用户名: 密码: 验证码:
基于Fe-SiO_2的POPs废物机械化学处置工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
持久性有机物(POPs)具有致癌、致畸、致突变的“三致”特性,对人类健康和环境构成严重危害。2001年通过的《斯德哥尔摩公约》要求对POPs废物进行环境无害化管理和处置,我国作为缔约方之一目前尚存有数量可观的多种POPs废物,如:滴滴涕、六六六、氯丹、灭蚁灵等禁用农药。传统的高温焚烧技术易生成毒性更大的二噁英类,因此近年来非焚烧处置技术的开发应用在国际上成为热点。本论文针对机械化学法常用的氧化钙(CaO)脱卤剂存在反应慢、脱氯率不高等问题,旨在开发基于更为高效稳定的脱卤试剂的新工艺,优化反应关键工况参数,考察对典型POPs的降解动力学和反应机理,并探索对处置后的无害化产物加以综合利用。
     通过在同等条件下的对比试验发现,以铁粉和石英砂为脱卤剂的Fe-SiO_2机械化学工艺对四种目标污染物(六氯苯、灭蚁灵、得克隆和五氯硝基苯)处置效率最高、速率最快(比传统氧化钙工艺节省25%以上的时间)。以灭蚁灵为例,对Fe-SiO_2机械化学工艺进行工况参数影响分析,发现速率常数对球料比、转速的二阶导数以及速率常数对转速、球料比的二阶导数都为常数0.00038,这个值是速率常数、转速和球料比三者之间的内在联系。由此获得了速率常数和球料比、转速的响应面方程,经检验能够对不同工况下的降解情况做出合理预测。
     通过气相色谱/质谱仪、离子色谱等化学分析方法,结合红外光谱、拉曼光谱、顺磁共振等固体表征手段,发现反应的最终产物为石墨碳、无定形碳和无机氯化合物。提出了Fe-SiO_2机械化学处置五氯硝基苯的脱氯-缩合-碳化反应路径。发现石英砂在高能球磨下可以引发固体废物中氯代有机物的脱氯反应,石英砂粉碎过程中生成的自由基是导致这一反应的主要因素。铁粉有利于机械球磨反应中形成摩擦等离子体区域,而石英砂有利于反应中自由基的生成,这二者是互相促进,互补的关系。
     利用铁碳微电解原理,将Fe-SiO_2机械化学处置五氯硝基苯后的无害化固体残渣用于水相中4-氯酚的还原脱氯。当投加量100g/L时,初始浓度为100mg/L的4-氯酚在4h可以达到46%以上的脱氯率,机械化学处置中生成的无机碳对脱氯具有促进作用。
Persistent organic Pollutants (POPs) have three kinds of characteristics which willlead to cancer, teratogenic and the mutation. They will damage human lives andenvironment. The Stockholm convention requests non-hazardous administration anddisposal of POPs wastes since2001. China now has plenty of POPs wastes to be treated,such as DDT, benzex, chlordane and mirex. The traditional high temperatureincineration will generate the much more toxic compounds such as dioxins and furans,so the non-combustion technologies became more and more attractive internationally.According to the problems of slower reaction and lower dechlorination in the CaOreagents applied in mechanochemical destruction, our thesis will try to develop a moreeffective dechlorniation reagent, and to investigate the kinetics and mechanisms of theprocess, the possibility of reutilization of non-hazardous products.
     The mechanochmeical degradations of four model pollutants (HCB, Mirex, DPand PCNB) under different reagents proved that Fe-SiO_2(containg iron powder andquartz sand) is the highest and best reagents. To analyze the technological parametersof mirex destruction by using Fe-SiO_2process, the second derivatives of reaction rateconstants to charge ratio and rotation speed were the same numerical value,~0.00038.This value was the internal relations between rotation speed, charge ratio and reactionrate constants. The response-area-equation was deduced and its feasibility waspredicted.
