用户名: 密码: 验证码:
基于接触力学的滚珠直线导轨副建模与动态特性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在机械系统整机性能分析中,确定各零部件之间的连接参数至关重要,已成为当前机械系统设计与分析中的热点,是动态系统研究领域中的前沿课题。滚珠直线导轨副作为制造装备中最重要的连接部件之一,其特殊的结构和独特的运动形式使得很难准确建立其静、动力学模型。在制造装备设计过程中,滚珠直线导轨副的模型往往过于简化甚至被忽略,这也是导致无法准确预测制造装备整机特性的原因之一。因此,提出准确表征滚珠直线导轨副静、动力学特性的方法,揭示导轨副动力学行为的演变规律,对于研制出“高速、高精、重载,低噪音”制造装备具有重要科学价值,是研制高端制造装备所需的基础技术,具有重大的理论意义和广阔的应用前景。
     针对传统方法在求解滑动摩擦条件下弹性非相似接触问题时存在多项式积分过多的困难,本文提出了一种基于修正的高斯-雅可比积分公式的求解方法,能够更有效、更直接地求解滑动摩擦条件下弹性非相似接触问题。计算了抛物线型压头和圆柱型压头与弹性半平面在滑动摩擦条件下的接触应力分布,分析了摩擦系数对接触表面应力分布的影响规律,探讨了接触表面产生裂纹的原因。
     基于滚珠直线导轨副的弹性变形协调条件,提出了一种计及滑块裙部变形的滚珠直线导轨副垂直刚度模型。通过计算滚珠直线导轨副在受预紧力和垂直载荷同时作用时的垂直变形量及滑块裙部变形量,求得了滚珠直线导轨副的垂直刚度值,为设计出高刚度、高精度的滚珠直线导轨副提供理论指导。
     基于建立的滚珠直线导轨副垂直刚度模型,推导了导轨副的接触刚度表达式,提出了一种计及滑块裙部变形的滚珠直线导轨副模态分析方法。利用杆单元模拟滚珠与滚道之间的接触特征,建立了某型号滚珠直线导轨副的三维有限元模型并利用有限元分析软件PATRAN/NASTRAN求解了导轨副的模态参数。由于导轨副接触刚度的非线性特征,研究了锤击法中激励力幅值对特征频率测量误差的影响。
     针对使用滚珠直线导轨副作为连接件的制造装备表现出的非线性响应问题,设计了一种滚珠直线导轨副动态测试装置,基于实验测试数据,利用Volterra和Wiener理论提出了一种在随机激励条件下辨识导轨副非线性参数的方法。该计算模型可用于对含有滚珠直线导轨副的制造装备进行整机动力学特性预测分析。
     利用贝叶斯推断方法以及马尔可夫链蒙特卡罗模拟方法,结合模态参数的测试数据,修正了滚珠直线导轨副名义计算模型中的不确定性参数。基于预测误差的方法,研究了修正后的模型的不确定性程度。本文的方法可有效修正滚珠直线导轨副名义计算模型中的不确定性参数,使得模型修正后的计算结果与实验测试结果之间的误差更小。
The determination of connection parameters between different parts and components inmanufacturing equipments are of great importance for the design of a machine tool capableof high-precision and high-speed machining. It is a hot topic in mechanical system designand analysis and becomes a frontier research field for the dynamical system. Linear rollingbearing is one of the most important connecting components in manufacturing equipments. Itis difficult to effectively and precisely characterize the physical properties of the linearrolling bearing because of its complex configuration. Linear rolling bearing is characterizedby the contact problem between the raceway and rolling elements. Because of thecomplexity of this type of problem, the modeling for linear rolling bearing is generally eitherover-simplified or ignored. It is one of the resons for the difficulty in precisely predicting thedynamic performance for the manufacturing equipments in the design stage. Therefore, it isnecessary to study the static and dynamic properties associated with the linear rollingbearing. It is significant for revealing the nature of the dynamical behavior of the linearrolling bearing and has great potential for developing the high-speed, high-precision and lownoise manufacturing equipment.
     An efficient and straightforward technique based on the improved Gauss-Jacobiquadrature rule for solving elastically dissimilar contact problems under sliding condition isproposed in the thesis. The efficiency has been well validated by a rough stamp with sharpcorners frictionally sliding on an elastically dissimilar half-plane. This work investigates anddemonstrates the effects of frictional coefficient on the contact pressure distributionsbetween the generallied punch and the elastically dissimilar half-plane. The possible reasonsfor crack initiation associated with fatigue and fracture of the contacting components are alsoelaborated.
