用户名: 密码: 验证码:
潜水搅拌机射流特性及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潜水搅拌机属于新型高效的污水处理搅拌机械,在工业、农业等污水处理方面有着广泛的应用。随着国家对环保与污水处理的高度重视,潜水搅拌机应用行业得到了前所未有的拓展。为了探索潜水搅拌机设计理论、搅拌流体内部流动机理以及流动规律,本文基于理论分析、物理实验与数值模拟并重的研究方法,对潜水搅拌机进行了系统研究。本文主要研究内容和创新点如下:
     1、首次推导了潜水搅拌机的水推力、转矩、功率计算公式,得出了搅拌功率与搅拌机转速的3次方呈正比,搅拌功率与搅拌流体密度呈正比,水推力与搅拌流体密度呈正比的结论;首次从理论角度推导出潜水搅拌机效率的估算公式,得出了潜水搅拌机效率与水推力的3/2次方呈正比,与叶轮直径成反比,与叶轮转速呈反比的关系,为潜水搅拌机叶片设计提供了理论依据。
     2、对网格无关性进行了讨论。比较分析了刚盖假定、VOF模型、Wall壁面等三种水池自由液面的处理方法,通过计算值与实验值的对比,综合实际条件,最终选择刚盖假定处理水池自由液面,模拟计算较为合理。
     3、针对不同形状的水池,首次提出了单个或多个潜水搅拌机的最佳安装方式,以获得满意的搅拌效果,对工程应用具有重要的指导价值。
     4、结合四种不同型号潜水搅拌机的数值模拟计算结果,首次提出了潜水搅拌机搅拌流体流态属于淹没非自由湍流圆断面旋动射流,且径向壁面射流、冲击射流相互影响,水池内存在卷吸现象、附壁现象、旋涡现象;分别给出潜水搅拌机的轴向推进距离x,扰动半径R的计算方式,提出水池与潜水搅拌机的匹配原理,填补了此类工程技术方面的理论空白。总结出了流体冲出潜水搅拌机出口一定距离后,流速分布具有相似性,其满足形式的关系;同时揭示出最大轴向速度沿轴向以双曲线形式衰减的规律。
     5、重点对WJ0.75-4-210潜水搅拌机搅拌的4000mm×1000mm×1500mm水池内流体进行了详细的定常和非定常数值模拟。首先,对水池内流体进行定常计算,考察水池内附壁效应与旋涡现象,分析池内流体轴向速度、径向速度与周向速度沿径向分布,分别研究叶轮区域的压力场与速度场,叶轮出口的环量、轴面速度、轴向速度、径向速度、周向速度,得出以下结论:水池内流体为高雷诺数、湍流强度大的流体;水池内流体经由叶轮形成射流,流体轴向推进,径向扩散;叶轮附近流体速度较大,池内其他部位流体速度较小;池面与池底的流体速度场为双抛物线分布,水池中部搅拌机安装截面附近流体速度为抛物线分布;水池内流体流场附壁效应现象明显,池内形成了大尺度的旋涡以及Λ型涡结构,还有很多小尺度的涡,流动非常复杂,这些均与理论分析相互验证。接着,对水池内流体进行非定常计算,考察叶轮进口、叶轮内以及叶轮出口压力脉动的幅域、时域和频域。从而揭示了WJ0.75-4-210潜水搅拌机搅拌流场的流动机理与流动规律,为深入研究潜水搅拌机设计制造的关键技术奠定了一定基础。
     6、首次采用两种方法对潜水搅拌机搅拌流场进行了测试,一种是利用流速仪测试全流场;另一种是利用PIV测试局部流场。测试结果充分证明了前面章节总结的潜水搅拌机搅拌流体特性及搅拌流场规律的可靠性。
Submersible mixers, a new type of efficient stirring machinery, are widely used in the sewage treatment for industry and agriculture. Highly valued by the government to the sewage treatment technology, the application industries of submersible mixers gain unprecedented development. To explore the design theory of submersible mixers, flow mechanism and flow law inner the stirring fluid, this article launches a systematic study for the submersible mixers based on theoretical analysis, physical experiment and numerical simulation. The main research contents and innovations of this article are as follows.
     1. Computational formulas of hydraulic thrust, torque and power of the submersible mixers are derived for the first time to come to the conclusion that stirring power is proportional to the third power of rotate speed, to stirring fluid density, and hydraulic thrust is proportional to stirring fluid density. The estimation formula of the submersible mixers' efficiency is decuced from a theoretical perspective for the first time to draw a conclusion that the efficiency of submersible mixers is proportional to the3/2power of hydraulic thrust, is inversely proportional to the impeller diameter and is inversely proportional to the impeller rotate speed. Thus it has offered a theoretical basis for the design of submersible mixers'blades.