     After solid powder’s characterization by degradation, dechlorination,intermediates from GC/MS, FTIR spectrum, Raman spectrum and ESR spectrum, thefinal products contains graphite, amorphous carbon and inorganic chlorine. Thedechlorination-polymerization-carbonization pathways in MCD process wereconcluded respectively by Fe and by SiO2. The SiO2has the dechlorination reactionwith chlorinated organic compounds in the mechanochemical system. The mechanicradicals produced by smash of quartz sand were the main factor for this dechlorinationreaction. It is concluded that the iron powder was in favor of triboplasma areaproduction and SiO2was in favor of formation of mechanic-radicals. They bothpromoted and complemented each other. Based on the principle of micro-electrolysis by Fe/C, it is found that the non-hazardousproducts of MCD PCNB by Fe-SiO_2can reduce and dechlorinate4-Chlorophenol(4-CP). The carbon materials formed after MCD treatment fercilitated thedechlorination of4-CP.
引文
[1]余刚,牛军峰,黄俊,等.持久性有机污染物—新的全球性环境问题.北京:科学出版社,2005
    [2] United Nations Environmental Programme. UNEP Inventory of Worldwide PCB DestructionCapacity.UNEP,1998.
    [3] United Nations Environmental Programme. UNEP Guidelines for the Identification of PCBsand Materials Containing PCBs. UNEP,1999.
    [4] United Nations Environmental Programme. UNEP Inventory of Information Sources onChemicals persistant organic pollutants. UNEP,1999.
    [5] United Nations Environmental Programme. UNEP Survey of Currently AvailableNon-Incineration PCB Destruction Technologies. UNEP,2000.
    [6] Benestad C, Incineration of Hazardous Waste in Cement Kilns. Waste Management andResearch,1989,7:351-352.
    [7] Barber J L, Thomas G O, Kerstiens G et al. Current issues and uncertainties in the measurementand modeling of air-vegetation exchange and within-plant processing of POPs. Environ. Pollut.,2004,128:99-138.
    [8] Bayarri S, Baldassarri L T, Iacovella N, et al. PCDDs, PCDFs, PCBs and DDE in edible marinespecies from the Benfenati E, Mariani G, Schiavon G et al.. Diurnal, weekly and seasonal airconcentrations of PCDD and PCDF in an industrial area. Fresenius J. Anal. Chem.,2001,348:141-143.
    [9] Broman D, Zebuer Y. Long term high and low volume air sampling for polychlorinateddibenzo-p-dioxins and dibenzofurans and polycyclic aromatic hydrocarbons along a transectfrom urban to remote areas on the Swedish Balic coast. Environ. Sci. Technol.,1991,25(11):1841-1850.
    [10] Chang M B, Chang S H, Chen Y W et al. Dioxin emission factors for automobiles from tunnelair sampling in Northern Taiwan. Sci. Total Environ.,2004,325:129-138.
    [11] Clemons J H, Allan L M, Marvin C H et al. Envidence of estrogen and TCDD-like activities incrude and fractionated extracts of PM10air particulate material using in vitro gene expressassay. Environ. Sci. Technol.,1998,32:1853-1860.
    [12] Dachs J, Bayona J M, Raoux C et al. Spatial, vertical distribution and budget of polycyclicaromatic hydrocarbons in the Western Mediterranean seawater. Environ. Sci. Technol.,1997,31:682-688.
    [13] Daniel P, Francisco R, Domingo Z. Polichlorinated Biphenyls and organochlorine pesticide inmarine sediments and seawater along the coast of Alicante, Spain. Mar. Pollut. Bull.,1996,32:772-781.
    [14] Dannenberger D, Andersson R, Rappe C. Levels and patterns of polychlorinateddibenzo-p-dioxins, dibenzofurans and biphenyls in surface sediments from the western BalticSea (Arkona Basin) and the Oder River estuarine system. Mar. Pollut. Bull.,1997,34:1016-1024.
    [15] Liss P S, Merlivat L. Holland biphenyls in human tissues, meat, fish and wild life samples fromIndia. Environ. Sci. Technol.,1986,35:3448-3455.
    [16] Ross P S, de Swart R L, Reijnders P J H, et al. Contaminant-related suppression of delayed-typehypersensitivity and antibody responses in harbor seals fed herring from the Baltic Sea. Environ.Health Perspect.,1995,103:162-167.
    [17] Schramm K W, Henkelmann B, Kettrup A. PCDD/F sources and levels in river Elbe sediments.Wat. Res.,1995,29:2160-2166.