     Based on the Hertzian contact theory and elastic beam theory, a theoretical model of thevertical stiffness of preloaded linear rolling bearing considering the flexibility of the carriageis established. The calculated outward carriage deformations match the finite element analysis results well. Clearly, the theoretical model could deal with the vertical stiffness ofpreloaded linear motion guide more accurately compared with the traditional rigid model.
     Based on the rigidity model of a linear rolling bearing incorporating the flexibility of thecarriage, a modal analysis method of a linear rolling bearing using finite element analysismethod is proposed. A three dimensional finite element model of a linear rolling bearing hasbeen established. The finite element modal analysis is conducted and the modal frequenciesand vibration modes are presented. The modal testing experiment was conducted on the typeof linear rolling bearing. For the occurrence of the modes, the finite element analysis resultsbased on the presented method match the experimental results well. It should be pointed outthat, because of the nonlinear property of the contact stiffness, the variance of the amplitudeof the exciting force would result in the fluctuation of the eigenfrequency and lead to themeasurement error.
     Prediction of machine dynamics at the design stage is a challenge due to lack of adequatemethods for identifying and handling the nonlinearities in the linear rolling bearing, whichappear as the nonlinear restoring force function of relative displacement and velocity acrossthe joint. This thesis discusses identification of such a nonlinear restoring force function fora linear rolling bearing. An innovative test rig is designed and the nonlinear parameters ofthe linear rolling bearing are extracted from the measurements of the applied random forceand the resultant response based on the Volterra and Wiener theories. The identified model isvalidated by comparing the frequency response function calculated from the identified modeland that from the mearsurment. Good agreement is achieved. The identified model can befurther used to predict the dynamic performance of the manufacturing equipment.
     The problem of updating a finite element model representing a family of linear rollingbearings and its associated uncertainties by utilizing measured modal parameters isaddressed using a Bayesian statistical framework that can handle the inherentill-conditioning and possible nonuniqueness in model updating applications. The objective isnot only to give more accurate response predictions for the finite element model representinga family of linear rolling bearings but also to provide a quantitative assessment of thisaccuracy. The quantification of model uncertainties is carried out by means of the predictionerror. The results point out that an improvement of the prior model can be achieved and the prediction error variance provides a means for bridging the remaining gap between themeasured data and the computed output. The updated, i.e. improved, finite element modelcan be used for more reliable predictions of the structural performance in the targetmechanical environment.
引文
[1] Hung JP, Lai YL, Lin CY, L TL. Modeling the machining stability of a verticalmilling machine under the influence of the preloaded linear guide. InternationalJournal of Machine Tools&Manufacture,2011,51,731-739.
    [2] Ito Y. Modular Design for Machine Tool. McGraw-Hill Company,2008.
    [3] Seo Y, Hong DP, Kim I, Kim T, Sheen D., Lee GB. Structure modeling of machinetools and Internet-based implementation, in: Proceedings of the2005WinterSimulation Conference, Orlando, Florida, USA, December2005.
    [4] Movahhedy MR, Mosaddegh P. Prediction of chatter in high speed milling includinggyroscopic effects. International Journal of Machine Tools&Manufacture,2006,46(9):996-1001.
    [5] Hung JP. Load effect on the vibration characteristics of a stage with rolling guides,Journal of Mechanical Science and Technology,2009,23(1):92-102.
    [6] Jiang SY, Zheng SF. A modeling approach for analysis and improvement ofspindle-drawbar-bearing assembly dynamics, International Journal of Machine Tools&Manufacture,2010,50:131-142.
    [7] Lin CY, Hung JP, Lo TL. Effect of preload of linear guides on dynamic characteristicsof a vertical column-spindle system. International Journal of Machine Tools&Manufacture,2010,5,(8):741-746.
    [8] Jiang SY, Zhu SL. Dynamic characteristic parameters of linear guideway joint withball screw. Journal of Mechanical Engineering,2010,46(2):92-98.
    [9] Reina S, Hills DA, Dini D. Contact of a rigid cylinder indenting an elastic layersliding over a rigid substrate. European Journal of Mechanics A/Solids,2010,29:772-783.
    [10] Galin LA. Contact problems in the theory of Elasticity. English translation, SneddonIN. Raleigh: North Carolina State College, Department of Mathematics,1961.
    [11] Muskhelishvili NI. Singular integral equations: boundary problems of function theoryand their application to mathematical physics. Dover Publications, New York,1992.
    [12] Mindlin RD. Influence of couple-stresses on stress concentrations. ExperimentalMechanics,1962,3(1):1-7.
    [13] Spence DA. A Wiener-Hopf equation arising in elastic contact problems. Proc. Roy.Soc. A.,1968,305:81-92.