     2. The grid irrelevance is discussed, and three treating methods-grid assumption, VOF model, Wall face to the free surface of the pool are analyzed. Compared the calculation value with experiment value, combined with the physical conditon, grid assumption is finally adopted to deal with the free surface of the pool. This simulation is quite reasonable.
     3. According to different shape pools, optimum installation method of single or multiple mixers is firstly put forward to obtain satisfactory stirring effect, which has significant practical value for engineering application.
     4. The four different models of submersible mixers are combined to calculate by numerical simulation. The following conclusions are presented for the first time that the flow state of stirring fluid belongs to submerged non-free turbulent round section swirl jet, and is inter-affected by radial Wall jet and impact jet flow; there exsit entrainment phenomenon, Wall attachment phenomenon and vortex phenomenon; the axial advance distance of submersible is x, effective stirring radius is R, and meanwhile the matching pool critical dimension is proposed. The four different models of submersible mixers are numerically simulated and present the expression maximum axial velocity declines by the hyperbolic form.
     5. The emphasis is put on detailed numerical simulation analysis to the fluid in the4000mm×1000mm×1500mm pool stirred by the WJ0.75-4-210submersible mixer. The Wall attachment effect and vortex phenomenon inner the pool are observed. The pool is stationary calculated, while the axial velocity, radial velocity, and circumference velocity of the fluid inner the pool are analyzed respectively. Meanwhile, pressure field and velocity field on the impeller, the circulation in the impeller exit, axial velocity, radial velocity, and circumference velocity are studied respectively and the following conclusions are drawn:the fluid inner the pool is high reynolds number and presents turbulance intensity; the fluid inner the pool forms jet flow along the impeller, and the fluid thrusts axially, diffuses radially; the flow velocity near the impeller is relatively higher, while the velocity in the other parts is lower; flow surface and the flow velocity field in the bottom of pool is distributed double parabolically, while the flow velocity near the installation sections of the mixers in the center of the pool is distributed parabolically; the attachment effect of fluid field inner the pool is obvious, and there form large-scaled vortex and A vortex, with many small-sized vortexes, which flow complicatedly. These conclusions can be mutually authenticated with the theoretical analysis. At the same time, the fluid inner the4000mm×1000mm×1500mm pool stirred by the WJ0.75-4-210submersible mixer is given unsteady calculation to observe the amplitude domain, time domain and frequency domain of the pressure fluctuation on the inlet of impeller, inside the impeller and outlet of impeller. Thus, the mixing flow rules by WJ0.75-4-210submersible mixer are revealed to lay a solid foundation for the further research of the key technology to design and manufacture the submersible mixers.
     6. Two methods are adopted to test the stirring flow field of the submersible mixer for the first time. One is to use current meter to test the whole flow field; the other is to use PIV to test the partial flow field. The test results fully prove the characteristic of the fluid of submersible mixer and the reliability of law of the stirring flow field which are concluded in the previous chapters.
引文
[1]十一届全国人大.中华人民共和国国民经济和社会发展第十二个五年规划纲要[R],2012(3)
    [2]十届全国人大.中华人民共和国国民经济和社会发展第十一个五年规划纲要[R],2006(3)
    [3]国务院.国务院关于实行最严格水资源管理制度的意见(国发[2012]3号)[R].2012.
    [4]田飞.污水处理搅拌机的数值模拟与实验研究[D].江苏大学,2010.
    [5]王红琨,蔡春苗.浅谈小城镇可持续发展中的水环境问题[J].哈尔滨师范大学自然科学学报,2002,(1):96-99.
    [6]文一波.发展适合中国国情的城市污水处理技术[J].中国环保产业,1999,(4):21
    [7]喻泽斌,王敦球,张学洪.城市污水处理技术发展回顾与展望[J].广‘西师范大学学报(自然科学版),2004,(2):81-87
    [8]刘维城.中国城市污水处理技术经济政策[J].中国环保产业,1998,(3):24-25
    [9]严建华,黄道见,滕国荣.潜水搅拌器在处理农村生活污水中的应用[J].安徽农业科学,2009,37(20):9606-9607.
    [10]李彦春,王志宏,汪立飞.城市污水处理技术探讨[J].四川环境,2001,(1):40-42
    [11]张敬东,张家华.污水处理技术的新发展[J].环境技术,1997,(6):28-32
    [12]杨展里.我国城市污水处理技术剖析及对策研究[J].环境科学研究,2001,(5):61-64
    [13]王凯军.可持续发展的新型、高效城市污水处理技术探讨[J].给水排水,2005,(2):32-35
    [14]涂兆林.我国城市污水处理现状与发展对策[J].市政技术,1997,(2):29-37
    [15]李维斌.潜水搅拌器的设计理论与实验研究[D]江苏大学,2003.
