sciences Hydrologiques,2005,50(3):405~426
    [74] Koutsoyiannis D. Uncertainty, Entropy, Scaling and Hydrological Stochastics.1. MarginalDistributional Properties of Hydrological Processes and State Scaling. Hydrological SciencesJournal-Journal Des Sciences Hydrologiques,2005,50(3):381~404
    [75] Li Z W, Zhang Y K. Multi-Scale Entropy Analysis of Mississippi River Flow. StochasticEnvironmental Research and Risk Assessment,2008,22(4):507~512
    [76] Brunsell N A. A Multiscale Information Theory Approach to Assess Spatial-TemporalVariability of Daily Precipitation. Journal of Hydrology,2010,385(1-4):165~172
    [77] Ng W W, Panu U S, Lennox W C. Chaos Based Analytical Techniques for Daily ExtremeHydrological Observations. Journal of Hydrology,2007,342(1-2):17~41
    [78] Ng W W, Panu U S. Comparisons of Traditional and Novel Stochastic Models for theGeneration of Daily Precipitation Occurrences. Journal of Hydrology,2010,380(1-2):222~236
    [79]丁晶,王文圣,赵永龙.以互信息为基础的广义相关系数.四川大学学报(工程科学版),2002,(03):1~5
    [80]孟宪萌,胡和平.基于熵权的集对分析模型在水质综合评价中的应用.水利学报,2009,(03):257~262
    [81]夏军,穆宏强,邱训平,等.水文序列的时间变异性分析.长江职工大学学报,2001,(3):1~4
    [82] Islam M N, Sivakumar B. Characterization and Prediction of Runoff Dynamics: A NonlinearDynamical View. Advances in Water Resources,2002,25(2):179~190
    [83] Molini A, La Barbera P, Lanza L G. Correlation Patterns and Information Flows in RainfallFields. Journal of Hydrology,2006,322(1-4):89~104
    [84] Westra S, Brown C, Lall U, et al. Modeling Multivariable Hydrological Series: PrincipalComponent Analysis Or Independent Component Analysis? Water Resources Research,2007,43(W064296)
    [85] Ruddell B L, Kumar P. Ecohydrologic Process Networks:1. Identification. Water ResourcesResearch,2009,45(W03419): W3419
    [86] Ruddell B L, Kumar P. Ecohydrologic Process Networks:2. Analysis and Characterization.Water Resources Research,2009,45(W03420): W3420
    [87] Dhanya C T, Kumar D N. Nonlinear Ensemble Prediction of Chaotic Daily Rainfall.Advances in Water Resources,2010,33(3):327~347
    [88] Sharma A. Seasonal to Interannual Rainfall Probabilistic Forecasts for Improved WaterSupply Management: Part1-A Strategy for System Predictor Identification. Journal ofHydrology,2000,239(1-4):232~239
    [89] Sharma A. Seasonal to Interannual Rainfall Probabilistic Forecasts for Improved WaterSupply Management: Part3-A Nonparametric Probabilistic Forecast Model. Journal ofHydrology,2000,239(1-4):249~258
    [90] Sharma A, Luk K C, Cordery I, et al. Seasonal to Interannual Rainfall Probabilistic Forecastsfor Improved Water Supply Management: Part2-Predictor Identification of QuarterlyRainfall Using Ocean-Atmosphere Information. Journal of Hydrology,2000,239(1-4):240~248
    [91] Stokelj T, Paravan D, Golob R. Enhanced Artificial Neural Network Inflow ForecastingAlgorithm for Run-of-River Hydropower Plants. Journal of Water Resources Planning andManagement-Asce,2002,128(6):415~423
    [92] Bowden G J, Dandy G C, Maier H R. Input Determination for Neural Network Models inWater Resources Applications. Part1-Background and Methodology. Journal of Hydrology,2005,301(1-4):75~92
    [93] Bowden G J, Maier H R, Dandy G C. Input Determination for Neural Network Models inWater Resources Applications. Part2. Case Study: Forecasting Salinity in a River. Journal ofHydrology,2005,301(1-4):93~107
    [94] May R J, Dandy G C, Maier H R, et al. Application of Partial Mutual Information VariableSelection to Ann Forecasting of Water Quality in Water Distribution Systems. EnvironmentalModelling&Software,2008,23(10-11):1289~1299