    [14] Keer LM, Goodman LE. Tangential loading of two bodies in contact. Journal ofapplied mechanics,1976,42:513-514.
    [15] Nowwell D, Hills DA, Sackfield A. Contact of dissimilar elastic cylinders undernormal and Tangential Loading. Journal of the Mechanics and Physics of Solids,1988,36(1):59-75.
    [16] Mindlin RD. Compliance of elastic bodies in contact. Journal of applied mechanics,1949,16:259-268.
    [17] Gladwell GML. Contact problems in the classical theory of elasticity, Sijthoff andNoordhoff, MD, Rockville,1980.
    [18] Ambrico JM, Begley MR. Plasticity in fretting contact. Journal of the Mechanics andPhysics of Solids,2000,48:2391-2417.
    [19] Iyer K. Solutions for contact in pinned connections. International Journal of Solidsand Structures,2001,38:9133-9148.
    [20] Porter MI, Hills DA. Note on the complete contact between a flat rigid punch and anelastic layer attached to a dissimilar substrate. International Journal of MechanicalScience,2002,44:509-520.
    [21] Johnson KL. Contact mechanics. Cambridge University Press, Cambridge, UK,1985.
    [22] Erdogan F, Gupta GD, Cook TS. Numerical solution of singular integral equations.In:Sih GC, editor. Method of analysis and solution of crack problems. Leyden:Noordhoff International Publishing,1973.
    [23] Krenk S. On quadrature formulas for singular integral-equations of the first andsecond kind. Q. Appl. Math.,1975,33(3):225-232.
    [24] Miller GR, Keer LM. A numerical technique for the solution of singularintegral-equations of the second kind. Q. Appl. Math.,1985,42(4):455-465.
    [25] Erdogan F, Gupta GD. On the numerical solution of singular integral equations. Q.Appl. Math.,1972,30(4):525-234.
    [26] Churchman CM, Sackfield A, Hills DA. Asymptotic solutions for contact problems:the effect of an internal discontinuity in surface profile. Proc. Inst. Mech. Eng. C-J.Mech. Eng. Sci.,2006,220(4):387–391.
    [27] Sackfield A, Dini D, Hills DA. The tilted shallow wedge problem. Eur. J. Mech.Solid,2005,24:919-928.
    [28] Sackfield A, Dini D, Hills DA. Contact of a rotating wheel with a flat. InternationalJournal of Solids and Structures,2007,44:3304-3316.
    [29] Mao K, Sun Y, Bell T. Contact mechanisms of enginnering surfaces: state of the art.Surface Engineering,1994,10(4):297-306.
    [30] Bhushan B. Handbook of Micro/Nanotribology.1995,CRC Press,Boca Raton,FL.
    [31] Majda P. Modeling of geometric errors of linear guideway and their influence on jointkinematic error in machine tools. Precis Eng,2012, doi:10.1016/j.precision eng.2012.02.001.
    [32] Shimizu S. Stiffness analysis of linear motion rolling guide. J. Jpn. Soc. Precis. Eng.,1998,64(11):1573-1576.
    [33] Kasai S, Tsukada T, Osawa N, Kato S. Precision linear guides. NSK Tech.J.,1985,645:49-59.
    [34]孙健利.滚动直线导轨副及滚珠丝杠副研究论文集.华中科技大学机械科学与工程学院,2003.
    [35]吴文喜,姜大志.滚动直线导轨副静刚度模型的研究.机械设计与制造,2009,5:135-137.
    [36]温淑花,张学良等.结合面法向接触刚度分形模型建立与仿真.农业机械学报,2009,40(11):197-202.
    [37] Johnson KL.100years of Hertz contact. Proceedings of the Institution of MechanicalEngineers,1982,196:363-378.
    [38] Greenwood JA, Williamson JBP. Contact of nominally flat surfaces. Proceedings ofthe Royal Society of London. Series A, Mathematical and Physical Sciences1966,295(1442):1442-1462.
    [39] Ohta H,Tanaka K.Vertical Stiffnesses of Preloaded Linear Guideway Type BallBearings Incorporating the Flexibility of the Carriage and Rail. ASME J.Tribol.,2010,129:188-193.
    [40] Ozsahin O, Erturk A, Ozguven HN, Budak E. A closed-form approach foridentification of dynamical contact parameters in spindle–holder–tool assemblies.International Journal of Machine Tools&Manufacture,2009,49:25-35.
    [41] Lin C Y, Hung J P, Lo T L. Effect of preload of linear guides on dynamiccharacteristics of a vertical column–spindle system. International Journal of MachineTools&Manufacture,2010,50:741-746.