    [16]Lars Uby.潜水搅拌器的选用[J].中国给水排水,2002,(12):91-92
    [17]张平亮.搅拌器的选择和设计[J].石油化工设备技术,1996,(2):25-26
    [18]霍大为.潜水搅拌器的技术改造[J].沈阳大学学报,2004,(2).
    [19]王显,高卫东.潜水搅拌器在污水处理领域中的应用[J].给水排水,1997,(2).
    [20]易春林,翟红卫.潜水搅拌器在污水处理领域中的应用[J].漯河职业技术学院学报,2003,(2).
    [21]田飞,施卫东,等.污水处理潜水搅拌机效率的理论计算与模拟分析.农业工程学报,2012,28(12),50-54.
    [22]王锦红,郧建国.反求技术在搅拌机拌筒叶片三维建模中的应用现代制造工程,2002(12):15-17
    [23]袁建平,徐伟幸,袁寿其,等.基于Sufacer和Pro/E的潜水搅拌器叶轮反求设计研究.农业工程学报,2007(3):113-116
    [24]袁建平,汤跃,袁寿其,等.基于三维实体造型的搅拌器叶轮结构反求及其抗磨性能,工程设计学报,2007(5):374-377
    [25]缪红云,吴春笃,储金宇.搅拌器转轮三维造型的参数化设计[J].农机化研究,2007,(3):66-68
    [26]黄道见,盛降,李维斌,朱荣生,潘中永.潜水搅拌器转轮的三维造型[J].农机化研究,2004(2):230-231
    [27]田飞,施卫东,等.三叶片潜水搅拌机的数值模拟研究,排灌机械,2012(1):10-15;
    [28]山颖.零件的CAD设计[J].农机化研究,2004,(6):66-68
    [29]李维斌,朱荣生,潘中永,李红,曹卫东.搅拌器转轮水力设计方法的探讨[J].农机化研究,2003,(4):126-128
    [30]朱荣生,李维斌,黄道见,等.搅拌器搅拌流场的三维数值模拟[J].农机化研究,2003,(4):75-77
    [31]张平亮.螺旋螺带式搅拌器的设计及计算[J].化工装备技术,1997,(6):47-51
    [32]刘力行.搅拌器设计的一般程序[J].化工设备与防腐蚀,2000,(1):3-6
    [33]吴绍华,甘树坤.搅拌设备结构设计的几个问题[J].化工科技,2002,(2):40-42
    [34]张庆五.潜水搅拌器叶片断裂原因分析及技术改造措施[J].中国给水排水,2006,(18):21-23
    [35]霍大为.潜水搅拌器的技术改造[J].沈阳大学学报,2004,(2)57-58
    [36]王显,高卫东.潜水搅拌器在污水处理领域中的应用[J].给水排水,1997,(2):55-56
    [37]张鑫珩,钱卫霞.国内外的潜水搅拌机和倒伞曝气机能效比较[J].中国环保产业,2006,(12):28-30
    [38]张鑫珩,钱卫霞.两种国产及引进的污水处理设备能效的比较[J].工业水处理,2007,(1):87-89
    [39]CJ/T109-2007.中华人民共和国城镇建设行业标准.潜水搅拌机[S].
    [40]邹晨,谢明辉,周国忠,等.穿流式搅拌器槽内流场的数值模拟[J].机械设计与制造,2012,(4).239-241
    [41]董厚生,魏化中,舒安庆,等.搅拌槽内固液两相流的数值模拟及功率计算化工装备技术[J],2012,33(1),14-18
    [42]郭春海,谭俊杰,任登凤一种小型电磁力驱动流体混合器的特性南京理工大学学报(自然科学版)[J],2011,35(1),86-90
    [43]杨红,张远新,王程祥涡轮搅拌器搅拌特性数值模拟与实验研究[J]:1-3
    [44]于静,刘红,解茂昭等.往复搅拌流场中气体射流两相流数值研究[J],工程热物理学报,2011,32(10):1699-1702
    [45]彭珍珍,赵恒文,郭聪聪,等.双曲面搅拌机流场的数值模拟研究[J].中国给水排水,2009,15(19),91-94
    [46]施卫东,田飞,等.不同池形中推流搅拌器功率消耗的数值模拟,排灌机械,2009,27(3)
    [47]施卫东,田飞,陈斌.带导流壳的污水处理搅拌机流动分析与试验[J].农业机械学报,2011,42(3):96-99.