    [95] May R J, Maier H R, Dandy G C, et al. Non-Linear Variable Selection for Artificial NeuralNetworks Using Partial Mutual Information. Environmental Modelling&Software,2008,23(10-11):1312~1326
    [96] Barros A P, Bowden G J. Toward Long-Lead Operational Forecasts of Drought: AnExperimental Study in the Murray-Darling River Basin. Journal of Hydrology,2008,357(3-4):349~367
    [97] Fernando T, Maier H R, Dandy G C. Selection of Input Variables for Data Driven Models: AnAverage Shifted Histogram Partial Mutual Information Estimator Approach. Journal ofHydrology,2009,367(3-4):165~176
    [98] Hejazi M I, Cai X M, Ruddell B L. The Role of Hydrologic Information in ReservoirOperation-Learning From Historical Releases. Advances in Water Resources,2008,31(12):1636~1650
    [99] Peng H C, Long F H, Ding C. Feature Selection Based On Mutual Information: Criteria ofMax-Dependency, Max-Relevance, and Min-Redundancy. Ieee Transactions On PatternAnalysis and Machine Intelligence,2005,27(8):1226~1238
    [100] Hejazi M I, Cai X M. Input Variable Selection for Water Resources Systems Using aModified Minimum Redundancy Maximum Relevance (Mmrmr) Algorithm. Advances inWater Resources,2009,32(4):582~593
    [101]赵铜铁钢,杨大文.神经网络径流预报模型中基于互信息的预报因子选择方法.水力发电学报,2011,(01):24~30
    [102] Husain T. Hydrologic Uncertainty Measure and Network Design. Water Resources Bulletin,1989,25(3):527~534
    [103] Markus M, Knapp H V, Tasker G D. Entropy and Generalized Least Square Methods inAssessment of the Regional Value of Streamgages. Journal of Hydrology,2003,283(1-4):107~121
    [104] Alfonso L, Lobbrecht A, Price R. Information Theory-Based Approach for Location ofMonitoring Water Level Gauges in Polders. Water Resources Research,2010,46(W03528):W3528
    [105]张继国,谢平,龚艳冰,等.降雨信息空间插值研究评述与展望.水资源与水工程学报,2012,(1):6~9
    [106] Beven K. On Undermining the Science? Hydrological Processes,2006,20(14):3141~3146
    [107] Todini E, Mantovan P. Comment On:'On Undermining the Science?' by Keith Beven.Hydrological Processes,2007,21(12):1633~1638
    [108] Andrassian V, Lerat J, Loumagne C, et al. What is Really Undermining Hydrologic ScienceToday? Hydrological Processes,2007,21(20):2819~2822
    [109] Montanari A. What Do we Mean by 'Uncertainty"? The Need for a Consistent Wording AboutUncertainty Assessment in Hydrology. Hydrological Processes,2007,21(6):841~845
    [110] Beven K, Smith P J, Wood A. On the Colour and Spin of Epistemic Error (and What weMight Do About It). Hydrol. Earth Syst. Sci. Discuss.,2011,8:5355~5386
    [111] Scott D W. Optimal and Data-Based Histograms. Biometrika,1979,66(3):605~610
    [112] Berman M, Vaneerdewegh P, Landaw E, et al. Information-Content of Data with Respect toModels. American Journal of Physiology,1983,245(5): R620~R623
    [113] Scott D W. Averaged Shifted Histograms-Effective Nonparametric Density Estimators inSeveral Dimensions. Annals of Statistics,1985,13(3):1024~1040
    [114] Granger C W J, Lin J. Using the Mutual Information Coefficient to Identify Lags inNon-Linear Models. Journal of Time Series Analysis,1994,15:371~384
    [115] Moon Y I, Rajagopalan B, Lall U. Estimation of Mutual Information Using Kernel DensityEstimators. Physical Review E,1995,52(3Part a):2318~2321
    [116] Prichard D, Theiler J. Generalized Redundancies for Time-Series Analysis. Physica D,1995,84(3-4):476~493
    [117] Paninski L. Estimation of Entropy and Mutual Information. Neural Computation,2003,15(6):1191~1253
    [118] Bellman R E, Corporation R. Dynamic ProgrammingPrinceton University Press,1957.