    [42] Wu JSS, Chang JC, Hung JP. The effect of contact interface on dynamiccharacteristics of composite structures. Mathematics and Computers inSimulation,2007,74(6):454-467.
    [43] Ohta H. Sound of linear guideway type recirculating linear ball bearings. Transactionsof the ASME, Journal of Tribology,1999,121:678-685.
    [44] Ohta H, Hayashi E. Vibration of linear guideway type recirculating linear ballbearings. Journal of Sound and Vibration,2000,235(5):847-861.
    [45] Ohta H, Tanaka K. Vertical Stiffnesses of Preloaded Linear Guideway Type BallBearings Incorporating the Flexibility of the Carriage and Rail. ASME J.Tribol.2010,129:188-193.
    [46] Ohta H, Kitajima Y, Kato S. Effects of Ball Groupings on Ball Passage Vibrations ofa Linear Guideway Type Ball Bearing (Pitching and Yawing Ball Passage Vibrations).Journal of Tribology,2007,129(1):188-194.
    [47] Ohta H, Kato S, Matsumoto J, Nakano K. A design of crowning to reduce ballpassage vibrations of a linear guideway type recirculating linear ball bearing. ASMEJ.Tribol.,2005,127:257-262.
    [48]李小彭,聂巍,赵志杰,闻邦椿.直线导轨副动态特性的试验研究及有限元分析.组合机床与自动化加工技术,2011,10:17-20.
    [49]毛宽民,李斌,谢波,等.滚动直线导轨副可动结合部动力学建模.华中科技大学学报(自然科学版),2008,36(8):85-88.s
    [50]孙伟,汪博,闻邦椿.直线导轨结合部动力学特性测试及参数识别.东北大学学报(自然科学版),2011,32(5):716-719.
    [51]蒋书运,祝书龙.带滚珠丝杠副的直线导轨结合部动态刚度特性.机械工程学报,2010,46(1):92-99.
    [52] Moon YM. Reconfigurable Machine Tool Design: Theory and Application,University of Michigan, Ann Arbor, USA,2000.
    [53] Moon YM, Kota S. Design of reconfigurable machine tools. ASME Journal ofManufacturing Science and Engineering,2002,124(2):480-483.
    [54] Bishop RED, Johnson DC. The Mechanics of Vibrations, Cambridge University Press,Cambridge,1960.
    [55] Dhupia JS, Powalka B, Ulsoy AG, Katz R. Effect of a Nonlinear Joint on theDynamic Performance of a Machine Tool. Journal of Manufacturing Science andEngineering,2007,129:943-950.
    [56] Ferreira JV, Ewins DJ. Nonlinear receptance coupling approach based on describingfunctions, Proceedings of14th International Modal Analysis Conference, Dearborn,MI,1996, pp.1034-1040.
    [57] Yigit AS, Ulsoy AG. Dynamic stiffness evaluation for reconfigurable machine toolsincluding weakly non-linear joint characteristics. Proceedings of the Institution ofMechanical Engineers, Part B: Journal of Engineering Manufacture,2002,216(1):87-101.
    [58] Lee GM. Estimation of nonlinear system parameters using higher-order frequencyresponse functions. Mechanical Systems and Signal Processing,1997,11(2)219-237.
    [59] Worden K, Tomlinson GR. Nonlinearity in Structural Dynamics: Dection,Identification, and Modelling.2001,Institute of Physics Publishing, Bristol,UK.
    [60] Yasuda K, Kamiya K. Experimental identification technique of nonlinear beams intime domain. Nonlinear Dynaimcs,1999,18(2):185-196.
    [61] Malatkar P, Nayfeh AH. A parametric identification technique forsingle-degree-of-freedom weakly nonlinear systems with cubic nonlinearities. Journalof Vibration and Control,2003,9(3-4):317-334.
    [62] Fahey SOF, Nayfeh AH.Experimental nonlinear identification of a single structuralmode. Proceedings of14thInternational Modal Analysis Conference,1996, Dearborn,MI:1034-1040.
    [63] Yasuda K,Kamiya K,Komakine M. Experimental identification technique of vibratingstructures with geometrical nonliearity. ASME Journal of AppliedMechanics,1997,64(2):275-286.
    [64] Kerschen G, Worden K, Vakakis AF, Golinval JC. Past, present and future ofnonlinear system identification in structural dynamics. Mechanical Systems andSignal Processing,2006,20:505-592.
    [65] Richards CM, Singh R. Identification of multi-degree-of-freedom non-linear systemsunder random excitation by the “reverse path” spectral method. Journal of Sound andVibration,1998,213:673-708.