    [48]SHI Wei-dong, TIAN Fei, e tal. Strength Analysis of the Submersible Mixer. Applied Mechanics and Materials,2012 (197):pp 740-745,
    [49]Dong L, Johnson S T, Engh T A. Chem Eng Sci,1994,49 (4):549-560
    [50]Albert D H, Cassian K L, Stuart E R. ALChE J,1995,41 (10):2177-2186
    [51]Sch ferM, et al. T rans IchemE,1997,75 (A 8):729-739
    [52]Rutherfo rd K, et al. A IChE J,1996,42 (2):332-346
    [53]A rmenante P A, Chou C. A IChE J,1996,42 (1):42-54
    [54]Hocky R M,Nouric J M. Chem Eng Sci,1996,51 (19):4405-4421
    [55]J awo rsk i Z,N ienow A W,Dyster K N. Can J Chem Eng,1996,74:3
    [56]Duco ste J J, Clark M M,W eetman R J. A IChE J,1997,43 (2):328
    [57]Sautet J C, Stepow sk iD. Phys F luids,1995,7 (11):2796-2806
    [58]M ahmoud IA, et al. FED,1996,237:881-889
    [59]A ntonia R A, O rlandi P, Romano G P. Phy of F luids,1998,10(12):3239-3241
    [60]Yang Sun Kyu, ChungMoon Ki. J of Fluids Eng,1998,120 (4):786-791
    [61]沈熊,张松,刘霄峰.实验力学,1997,12(3):351-357
    [62]邓志群,周建和,周兴华.实验力学,1997,12(1):29-33
    [63]Jianjun Feng, F.-K.Benra, H.J.Dohmen. Comparison of Periodic How Fields in a Radial Pump among CFD, PIV, and LDV Results[J]. International Journal of Rotating Machiner,2009,1-10.
    [64]Steven W.Day. PIV Measurements of Flow in a Centrifugal Blood Pump:Steady Flow Transactions of the ASME[J]. Transactions of the ASME,2005,127:244-253.
    [65]Shikong Chu. Relationship Between Unsteady Flow, Pressure Fluctuations and Noise in a Centrifugal Pump[D].1996.
    [66]TU Braunschweig, Braunschweig. Rotating Cavitation in a Centrifugal Pump Impeller of Low Specific Speed[J]. Journal of Fluids Engineering,2002,124:356-361.
    [67]P. J. Bryanston-Cross, C. E. Towers, T. R. Judge e tal. The Application of Particle Image Veiocimetry (PIV) in a Short-Duration Transonic Annular Turbine Cascade[J]. Journal of Turbomachinery,1992,114:504-509.
    [68]Ronalg R. Dong. The Effect of Volute Geomertry on the Flow Structure, Pressure Fluctuation and Noise in a Centrifugl Pump[D]. The Johns Hopkins University,1994.
    [69]Manish Sinha, Ali Pinarbasi, Joseph Katz e tal. The Flow Structure During Onset and Developed States of Rotating Stall Within a Vaned Diffuser of a Centrifugal Pump[J]. Journal of Fluids Engineering,2001,123:490-499.
    [70]Yang Hua, Gu Chuangang, Wang Tong e tal.Two. Dimesional Particle Imag Velocimetry(PIV) Measurements Ina Traansparent Centrifugal Pump[J]. Chinese Journal of Mechanical Engineer, 2005,18(1):98-102.
    [71]Jerry Westerweel, Fulvio Scarano. Universal outlier detection for PIV data[J]. Experiments in Fluids,2005,39:1096-1100.
    [72]Feng, J., Benra, F.-K., Dohmen, H.J. Unsteady Flow Visualization at Part-Load Conditions of a Radial Diffuser Pump:by PIV and CFD[J]. The Visualization Society of Japan Journal of Visualization,2009,12(1):65-72.
    [73]Jens Friedrichs, Gunter Kosyna.Unsteady PIV How Field Analysys of a Centerfual Pump Impeller Under Roting Cavitation[C]. Fifth International Symposium on Cavitation,2003,1-4.
    [74]JR. Kadambi, M. Mehta, J. Sankovic, e tal. Velocity Measurements of Particles in the Impeller of a Centrifugal Slurry Pump[C].1-11.
    [75]F.C.Viisser, J.B.Jonker. Ivestigation of the Relative Flow in Low Speeed Model Centrifugal Pump Impellers Using Sweep-Beam Particle Image Velocimetry[J]. How Visualization,1995,7:11-14.
    [76]M. ZWINGENBERG, F.-K. BENRA. Measurement of the Periodic Unsteady Flowin a Single-Blade Centrifugal Pump by PIV-Method [C]. Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics,2006:325-330.