    [119] Scott D W. Handbook of Computational Statistics-Concepts and Methods. New York:Springer,2004.
    [120]毕华,梁洪力,王珏.重采样方法与机器学习.计算机学报,2009,32(5):862~877
    [121] Shannon C E. A Mathemetical Theory of Communication.The Bell System Technical Journal,1948.
    [122] Cover T M, Thomas J A. Elements of Information Theory. Hoboken, New Jersey: John Wiley&Sons, Ltd,2006.
    [123] Nadarajah S, Zografos K. Formulas for Renyi Information and Related Measures forUnivariate Distributions. Information Sciences,2003,155(1-2):119~138
    [124] Nadarajah S. A Generalized Normal Distribution. Journal of Applied Statistics,2005,32(7):685~694
    [125] Nadarajah S, Zografos K. Expressions for Renyi and Shannon Entropies for BivariateDistributions. Information Sciences,2005,170(2-4):173~189
    [126] Zografos K, Nadarajah S. Expressions for Renyi and Shannon Entropies for MultivariateDistributions. Statistics&Probability Letters,2005,71(1):71~84
    [127] Nielsen F, Nock R. A Closed-Form Expression for the Sharma-Mittal Entropy of ExponentialFamilies. Journal of Physics a-Mathematical and Theoretical,2012,45(0320033)
    [128] Kullback S, Leibler R A. On Information and Sufficiency. Annals of Mathematical Statistics,1951,22(1):79~86
    [129] Box G, Cox D R. An Analysis of Transformations Revisited, Rebutted. Journal of theAmerican Statistical Association,1982,77(377):209~210
    [130] Box G E P, Cox D R. An Analysis of Transformations. Journal of the Royal StatisticalSociety. Series B (Methodological),1964,26(2):211~252
    [131] Ross S M. Introduction to Probability Models10Th Ed. Boston: Academic Press,2010.
    [132] Rosenblatt M. Remarks On some Nonparametric Estimates of a Density Function. The Annalsof Mathematical Statistics,1956,27(3):832~837
    [133] Parzen E. On Estimation of a Probability Density Function and Mode. The Annals ofMathematical Statistics,1962,33(3):1065~1076
    [134] Scott D W. Multivariate Density Estimation: Theory, Practice, and Visualization. New York:Wiley,2008.
    [135] Scott D W, Thompson J R. Probability Density Estimation in Higher Dimensions. ComputerScience and Statistics: Proceedings of the Fifteenth Symposium On the Interface,1983,
    [136] Silverman B W. Density Estimation for Statistics and Data AnalysisChapman&Hall,1986.
    [137] Hero A O, Michel O. Asymptotic Theory of Greedy Approximations to Minimal K-PointRandom Graphs. Ieee Transactions On Information Theory,1999,45(6):1921~1938
    [138] Zyczkowski K. Renyi Extrapolation of Shannon Entropy. Open Systems&InformationDynamics,2003,10(3):297~310
    [139] Neemuchwala H, Hero A, Zabuawala S, et al. Image Registration Methods inHigh-Dimensional Space. International Journal of Imaging Systems and Technology,2006,16(5):130~145
    [140] Bonev B, Escolano F, Cazorla M. Feature Selection, Mutual Information, and theClassification of High-Dimensional Patterns. Pattern Analysis and Applications,2008,11(3-4):309~319
    [141] Leonenko N, Pronzat L, Savani V. A Class of Renyi Information Estimators forMultidimensional Densities. Annals of Statistics,2008,36(5):2153~2182
    [142] Goria M N, Leonenko N N, Mergel V V, et al. A New Class of Random Vector EntropyEstimators and its Applications in Testing Statistical Hypotheses. Journal of NonparametricStatistics,2005,17(3):277~297
    [143] Sricharan K, Raich R, Hero Iii A O. Empirical Estimation of Entropy Functionals withConfidence: Dept. of EECS, University of Michigan, Ann Arbor,2011