    [66] Adams DE, Allemang RJ. A frequency domain method for estimating the parametersof a non-linear structural dynamic model through feedback. Mechanical Systems andSignal Processing,2000,14:637-656.
    [67] Dahl PR. Solid friction damping of mechanical vibrations. AIAA Journal1976,14(12):1675-1685.
    [68] deWit CC, Olsson H, Astrom KJ, Lischinsky P. New model for control of systemswith friction. IEEE Transactions on Automatic Control,1995,40(3):419-433.
    [69] Swevers J, Al Bender F, Ganseman CG, Prajogo T. Integrated friction modelstructure with improved presliding behavior for accurate friction compensation. IEEETransactions on Automatic Control,2000,45(4):675695.
    [70] Fujita T, Matsubara A, Yamazaki K. Experimental characterization of disturbanceforce in a linear drive system with high-precision rolling guideways. InternationalJournal of Machine Tools&Manufacture,2011,51:104-111.
    [71] Khim G, Park CH, Shamoto E, Kim SW. Prediction and compensation of motionaccuracy in a linear motion bearing table. Precision Engineering,2011,35:393-399.
    [72] Lin J, Chen CH. Positioning and tracking of a linear motiono stage with frictioncompensation by fuzzy logic approach. ISA Transactions,2007,46:327-342.
    [73] Xiao L, Bjorklund S, Rosen BG. The influence of surface roughness and the contactpressure distribution on friction in rolling/sliding contacts. Tribology International,2007,40(4):694-698.
    [74] Al-Bender F, Symens W. Characterization of frictional hysteresis in ball-bearingguideways. Wear,2005,242:1-17.
    [75] Armstrong-Helouvry B.Control of Machines with Friction.1991,Kluwer AcademicPublishers.
    [76] Eriten M, Polycarpou AA, Bergman LA. Physics-based modeling for partial slipbehavior of spherical contacts. International Journal of Solids and Structures.2010,149:166-183.
    [77] Al-Bender F, Moerlooze KD. On the relationship between normal load and frictionforce in pre-sliding frictional contacts. Part1: Theoretical analysis. Wear,2010,179:136-153.
    [78] Moerlooze KD,Al-Bender F. On the relationship between normal load and frictionforce in pre-sliding frictional contacts. Part2:Experimental investigation. Wear,2010,179:156-173.
    [79] Moerlooze KD,Al-Bender F. Experimental investigation into the tractive prerollingbehavior of balls in V-Grooved tracks. Advances in Tribology,2008,Article ID561280,10pages.
    [80] Al-Bender F, Moerlooze KD. A model of the transient behavior of tractive rollingcontacts. Advances in Tribology,2008,Article ID214894,17pages.
    [81] Al-Bender F, Symens W. Dynamic characterisation of hysteresis elements inmechanical systems, Part I. Theoretical analysis. CHAOS Interdisc. J. NonlinearSci..2005,121:127-134.
    [82] Al-Bender F, Symens W. Characterisation of frictional hysteresis in ball-bearingguideways.Wear,2005,258:1630-1642.
    [83]袭著燕,路长厚,潘伟,等.基于预滑—动态摩擦力矩估计模型的自适应前馈补偿方法.机械工程学报,2007,43(10):175-180.
    [84] Friswell MI, Mottershead JE. Finite Element Model Updating in Structural Dynamics.Kluwer Academic Publishers Group, Norwell,MA,1995.
    [85] Basaga HB, Turker T, Bayraktar A. A model updating approach based on designpoints for unknown structural parameters. Applied Mathematical Modelling,2011,35:5872-5883.
    [86] Berman A, Nagy EJ. Improvement of a large analytical model using test data. AIAAJ.,1983,21:1168-1173.
    [87] Denoyer KK, Peterson LD. Method for structural update using dynamically measuredstatic flexibility matrices. AIAA J.,1997,35:362-368.
    [88] Fritzen CP, Jennewein D, Kiefer T. Damage detection based on model updatingmethods. Mech. Syst. Signal Process.,1998,12:163-186.
    [89] Zimmerman DC, Widengren M. Correcting finite element modes using a symmetriceigenstructure assignment technique, AIAA J.,1990,28:1670-1676.
    [90] Atalla MJ, Inman DJ. On model updating using neural networks, Mech. Syst. SignalProcess,1998,12:135-161.
    [91] Zhang QW, Chang CC, Chang TYP. Finite element model updating for structureswith parametric constraints. Earthquake Eng. Struct. Dyn.,2000,29:927-944.
    [92] Marwala T. Finite element model updating using response surface method.Proceedings of the45thAIAA/ASME/ASCE/AHS/ASC Structures, StructuralDyanmics and Materials Conference, Palm Springs, California, USA,2004.