    [77]G. Wuibaut,1G. Bois,1M. El Hajem. Optical PIV and LDV Comparisons of Internal FlowInvestigations in SHF Impeller[J]International Journal of Rotating Machinery,2006:1-9
    [78]S. Devasenathipathy, J.G. Santiago, S.T. Wereley. Particle imaging techniques for microfabricated fluidic systems[J]Experiments in Fluids,2003(34):504-514
    [79]Junichi Kurokawa, Jun Matsui. Performance and Internal FlowCharacteristics of a Very LowSpecific Speed Centrifugal Pump
    [80]D. P. Hart. PIV error correction[J]Experiments in Fluids,2000(29):13-22
    [81]R. M. Lueptow, A. Akonur, T. Shinbrot. PIV for granular flows[J]Experiments in Fluids, 2003(28):183-186
    [82]Y.-D. Choi, K. Nishino, J. Kurokawa, J. Matsui. PIV measurement of internal flow characteristics of very lowspecific speed semi-open impeller[J] PIV measurement of internal flow characteristics of very lowspecific speed semi-open impeller,2004(37):617-630
    [83]G. WUIBAUT, P. DUPONT, G. BOIS. PIV MEASUREMENTS IN THE IMPELLER AND THE VANED DIFFUSEROF A RADIAL FLOW PUMP IN DESIGNAND OFF-DESIGN OPERATING CONDITIONS[C]11thIAHR International Meeting of the Work Group on the Behavior ofHydraulic Machinery Under Steady Oscillatory Conditions,2003:8-10
    [84]C. D. Meinhart, S. T. Wereley, J. G Santiago. PIV measurements of a microchannel flow[J] Experiments in Fluids,1999(27):414-419
    [85]Douglas P. Hart. The Elimination of Correlation Errorsin PIV Processing[C]9th International Symposium on Applications of Laser Techniques to Fluid Mechanics,1998:1-8
    [86]J Westerweel. Fundamentals of digital particle image velocimetry[J]. Meas. Sci. Technol.8,1997: 1379-1392.
    [87]K. M. Guleren, A. Turan and A. Pinarbasi. Large-eddy simulation of the flow in a low-speed[J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS,2008:1271-1280.
    [88]EC. Visser, J.J.H. Brouwers, J.B. Jonker. Fluid ow in a rotating low-speci_c-speed
    [89]centrifugal impeller passage[J]. Fluid Dynamics Research,1999,35(24):275-292.
    [90]Feng, J., Benra, F.-K. and Dohmen, H.J.. Unsteady Flow Visualization at Part-Load Conditions of a Radial Diffuser Pump:by PIV and CFD[J]. (?)2009 The Visualization Society of Japan, 2009,12(1):65-72.
    [91]Takashi EGUCHI, Satoshi WATANABE, Hisasada TAKAHARA e tal. Development of Pulsatile Flow Experiment System and PIV Measurement in an Elastic Tube[J]. Memoirs of the Faculty of Engineering,2003,63(3):161-172.
    [92]E. Tolouei, A. Fouras and J. Carberry. icro In vitro micro PIV measurements of velocity profiles near a Wall[C].8TH INTERNATIONAL SYMPOSIUM ON PARTICLE IMAGE VELOCIMETRY-PIV09,2009:1-4.
    [93]Nico Krause, Elemer Pap, Dominique Thevenin. INVESTIGATION OF OFF-DESIGN CONDITIONS IN A RADIAL PUMP BY USING TIME-RESOLVED-PIV[C].13th Int Symp on Applications of Laser Techniques to Fluid Mechanics,2006:1-11.