    [18] Senthilkumar K, Kannan K, Sinha R K et al. Bioaccumulation profiles of polychlorinatedbiphenyls congeners and organochlorine pesticides in Ganges river Dolphins. Environ. Toxicol.Chem.,1999,18:1511-1520.
    [19] Van Metre P C, Wilson J T, Callender E, et al. Similar rates of decrease of persistent,hydrophobic and particle~reactive contaminants in riverine systems. Environ. Sci. Technol.,1998,32:3312-3317.
    [20] Wu Y, Zhang J, Zhou Q. Persistent organochlorine residues in sediments from Chineseriver/estuary systems. Environ. Pollut.,1999,105(1):143-150.
    [21] Yamashita N, Urushigawa Y, Masunaga S et al. Organochlorine pesticides in water, sedimentand fish from the Nile River and Manzala Lake in Egypt. Int. J. Environ. Anal. Chem.,2000,77:289-303.
    [22] Adriaens P, Gribic-Galic D. Reductive dechlorination of PCDD/F by anaerobic cultures andsediments. Chemosphere,1994,29:2253-2259.
    [23] Alder A C, Haggblom M M, Oppenhelmer S R. Reductive dechlorination of polychlorinatedbiphenyls in anaerobic sediments. Environ. Sci. Technol.,1993,27:530-538.
    [24] Budzinski H, Letellier M, Garrigues P, et al. Optimisation of the microwave-assisted extractionin open cell of polycyclic aromatic hydrocarbons from soils and sediments: Study of moistureeffect. J. Chromatogr. A,1999,837:187-200.
    [25] Budzinski H, Letellier M, Thompson S et al. Combined protocol for the analysis of polycyclicaromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs) from sediments using focussedmicrowave assisted (FMW) extraction at atmospheric pressure. Fresenius J. Anal. Chem.,2000,367:165-171.
    [26] Cornelissen G, Noort P C M V, Parsons J R et al. Temperature dependence of slow adsorptionand desorption kinetics of organic compounds in sediments. Environ. Sci. Technol.,1997,31(2):454-460.
    [27] Covaci A, Gheorghe A, Schepens P. Levels of persistent organochlorine pollutants (POPs) insoils from South Romania. Fresenius Environ. Bull.,2003,12(2):94-102.
    [28] Domingo J L, Granero S, Schuhmacher M. Congener profiles of PCDD/Fs in soil andvegetation samples collected near to a municipal waste incinerator. Chemosphere,2001,43:517-524.
    [29] Dougherty E J, Mcpeters A L, Overcash MR. Kinetics of photodegradation of2,3,7,8-tetrachlorodibenzo-p-dioxin: theoretical maximum rate of soil decontamination.Chemosphere,1991,23:589-600.
    [30] Dupeyron S, Dudermel P M, Couturier D. Focused microwave assisted extraction(FMAE) ofpolynuclear aromatic hydrocarbons from contaminate soil: role of acetoneand water contentimpaction microwave efficiency. Analysis,1997,25:286-292.
    [31] Elbeit I O D, Cotton D E, Wheelock V. Persistence of pesticides in soil leachates: Effect of pHultra-violet irradiation and temperature. Int. J. Environ. Stud.,1983,21:251-259.
    [32] Frost S P, Dean J R, Evans K P et al. Extraction of hexaconazole from weathered soils: acomparison between Soxhlet extraction, microwave-assisted extraction, supercritical fluidextraction and accelerated solvent extraction. Analyst,1997,122:895-902.
    [33] Gong Z M, Tao S, Xu F L et al. Level and distribution of DDT in surface soils from Tianjin,China. Chemosphere,2004,54(8):1247-1253.
    [34] Guzzella L and Pozzoni F. Accelerated solvent extraction of herbicides in agricultural soilsamples. Int. J. Environ. Anal. Chem.,1999,74:123-133.
    [35] Alden R, Halden B, Dwyer D. Removal of dibenzofuran, dibenzo-p-dioxin and2-chlorodibenzo-p-dioxin from soils inoculated with sphingomonassp. Strain RW1. Appl.Environ. Microbiol.,1999,65:2246-2249.