    [93] Steenackers G, Guillaume P. Finite element model updating taking into account theuncertainty on the modal parameters estimates. J. Sound Vib.,2006,296:919-934.
    [94] Titurus B, Friswell MI. Regularisaton in model updating. Int. J. Numer. Methods Eng.,2008,75:440-478.
    [95] Titurus B, Friswell MI. Second order approximations in model updating. ISMA2010,Leuven, Berlin,2010:2701-2712.
    [96] Calvi A, Garcia de Paredes S, Roy N, Lefevre Y. On the development of a stochasticapproach for the validation of spacecraft structural dynamic models. Proceedings ofthe European Conference on Spacecraft Structures, Materials and Mechanical Testing,Toulouse, France,2002.
    [97] Babuska I, Chatzipantelidis P. On solving elliptic stochastic partial differentialequations. Comput. Methods Appl. Mech. Engrg.,2002,191,4093-4122.
    [98] Ghanem R, Pellissetti M. Adaptive data refinement in the spectral stochastic finiteelement method. Commun. Numer. Methods Engrg.2002,18(2):141-151.
    [99] Ghanem R, Sarkar A. Reduced models for the medium-frequency dynamics ofstochastic systems. J. Acoust. Soc. Am.,2003,113(2):834-846.
    [100] Ghanem R, Spanos PD. Stochastic Finite Elements: A Spectral Approach,Springer-Verlag, New York,1991.
    [101] Kleiber M, Tran DH, Hien TD. The Stochastic Finite Element Method. JohnWiley&Sons, New York,1992.
    [102] Pradlwarter HJ, Schueller GI, Szekely GS. Random eigenvalue problems for largesystems. Comput. Struct,2002,80:2415-2424.
    [103] Szekely GS, Schueller GI. Computational procedure for a fast calculation ofeigenvectors and eigenvalues of structures with random properties. Comput. MethodsAppl. Mech. Engrg.,2001,191:799-816.
    [104] Beck JL, Katafygiotis LS. Updating Models and Their Uncertainties. I: BayesianStatistical Framework. Journal of Engineering Mechanics,1998, April:455-461.
    [105] Lee P. Bayesian statistics: An introduction. Arnold Publication,1997.
    [106] Natke H. Updating computational models in the frequency domain based onmeasured data: a survey. Probabilistic Engineering Mechanics,1988,3:28-35.
    [107] Beck J, Katafygiotis L. Updating and their uncertainties. I:Bayesian statisticalframework. Journal of Engineering Mechanics,1998:455-461.
    [108] Beck J, Au S. Bayesian updating of structural models and reliability using Markovchain Monte Carlo simulation. Journal of Engineering Mechanics,2002,128:380-391.
    [109] Ching J, Chen Y. Transitional Markov chain monte carlo method for Bayesian modelupdating, model class selection, and model averaging. Journal of EngineeringMechanics,2007,133:816-832.
    [110] Cheung S, Beck J. Bayesian model updating using hybrid monte carlo simulationwith application to structural dynamic models with many uncertain parameters.Journal of Engineering Mechanics,2009,135:243-255.
    [111] Yuen K. Bayesian methods for structural dynamics and civil engineering.Wiley-Blackwell,2010.
    [112] Muskhelishvili NI. Singular integral equations: boundary problems of function theoryand their application to mathematical physics. Dover Publications, New York,1992.
    [113] Suresh S, Olsson M, Giannakopoulos AE, Padture NP, Jitcharoen J. Engineeringthe resistance to sliding-contact damage through controlled gradients in elasticproperties at contact surfaces. Acta Materialia,1999,47:3915-3926.
    [114] Lawn B. Fracture of Brittle Solids. Cambridge University Press, Cambridge, UK,1993.
    [115] Miller GR, Keer LM. A numerical technique for the solution of singularintegral-equations of the second kind. Q. Appl. Math.,1985,42(4):455-65.
    [116] Shimizu S. Load Distribution and Accuracy/Rigidity of Linear Motion Ball GuideSystem. J. Jpn. Soc. Precis. Eng.,1990,56(8):1445-1451.
    [117]孙健利.直线滚动导轨机构承受垂直载荷时的刚度计算.华中理工大学学报,1988,16(5):19-24.
    [118]吴文喜,姜大志.滚动直线导轨副静刚度模型的研究.机械设计与制造,2009,5:135-137.
    [119] Shimizu S. Stiffness Analysis of Linear Motion Rolling Guide. J.Jpn. Soc. Precis.Eng.,1998,64(11):1573-1576.
    [120] Kasai S, Tsukada T, Osawa N, Kato S. Precision Linear Guides. NSK Tech.J.,1985,645:49-59.