    [94]王端,李志鹏,高正明,T型撞击流混合器内流动特性的PIV研究[J].过程工程学报:638-643
    [95]黄欢明,高红,沈枫,等.轴流泵内流场的数值模拟与实验[J].农业机械学报,2008,39(8):66-69,148
    [96]刘心洪.采用大涡PIV方法研究搅拌槽内湍流动能耗散率[J].过程工程学报,2008,(3):425-431
    [97]赵静.组合桨液相搅拌槽内流动特性的实验研究及数值模拟[J].北京化工大学学报(自然科学版),2011,(3):22-27
    [98]徐玉明,迟卫,莫立新.PIV测试技术及其应用[J]舰船科学技术,2007,29(3):101-105
    [99]孙鹤泉,沈永明,王永学.PIV技术的儿种实现方法[J]水科学进展,2004,15(1):105-108
    [100]孙荪,刘超,汤方平.PIV在半开式离心泵内部流场测量中的应用[J]中国农村水利水电,2004(1):65-67
    [101]孙荪.半开式离心泵内部流场PIV实验研究[D]扬州大学,2003
    [102]李金伟,杨帆,李永.超小型粘性泵内部流场的PIV试验研究[J]水泵技术,2004:10-13
    [103]李连超,常近时.大型供水泵站吸水池模型流场PIV测试[N]中国农业大学学报,2002,7(4):100-103
    [104]袁寿其,何有世,袁建平.带分流叶片的离心泵叶轮内部流场的PIV测量与数值模拟[J].机械工程学报,2006,42(5):60-63
    [105]WEI Qing2ding, YAN Bin, CHEN Jun. A numerical test on the accuracy of particle image velocimetry[J]流体力学实验与测量,2001,15(2):47-52
    [106]席光,卢金铃,祁大同.混流泵叶轮内部流动的PIV实验[J]农业机械学报,2006,37(10):53-57
    [107]邓万权.基于PIV技术的水轮机尾水管内流动的试验研究[D]西华大学
    [108]杨华.离心泵内部流场PIV实验研究[D]扬州大学
    [109]杨华,汤方平,鄢碧鹏.离心泵叶轮内二维PIV非定常流动测量[c],中国工程热物理学会学术会议论文,384-389
    [110]杨波,许友谊,刘栋.离心泵叶轮内流场PIV研究[J]水泵技术,2006,(4):12-18
    [111]万毅,严敬,杨小林.离心泵叶轮内水流相对速度的实验研究[J]机械设计,2005,22(6):39-41
    [112]严敬,邓万权,杨小林.离心叶轮内流场的PIV实验,2007,38(12):205-207
    [113]王海粟.浅议会计信息披露模式[J].财政研究,2004,21(1):56-58.
    [114]杨华,刘超,汤方平等.采用PIV研究离心泵转轮内部瞬态流场采用[J].水动力学研究与进展,2002,17(5):547-552
    [115]余文国.柴油机缸内流场PIV测试技术的应用研究[D].大连理工大学,2005:1-64.
    [116]李永,李小明,吴玉林等.封闭式水泵吸水池内部流动的PIV量测[J].农业工程学报,2001,17(3):45-48.
    [117]李小明.封闭式水泵吸水室内部流场的PIV试验研究[D].清华大学,2002:1-92.
    [118]刘刚.PIV技术在喷油雾化等流场测量中的运用[D].天津大学,2007:1-75.
    [119]金上海.PIV技术的算法研究[D].西安理工大学,2003:1-76.
    [120]汤方平,刘超,周济人等.离心式叶轮内紊流流场数值分析及PIV测试[J].排灌机械,2004,22(3):5-10.
    [121]许洪元,卢达熔,焦传国等.离心泵流道中固体颗粒速度场的粒子成像测速(P IV)分析与研究[J].农业工程学报,1998,14(3):112-116.
    [122]杨小林,严敬,邓万全等.离心泵叶轮轴向旋涡流的PIV测量[J].石油机械,2005,33(7):1-3.
    [123]刘超.离心泵叶轮内旋转流场激光测量的研究[J].江苏农学院学报,1994,15(4):64-71.
    [124]杨敏官,顾海飞,刘栋等.离心泵叶轮内部湍流流动的数值计算及试验[J].机械工程学报,2006,42(12):180-185.
    [125]杨敏官,刘栋,康灿等.离心泵叶轮内部伴有盐析流场的分析[J].农业机械学报,2006,37(12):83-86.
    [126]刘栋,杨敏官,高波.离心泵叶轮内部伴有盐析流场的PIV试验[J].农业机械学报,2008,39(11):55-58,63.
    [127]万毅,柯坚.离心泵流道和泵腔内流场的试验研究[J].机械工程学报,2005,41(10):226-230.
    [128]袁建平.离心泵多设计方案下内流PIV测试及其非定常全流场数值模拟[D].江苏大学,2008:1-146.
    [129]张波涛.带涡旋阻止器的封闭式水泵吸水池流场的PIV试验研究[D].清华大学,2003:1-90.
    [130]陈松山,周正富,钟宁等.离心泵偏置短叶片叶轮内部流动的粒子图像速度测量[J].机械工程学报,2008,44(1):56-61.
    [131]邵春雷,顾伯勤,陈晔.离心泵内部流场测量系统设计及测量方法研究[J].流体机械,2007,35(6):45-49.
    [132]陈莹.粒子图像测速技术在液体射流泵内部流场测试中的应用[D].华北水利水电学院,2006:1-70.
    [133]周生贵.大型轴流式底搅拌釜的流场计算[D].江苏大学,2009.
    [134]关醒凡.现代泵技术手册[M].北京:宇航出版社,1995.
    [135]关醒凡.泵的理论与设计[M].机械工业出版社,1987.
    [136]查森.叶片泵原理及水力设计[M].北京:机械工业出版社,1988.
    [137]曹鵾.水轮机原理及水力设计[M].北京:清华大学出版社,1991.