    [144] Sorooshian S, Dracup J A. Stochastic Parameter-Estimation Procedures for HydrologicRainfall-Runoff Models-Correlated and Heteroscedastic Error Cases. Water ResourcesResearch,1980,16(2):430~442
    [145] Misirli F, Gupta H V, Sorooshian S, et al. Bayesian Recursive Estimation of Parameter andOutput Uncertainty for Watershed Models: Calibration of Watershed Models, Water Sci.Appl.Ser., Vol6. Duan Q. Washington, D.C.: AGU,2003113~124
    [146] Hora S C. Aleatory and Epistemic Uncertainty in Probability Elicitation with an ExampleFrom Hazardous Waste Management. Reliability Engineering&System Safety,1996,54(2-3):217~223
    [147] Gupta H V, Clark M P, Vrugt J A, et al. Towards a Comprehensive Assessment of ModelStructural Adequacy. Water Resources Research,2011, in Review
    [148] Hsu K L, Gupta H V, Gao X G, et al. Self-Organizing Linear Output Map (Solo): AnArtificial Neural Network Suitable for Hydrologic Modeling and Analysis. Water ResourcesResearch,2002,38(130212)
    [149] Duan Q, Schaake J, Andreassian V, et al. Model Parameter Estimation Experiment (Mopex):An Overview of Science Strategy and Major Results From the Second and Third Workshops.Journal of Hydrology,2006,320(1-2SI):3~17
    [150] Hsu K L, Gupta H V, Sorooshian S. Artificial Neural-Network Modeling of theRainfall-Runoff Process. Water Resources Research,1995,31(10):2517~2530
    [151] Hong Y, Hsu K L, Moradkhani H, et al. Uncertainty Quantification of Satellite PrecipitationEstimation and Monte Carlo Assessment of the Error Propagation Into Hydrologic Response.Water Resources Research,2006,42(W084218)
    [152] Vrugt J A, Gupta H V, Dekker S C, et al. Application of Stochastic Parameter Optimization tothe Sacramento Soil Moisture Accounting Model. Journal of Hydrology,2006,325(1-4):288~307
    [153] Vrugt J A, Gupta H V, Nuallain B O. Real-Time Data Assimilation for Operational EnsembleStreamflow Forecasting. Journal of Hydrometeorology,2006,7(3):548~565
    [154] Vrugt J A, Diks C, Gupta H V, et al. Improved Treatment of Uncertainty in HydrologicModeling: Combining the Strengths of Global Optimization and Data Assimilation. WaterResources Research,2005,41(W010171)
    [155] Yue S, Pilon P, Phinney B, et al. The Influence of Autocorrelation On the Ability to DetectTrend in Hydrological Series. Hydrological Processes,2002,16(9):1807~1829
    [156] Kendall M G. Rank Correlation Methods. New York: Oxford Univ. Press,1975.
    [157] Mann H B. Nonparametric Tests Against Trend. Econometrica,1945,13(3):245~259
    [158] Boyle D P. Multicriteria Calibration of Hydrological Models:[Ph.D.学位论文]. Tucson:University of Arizona,2000
    [159] Wood S J, Jones D A, Moore R J. Accuracy of Rainfall Measurement for Scales ofHydrological Interest. Hydrology and Earth System Sciences,2000,4(4):531~543
    [160] Moore R J. The Pdm Rainfall-Runoff Model. Hydrology and Earth System Sciences,2007,11(3):483~499
    [161] Du Y, Zhang C, Yun Y, et al. Application and Comparative Study Between Hymod andModified Scs. Journal of Beijing Normal University (Natural Science),2010,46(3)
    [162] Xu L, Yuan D, Ye Z. Parameter Sensitivity Analysis and Multi-Objective Optimization OnHymod Model. Water Resources and Power,2010,28(11)
    [163] Costa J A, Hero A O. Geodesic Entropic Graphs for Dimension and Entropy Estimation inManifold Learning. Ieee Transactions On Signal Processing,2004,52(8):2210~2221
    [164] Mardia K V, Kent J T, Bibby J M. Multivariate Analysis. London: Academic Press,1979.