    [121]刘端,孙健利,廖道训.直线滚动导轨考虑滑块体弹性变形时的刚度计算.华中理工大学学报,1990,18(8):235-240.
    [122] Yi YS, Kim YY. Dynamic Analysis of a Linear Motion Guide Having RollingElements for Precision Positioning Devices. Journal of Mechanical Science andTechnology,2008,22(1):50-60.
    [123]张耀满,刘春时,谢志坤,等.数控机床直线滚动导轨结合面有限元分析.制造技术与机床,2007,(7):75-78.
    [124] Harris TA. Rolling Bearing Analysis.4ed. New York:Wiley,2001.
    [125] Serfling RJ. Approximation Theorems of Mathematical Statistics. Wiley: NewYork,1980.
    [126] Soize C,Ghanem R. Reduced chaos decomposition with random coefficients ofvector-valued random variables and random fields. Computer Methods in AppliedMechanics and Engineering,2009,198:1926-1934.
    [127] Duchereau J,Soize C. Transient dynamics in structures with nonhomogeneousuncertainties induced by complex joints. Mechanical Systems and Signal Processing,2006,20(4):854-867.
    [128] Pradlwarter HJ, Schueller GI, Sszekely GS. Random eigenvalue problems for largesystems. Computers and Structures,2002,80:2415-2424.
    [129] Ghanem R, Ghosh D. Efficient characterization of the random eigenvalue problem ina polynomial chaos decomposition. International Journal for Numerical Methods inEngineering,2007,72(4):486-504.
    [130] Bathe K, Wilson E. Numerical methods in finite element analysis, Prentice-Hall,Englewood Cliffs, New Jersey,1990.
    [131] Schueller G. On the treatment of uncertainties in structural mechanics and analysis.Computers and Structures,2007,85:235-243.
    [132] Cox RT. The algebra of probable inference, Johns Hopkins Press, Baltimore,1961.
    [133] Ewins DJ. Modal Testing: Theory, Practice, and Application,2nded., ResearchStudies Press, Baldock,2001.
    [134] Awrejcewicz J, Dzyubak L, Lamarque CH. Modelling of hysteresis usingMasing-Bouc-Wen’s framework and search of conditions for the chaotic responses.Communications in Nonlinear Science and Numerical Simulation,2008,13:939-958.
    [135] Richards CM, Singh R. Feasibility of identifying nonlinear vibratory systemsconsisting of unknown polynomial forms. Journal of Sound and vibration,1999,220:413-450.
    [136] Rugh WJ. Nonlinear System Theory: The Volterra/Wiener Application.The JohsHopkins University Press,1981.
    [137] Volterra V. Theory of Functionals and of Integral and Integro-Differential Equations,Dover, New York,1958.
    [138] Wiener N. Nonlinear Problems in Random Theory, The Massachusetts Institute ofTechnology and John Wiley and Sons, New York,1958.
    [139] Lee YW, Schetzen M. Measurement of Wiener kernels of nonlinear system bycrosscorrelation. International Journal of Control,1965,2(3),237-254.
    [140] French AS, Butz EG. Measuring the Wiener kernels of a nonlinear system using thefast Fourier transform algorithm. International Journal of Control,1973,17(3),529-539.
    [141] Orabi II, Ahmadi G. A functional series expansion method for response analysis ofnonlinear systems subjected to random excitations. International Journal ofNon-Linear Mechanics,1987,22(6),451-465.
    [142] Gifford SJ, Tomlinson GR. Recent advances in the application of functional series tononlinear structures. Journal of Sound and Vibration,1989,135(2),289–317.
    [143] Bendat JS. Nonlinear System Analysis and Identification from Random Data, Wiley,New York,1990.
    [144] Bendat JS. Nonlinear System Techniques and Applications, Wiley, New York,1998.
    [145] Khan AA, Vyas NS. Non-linear parameter estimation using Volterra and Wienertheories. Journal of Sound and Vibration,1999,221(5):805–821.
    [146] Adams DE, Allemang RJ. Survey of nonlinear detection and identification techniquesfor experimental vibrations. Proceedings of the International Conference on Noiseand Vibration Engineerings,1998,1:269-281.
    [147] Chatterjee A, Vyas NS. Stiffness Nonlinearity Classification through StructuredResponse Component Analysis using Volterra Series. Mech. Syst. Signal Process.,2001,15(2):323-336.
    [148] Harris TA. Rolling Bearing Analysis, Wiley, New York,1984.
    [149] Ragulskis KM, Jurkauskas AY, Atstupenas VV, Vitkute AY, Kulvec AP. Vibrationin Bearings, Mintis Publishers, Vilnius,1974.