    [138]张礼达,陈维森.轴流式转轮叶片奇点分布法CAD软件设计与研究[J].水动力学研究与进展,1998,13(14):397-405.
    [139]赖喜德.叶片式流体机械的数字化设计与制造[M].四川大学出版社,2007.
    [140]林汝长.水力机械流动理论[M].北京:机械工程出版社,1995.
    [141]丁成伟.离心泵与轴流泵[M].北京:机械工程出版社,1981
    [142]龙春生,汤楚宙,张国平.甘薯淀粉搅拌器的功率计算[J].湖南农业大学学报,1997,23(2), 169-172.
    [143]盛振邦,刘应中.船舶原理[M].上海交通大学出版社,2009.
    [144]王凯,冯连芳.混合搅拌设备设计[M].北京:机械工业出版社,2003:139-144.
    [145]普朗特.流体力学概论[M].北京:科学出版社,1984:75,400.
    [146]罗惕乾.流体力学[M].北京:机械工业出版社,2007:7-48.
    [147]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京,清华大学出版社,2004:161.
    [148]韩占忠,王敬,兰小平FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2010.
    [149]ANSYS ICEM progammer'S guide. ANSYS.Irzc,2002.
    [150]姜胜超,滕斌,勾莹.两种水面边界条件下的内波解及其比较.中国海洋平台,23(3),2008.6,11-16.
    [151]何子干,光滑和粗糙明槽湍流流动结构分析[J],大连理工大学学报,39(6),1999,11,807-870
    [152]袁丽蓉,沈永明,郑永红.用VOF方法模拟静止浅水环境中的垂向紊动射流[J].水科学进展.15(5),2004.9,565-570.
    [153]李志高.水工自由水面及渗气问题的数值模拟研究[D].西安理工大学,2004,3.62-81.
    [154]艾海峰.三维水流数值模拟及其在水利工程中的应用[D].天津大学建筑工程学,2005.12,22-29.
    [155]何子干,W Ro di, J Frohlich.光滑及粗糙明槽湍流流动大涡模拟[J],水动力学研究与进展,A15(2),2000.6,191-201.
    [156]飞力潜水搅拌器产品培训讲义[R].2007
    [157]董志勇.射流力学[M].北京:科学出版社,2005:29-30.
    [158]许多鸣,余常昭.平面水射流对槽底的冲击压强及其脉动特性.水利学报,1983.5:52-58
    [159]许唯临.紊流代数应力模型在水力学中的应用研究.工学博士学位论文,成都科技大学,1991.
    [160]余常昭.紊动射流.北京:高等教育出版社,1993.
    [161]吴持恭.明渠水气二相流.成都:成都科技大学出版社,1989.
    [162]李炜,槐文信.浮力射流的理论及应用.北京:科学出版社,1997.
    [163]杨永全,许唯临.水垫塘淹没射流的数值模拟.水动力学研究与进展,A辑,1991,6(4):36-44
    [164]赵文谦.环境水力学.成都:成都科技大学出版社,1986.
    [165]董志勇,吴持恭,杨永全.掺气对射流冲击水垫塘底部脉动压强频谱特性的影响.成都
    [166]科技大学学报,1994,1:9-13
    [167]董志勇,杨永全,吴持恭.掺气对射流冲击水垫塘底部动水压强的影响.中国科学,A辑,1994.24(4):431-439
    [168]董志勇,吴持恭,杨永全.掺气射流水下扩散浓度分布规律研究.成都科技大学学报,1994,4:31-38
    [169]董志勇,吴持恭,杨永全.射流冲击水垫塘大射点旋涡掺气特性的研究.力学学报,1995,27(3):294-303
    [170]蓝志勇.渗气对射流冲击水垫塘水力特性影响的研究.工学博士论文,成都科技大学,1993.
    [171]蓝志勇.冲击射流人射点渗气研究综述.第四届华东地区流体力学学术会议论文集,南昌水专学报,1994,13:20-26
    [172]蓝志勇.冲击射流.北京:海洋出版社,1997.
    [173]戴光清.多股冲击射流水垫塘流动结构水力特性及消能机理研究.工学博士学位论文,成都科技大学,1994.
    [174]Beltaos S and Rajaratnam N. Plane turbulent impinging jets. J. Hydraulic Research,1973, 11(1):29-59
    [175]Beltaos S and Rajaratnam N. Impinging circular turbulent jets. J. Hydraulics Div. ASCE,1974, 100(HY10):1313-1328
    [176]Beltaos S. Oblique impingement of plane turbulent jets. J. Hydraulics Div.,1976,102(HY9): 1177-1192
    [177]Bradbury L J S. J. Fluid Mech.,23:31-64,1956.