    [36] Helzlsouer K J, Alberg A J, Huang H J. Serum concentrations of organochlorine compoundsand the subsequent development. Cancer Epideminol. Biomarkers Prev.,1999,8(6):525-532.
    [37] http://www.china-pops.org/guide/zt/stockholm10/xczl/
    [38] http://www.mepfeco.org.cn/sylm/zcfg/gjhjgy/200801/t20080102_5893.html
    [39] USEPA,1999. Pesticide use and disposal, Technical Information Packages.
    [40] Bracewell J, Hepburn A, Thomson C. Levels and distribution of polychlorinated biphenyls onthe Scottish land mass, Chemosphere,1993,27:1657-1667.
    [41] Chiarenzelli J, Scrudato R, Bush B, et al. Do large-scale remedial and dredging events have thepotential to release significant amounts of semivolatile compounds to the atmosphere?, Environ.Health Persp.,1998,106:47-49.
    [42] United Nations Food and Agriculture Organization,1996.
    [43] OHM Remediation Service. Trial Burn Report for the Baird&McGuire Superfund Site.Contract No. DACW45-92-C-0047Holbrook, Massachusetts,1995.
    [44] Costner P. Technical criteria for the destruction of stockpiled persistent organic pollutants, thirdmeeting of the intersessional group intergovernmental forum on chemical safety, Yokohama,Japan,1998.
    [45] Hansen E,1992. Burning solid waste in cement kilns. Proceedings Kilburn '92, Brisbane.
    [46] Benestad C, Incineration of hazardous waste in cement kilns. Waste. Mana. Res.,1989,7:351-361.
    [47] Gloyna E F, Lixiong L. Supercritical water oxidation: an engineering update. Wast. Mana.,1993,13:379-394.
    [48] National Research Council, Alternative technologies for the destruction of chemical agents andmunitions. Washington, D.C.: National Academy of Sciences,1993.
    [49] CerOx Corporation. Process technology overview.2005, Online Address:http://www.cerox.com/systems_process.html.
    [50] United Nations Environment Programme (UNEP). Science and technology advisory panel(STAP) of the global environmental facility.“Report of the STAP/GEF POPs workshop onnon-combustion technologies for the destruction of POPs stockpiles.” October.2003. Onlinehttp://www.basel.int/techmatters/review_pop_feb04.pdf
    [51] EPA.“Eco logic international gas-phase chemical reduction process-the thermal desorptionunit.” Superfund innovative technology evaluation program. EPA/540/AR-94/504.1994.September. Online Address: http://www.epa.gov/ORD/SITE/reports/540ar94504/540ar94504.pdf
    [52] ELI Eco Logic, International, Inc.. Permit application: PCB treatment using the ECO LOGICprocess at general electric Canada, Inc., Davenport Facility. Toronto, Canada,1995.
    [53] P Tundo, S Facchetti, W Tumiatti. Chemical Degradation of2,3,7,8-TCDD by means ofPolyethyleneglycols in the presence of weak bases and an oxidant, Chemosphere,1985,14(5):403-410.
    [54] S Terres, W Niederhut and W Gallagher.“Base-catalyzed decomposition proven on guam”.Pollution Engineering, April1997.
    [55] GeoMelt Technologies/AMEC Earth and Environmental, Inc., Richland, Washington. WebPage on GeoMelt Technology Description.2005, Online Address:http://www.geomelt.com/technologies/.
    [56] Mather R, Steckler D, Kimmel S. Integrated Recycling of Industrial Waste Using CatalyticExtraction Processing at a Chemical Manufacturing Site. Presented at the Spring NationalMeeting of the American Institute of Chemical Engineers, Houston, Texas, March23,1995.
    [57] Chanenchuk C, Protopapas A, Alexopoulos G. Catalytic extraction process application tochlorinated waste streams. Presented at the I&EC Special Symposium, American ChemicalSociety, Atlanta, Georgia, September19-21,1994.
    [58] Duffy G, Fookes C. Development of a catalytic process for the regeneration of transformer oilsand the destruction of chlorinated hydrocarbons. Presented at the I&EC Special Symposium,American Chemical Society, Pittsburgh, Pennsylvania, September15-17,1997.
    [59] Stewart A E, Flanagan J E. Molten Salt Oxidation of Chemical Wastes. Rockwell InternationalCorp., California,1993.