    [165] Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for NonlinearDimensionality Reduction. Science,2000,290(5500):2319
    [166] Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding.Science,2000,290(5500):2323
    [167] van der Maaten L, Postma E, van den Herik J. Dimensionality Reduction: A ComparativeReview: Tilburg, The Netherlands: TiCC, Tilburg University,2009
    [168]王自强,钱旭,孔敏.流形学习算法综述.计算机工程与应用,2008,(35):9~12
    [169] Arya S, Malamatos T, Mount D M. Space-Time Tradeoffs for Approximate Nearest NeighborSearching. Journal of the Acm,2009,57(11)
    [170] Arya S, Mount D M, Netanyahu N S, et al. An Optimal Algorithm for Approximate NearestNeighbor Searching in Fixed Dimensions. Journal of the Acm,1998,45(6):891~923
    [171] Arya S, Mount D M, Netanyahu N S, et al. An Optimal Algorithm for Approximate NearestNeighbor Searching. Proceedings of the Fifth Annual Acm-Siam Symposium On DiscreteAlgorithms,1994,
    [172] Dijkstra E W. A Note On Two Problems in Connexion with Graphs. Numerische Mathematik,1959,1(269–271)
    [173] Pentland A P. Fractal-Based Description of Natural Scenes. Pattern Analysis and MachineIntelligence, Ieee Transactions On,1984, PAMI-6(6):661~674
    [174] Yang D, Herath S, Musiake K. Comparison of Different Distributed Hydrological Models forCharacterization of Catchment Spatial Variability. Hydrological Processes,2000,14(3):403~416
    [175] Fukunaga K. Intrinsic Dimensionality Extraction: Handbook of Statistics: Classification,Pattern Recognition and Reduction of Dimensionality. Krishnaiah P R, Kanal L N.North-Holland: Elsevier Science Pub Co,1982:2,347~360
    [176] Camastra F. Data Dimensionality Estimation Methods: A Survey. Pattern Recognition,2003,36(12):2945~2954
    [177] Fukunaga K, Olsen D R. Algorithm for Finding Intrinsic Dimensionality of Data. IeeeTransactions On Computers,1971, C20(2):176
    [178] Trunk G V. Statistical Estimation of Intrinsic Dimensionality of a Noisy Signal Collection.Ieee Transactions On Computers,1976,25(2):165~171
    [179] Martinetz T, Schulten K. Topology Representing Networks. Neural Networks,1994,7(3):507~522
    [180] Grassberger P, Procaccia I. Measuring the Strangeness of Strange Attractors. Physica D,1983,9(1-2):189~208
    [181] Levina E, Bickel P J. Maximum Likelihood Estimation of Intrinsic Dimension: NeuralInformation Processing Systems: NIPS. Vancouver, CA:2004
    [182] Sricharan K, Raich R, Hero A O. Performance-Driven Information Fusion: Workshop onDefense Applications of Signal Processing (DASP). Brisbane AU:2011
    [183] Mo D Y, Huang S H. Fractal-Based Intrinsic Dimension Estimation and its Application inDimensionality Reduction. Ieee Transactions On Knowledge and Data Engineering,2012,24(1):59~71
    [184] Klinkenberg B. A Review of Methods Used to Determine the Fractal Dimension of LinearFeatures. Mathematical Geology,1994,26(1):23~46
    [185] Smith L A. Intrinsic Limits On Dimension Calculations. Physics Letters a,1988,133(6):283~288
    [186] Eckmann J P, Ruelle D. Fundamental Limitations for Estimating Dimensions and LyapunovExponents in Dynamic-Systems. Physica D,1992,56(2-3):185~187
    [187] Vapnik V N. Statistical Learning Theory. NewYork, USA: John Wiley&Sons,1998.