    [178]Bradbury L J S. The impact of an axisymmetric jet onto a normal ground. Aeroautical Quarterly, 1972,23:141-147
    [179]Cola R. Energy dissipation of a high velocity vertical jet entering a basin. Proc.11th IAHR Congress, Leningrad,1965, USSR1-13
    [180]Donaldson C and Snedeker R S. A study of free jet impingement, Part 1:Mean properties of free and impinginq jets, J. Fluid Mech.,1971,15:337-367
    [181]Lee Joseph Hun-Wei. Theory of buoyant jets and itsenvironmental applications华东水利学,1981,(翻印)
    [182]Lee Shao-Lin. Axisymmetrical turbulent swirling jet.jet. Journal of Applied Mechanics. Trans. ASME, june.1965,258-262
    [183]Loitsyanskii L G.1953. The propagation of a twisted jet in an unbounded space filled with the same fluid. I Prikladnaya Matetnatiza Mekhanika 17:3-16
    [184]Ross D G. On integral method solutions for modeling swirlingjets and plumes. Appl. Sci. Res., 1978,34:273-298
    [185]Steiger M H, Bloom M H. Axially symmetric laminar free mixing with large swirl. Journal of Heat Transfer, Trans, ASME,Series C,1962,83; 370-374
    [186]Uberoi M S. Structure of a turbulent swirl. Phys. Fluids.1977,20 (5):719-720
    [187]薛非.离心泵内部流动诱导噪声的数值研究[D].镇江:江苏大学,2010.
    [1881代翠.微型循环水泵压力脉动的研究[D].镇江:江苏大学,2009.
    [189]张晓娣.径向回流平衡孔低比速离心泵特性研究[D],江苏大学,2012
    [190]柳童椹.信号处理的数学方法[M].南京:东南大学出版社,1990.
    [191]潘罗平.水轮机压力脉动试验方法的研究[J].农业机械学报,2008,39(6):60-67.
    [192]赵林明,徐陈辉,王利英,等.水轮机尾水管压力脉动方法研究[J].水利水电技术,2008,3(39):57-59.
    [193]张瑞金,徐洪全,张建光,等.水利水电技术[J].2003,11(34):76-78.
    [194]田飞,施卫东,陈斌,等.污水处理搅拌机的水力设计与试验研究,流体机械,2011,39(1), 1-4.
    [195]田飞,施卫东.导流壳对污水处理搅拌机性能的影响[J].工程热物理,2010,31(增刊):245-248.
    [196]施卫东,田飞,陈斌.带导流壳的污水处理搅拌机流动分析与试验[J].农业机械学报,2011,42(3):96-99.
    [197]杨敏官,王军锋,罗惕乾,等.现代测量技术[M].北京:机械工业出版社,2007.
    [198]尹协远,孙德军.旋涡流动的稳定性[M].北京:国防工业出版社,2003.
    [199]童秉刚.涡运动理论[M].合肥:中国科技大学出版社,2009.
    [200]王波,张捷宇,安胜利,等.搅拌槽内三维流场LDV测量[J].过程工程学报,2006,6(1):13-17.
    [201]王嘉骏,冯连芳,王凯,等.LDV和CFD在流体混合中的应用进展[J].化学工程,2001,29(4):62-65.
    [202]广东工学院造船系编写组.船用螺旋桨设计[M].北京;人民交通出版社:1976:12-13
    [203]崔绍华.异型挡板絮凝反应器的流场分析、模拟与效果强化研究[D],天津大学,2007.
    [204]江伟.基于CFD的双向循环大型搅拌釜式结晶反应器的流场分析[D],江苏大学,2010.
    [205]张德胜.轴流泵叶轮非线性环量分布理论及实验研究[D],江苏大学,2010
    [206]徐伟幸.潜水搅拌器叶轮设计理论及搅拌流场数值模拟[D],江苏大学,2006
    [207]包艳.轴流叶轮内流场相对速度的计算[D],西华大学,2005
    [208]于洋长.弯管内表面抛光技术研究[D],春理工大学,2010
    [209]田艳丽.旋转射流搅拌全流场数值模拟及喷嘴结构优化[D],浙江大学,2005
    [210]艾海峰.三维水流数值模拟及其在水利工程中的应用[D],天津大学,2005
    [211]张亚南.SCX超细选粉机分级机理研究及装备设计[D],西南科技大学,2010
    [212]樊建军.水文缆道测流技术在粤东地区的应用[D],水利科技与经济,2007
    [213]陈松山.低比转数离心泵叶轮内部流动的测量[D],扬州大学学报(自然科学版),2006
    [214]彭志威.基于计算流体力学的虹吸式流道形状优化设计[D],湖南大学,2009
    [215]孟凯.熔喷非织造模头设计中几个问题的研究[D],东华大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700