    [150] Billings SA, Peyton Jones JC. Mapping nonlinear integro-differential equations intothe frequency domain. International Journal of Control,1990,52(4):863-879.
    [151] Imregun M, Visser WJ. A review of model updating techniques. Shock and VibrationDigest,1991,23:9-20.
    [152] Kim GH, Park YS. An automated parameter selection procedure for finite elementmodel updating and its applications. Journal of Sound and Vibration,2008,309:778-793.
    [153] Muto M, Beck LJ. Bayesian updating and model clas selection for hystereticstructural models using stochastic simulation. Journal of Vibration and Control,2008,14:7-34.
    [154] Titurus B, Friswell MI. Regularization in model updating. International Journal forNumerical Methods in Engineering,2008,75:440-478.
    [155] Bishop CM. Pattern Recognition and Machine Learning, Springer,2006.
    [156] Calvi A. Uncertainty-based loads analysis for spacecraft: finite element modelvalidation and dynamic response. Computers&Structures,2005,83(14):1103-1112.
    [157] Kass RE, Wasserman L. The selection of prior distribution by formal rules. Journal ofthe American Statistical Association,1996,91:1343-1368.
    [158] Gilks WR, Richardson R, Spiegelhalter DJ. Markov Chain Monte Carlo in Practice,Chapman&Hall,1996.
    [159] Brooks SP. Monte Carlo Methods and its application.The Statistician,1998,47:69-100.
    [160] Dobson AJ. An Introduction to Statistical modeling, Chpman&Hall,1983.
    [161] Robert C. Bayesian Choice,2nded.,Springer Verlag,2001.
    [162] Casella G, Berger RL. Statistical Inference,2nded. Duxbury, Wadsworth Group,Thomoson Learning Inc.,2002.
    [163] Chib S, Greenberg E. Understanding the Metropolis-Hastings Algorithm. TheAmerican Statistician,1995,49:327-337.
    [164] Bograd S, Reuss P, Schmidt A, Gaul L, Mayer M. Modeling the dynamics ofmechanical joints. Mechanical Systems and Signal Processing,2011,25:2801-2826.
    [165] Goller B, Broggi M, Calvi A, Schueller GI. A stochastic model updating technique forcomplex aerospace structures. Finite Elements in Analysis and Design,2011,47:739-752.
    [166] Soize C. A nonparametric model of random uncertainties for reduced matrix modelsin structural dynamics. Probabilistic Engineering Mechanics,2000,15:277-294.
    [167] Soize C. Maximum entropy approach for modeling random uncertainties in transientelastodynamics. Journal of the Acoustical Society of America,2001,109:1979-1996.
    [168] Capiez-Lernout E, Soize C. Robust design optimization in computational mechanics,Journal of Applied Mechanics,2008,75(2):1-11.
    [169] Degrauwe D, Roeck GD, Lombaert G. Uncertainty quantification in the damageassessment of a cable-stayed bridge by means of fuzzy numbers, Computers&Structures,2009,87(17-18):1077-1084.
    [170] Altunok E, Taha MR, Ross T. Possibilistic approach for damage detection instructural health monitoring, Journal of Structural Engineering,2007,133(9)1247-1256.
    [171] Muto M, Beck J. Bayesian updating and model class selection using stochasticsimulation, Journal of Vibration and Control,2008,14:7-34.
    [172] Cheung S, Beck J. Calculation of posterior probabilities for Bayesian model classassessment and averaging from posterior samples based on dynamic system data,Computer-Aided Civil and Infrastructure Engineering,2010,25:304-321.
    [173] Park I, Amarchinta H, Grandhi R. A Bayesian approach for quantification of modeluncertainty. Reliability Engineering and System Safety,2010,95(7):777-785.
    [174] Jaynes E. Probability Theory: The Logic of Science, Cambridge University Press,2003.
    [175] Vanik MW, Beck JL, Au SK. Bayesian Probabilisitic Approach to Structural HealthMonitoring. Journal of Engineering Mechanics,2000,126(7):738-745.
    [176] Adlouni EI, Favre AC, Bobe B. Comparison of methodologies to assess theconvergence of Markov Chain Monte Carlo methods. Computational Statistics&Data Analysis,2006,50(10):2685-2701.
    [177] Plummer M, Best N, Cowles K, Vines K. CODA: convergence diagnosis and outputanalysis for MCMC, R News,2006,6(1):7-11.
    [178] Droguett E, Mosley A. Bayesian methodology for model uncertainty using modelperformance data. Risk Analysis,2008,28(5):1457-1476..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700