    [188] Behzad M, Asghari K, Eazi M, et al. Generalization Performance of Support Vector Machinesand Neural Networks in Runoff Modeling. Expert Systems with Applications,2009,36(4):7624~7629
    [189] Liong S Y, Sivapragasam C. Flood Stage Forecasting with Support Vector Machines. Journalof the American Water Resources Association,2002,38(1):173~186
    [190] Han D, Chan L, Zhu N. Flood Forecasting Using Support Vector Machines. Journal ofHydroinformatics,2007,9(4):267~276
    [191] Yu P S, Chen S T, Chang I F. Support Vector Regression for Real-Time Flood StageForecasting. Journal of Hydrology,2006,328(3-4SI):704~716
    [192] Bray M, Han D. Identification of Support Vector Machines for Runoff Modelling. Journal ofHydroinformatics,2004,6(4):265~280
    [193] Wu C L, Chau K W, Li Y S. Predicting Monthly Streamflow Using Data-Driven ModelsCoupled with Data-Preprocessing Techniques. Water Resources Research,2009,45(W08432)
    [194] Wang W C, Chau K W, Cheng C T, et al. A Comparison of Performance of Several ArtificialIntelligence Methods for Forecasting Monthly Discharge Time Series. Journal of Hydrology,2009,374(3-4):294~306
    [195] Lin J Y, Cheng C T, Chau K W. Using Support Vector Machines for Long-Term DischargePrediction. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,2006,51(4):599~612
    [196] Kisi O, Cimen M. Evapotranspiration Modelling Using Support Vector Machines.Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,2009,54(5):918~928
    [197] Gill M K, Asefa T, Kemblowski M W, et al. Soil Moisture Prediction Using Support VectorMachines. Journal of the American Water Resources Association,2006,42(4):1033~1046
    [198]包为民.水文预报.北京:中国水利水电出版社,2009.
    [199]张学工.关于统计学习理论与支持向量机.自动化学报,2000,(01):36~46
    [200] Gunn S R. Support Vector Machines for Classification and Regression: ISIS technical report.Image Speech&Intelligent Systems Group, UNIVERSITY OF SOUTHAMPTON,1998
    [201]杨志民,刘广利.不确定性支持向量机原理及应用.北京:科学出版社,2007.
    [202]王定成.支持向量机建模预测与控制.北京:气象出版社,2009.
    [203] Chang C, Lin C. Libsvm: A Library for Support Vector Machines. Acm Transactions OnIntelligent Systems and Technology,2011,2(3):21~27
    [204] Duan Q S J. Results From the2Nd International Workshop On Model Parameter EstimationExperiment (Mopex): NWS, NOAA,2002
    [205] Gong W, Li M, Yang D. Estimation of Threshold Rainfall for Flash Flood Warning in theSuichuanjiang River Basin. Sichuan Daxue Xuebao (Gongcheng Kexue Ban)/Journal ofSichuan University (Engineering Science Edition),2009,41(SUPPL.2):270~275
    [206]李明亮,杨大文,陈劲松.基于采样贝叶斯方法的洪水概率预报研究.水力发电学报,2011,30(3)
    [207] Zhang Z, Koren V, Reed S, et al. Sac-Sma a Priori Parameter Differences and their Impact OnDistributed Hydrologic Model Simulations. Journal of Hydrology,2012,420–421(0):216~227
    [208]水利部水文局.中小河流山洪监测与预警预测技术研究.北京:科学出版社,2010.
    [209]许继军.分布式水文模型在长江流域的应用研究:[博士学位论文].清华大学,2007
    [210] Schaake J C, Duan Q, Smith M B, et al. Criteria to Select Basins for Hydrologic ModelDevelopment and Testing:15th Conf. On Hydrology. Long Beach, CA: Amer. Meteor. Soc.,2000
    [211]文迁,谭国良,罗嗣林.降水分布受地形影响的分析.水文,1997,(S1):64~66
    [212] Nash J E, Sutcliffe J V. River Flow Forecasting through Conceptual Models Part I--ADiscussion of Principles. Journal of Hydrology,1970,10(3):282~290
    [213] Sivapalan M, Takeuchi K, Franks S W, et al. Iahs Decade On Predictions in Ungauged Basins(Pub),2003-2012: Shaping an Exciting Future for the Hydrological Sciences. HydrologicalSciences Journal-Journal Des Sciences Hydrologiques,2003,48(6):857~880
    [214]林元烈,梁宗霞.随机数学引论.北京:清华大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700