    [60] Yang S X, Feng Y J, Cai W M, et al. Catalytic wet air oxidation of phenol overRuO2/gamma-Al2O3catalyst. Rare Metals,2004,23(2):131-137.
    [61] Brubaker W W, Hites R A. Gas-phase oxidation products of biphenyl and polychlorinatedbiphenyls. Environ. Sci. Technol.,1998,32:3913-3918.
    [62] Kao C M, Wu M J. Enhanced TCDD degradation by Fenton’s reagent preoxidation. J. Hazard.Mat.,2000,74:197-211.
    [63] SRL Plasma Pty. Ltd. Web Page on “PLASCON electric-arc plasma hazardous wastedestruction process.” Online Address:http://www.srlplasma.com.au/srlpages/srlframe.html.2005.
    [64] Retech Systems LLC. Web page on plasma arc centrifugal treatment (PACT) systems,2005.Online address:http://www.retechsystemsllc.com/PACT%20webpagesC/index.htm.
    [65] Bertini I, Capozzi F, Dikiy A, et al. Evidence of histidine coordination to the catalyticferrousion in the ring-cleaving2,2,3-trihydroxybiphenyl dioxygenase from thedibenzofurandegrading bacterium Sphingomonassp. Strain RW1. Biochem. Biophys. Res.Commun.,1995,215:855-860.
    [66] Mather R, Steckler D, Kimmel S. Integrated recycling of industrial waste using catalyticextraction processing at a chemical manufacturing site. Presented at the Spring NationalMeeting of the American Institute of Chemical Engineers, Houston, Texas, March23,1995.
    [67] Rowlands, S A, Hall A K, McCormick P G, et al. Destruction of toxic materials. Nature,1994,367:223-223.
    [68] In Wook N, Kyung Y H. Effect of metal and glycol on mechanochemical dechlorination ofpolychlorinated biphenyls (PCBs). Chemosphere,2008,73:138-141.
    [69] Aresta M, Caramuscio P. Solid state dehalogenation of PCBs in contaminated soil using NaBH4.Wast. Manag.2003,23:315-319.
    [70] Yan J H, Peng Z, Lu S Y. Degradation of PCDD/Fs by mechanochemical treatment of fly ashfrom medical waste incineration. J.Hazard.Mater.2007,147:652-657.
    [71] Zhang Q W, Fumio S. Debromination of hexabromobenzene by its co-grinding with CaO.Chemosphere.2002,48:787-793.
    [72] Yasumitsu T,Zhang Q W,Fumio S. Dependence of mechanochemically induced decompositionof mono-chlorobiphenyl on the occurrence of radicals. Chemosphere.2005,60:939-943.
    [73] Stenven L, Mario B, Gabtiele. Selective mechanochemical dehalogenation of chlorobenzenesover calcium hydride. Environ. Sci. Technol.1997,31:261-265.
    [74] Zhang Q W, Fumio S. Effects of quartz addition on the mechanochemical dechlorination ofchlorobiphenyl by using CaO. Environ.Sci.Technol.2001,35:4933-4935.
    [75] Tanaka Y, Zhang Q W, F Saito. Mechanochemical dechlorination of chlorinated compounds. J.Mater. Sci.2004,39:5497-5501.
    [76] Hall A K, Harrowfield J M. Mechanochemical reaction of DDT with calcium oxide. Environ.Sci. Technol.1996,30:3401-3407.
    [77] Napola, Maria D R, Paola D L. Mechanochemical approach to remove phenanthrene from acontaminated soil. Chemosphere,2006,65:1583-1590.
    [78] Hiroshi M, Saeki S, Junya K. Estimation of mechanochemical dechlorination rate of poly(vinylchloride). Environ. Sci. Technol.,2002,36:1344-1348.
    [79] Mulas G, loiselle S, Schiffini L. The mechanochemical self-propagating reaction betweenhexachlorobenzene and calcium hydride. J. Solid. State. Chem.,1997,129:263-270.
    [80] Maria D R P, Annalisa N, Matteo S. Mechanochemical removal of organo-chlorinatedcompounds by inorganic components of soil. Chemosphere,2004,55:1485-1492.
    [81] Mineral N, Nadia B, Gerstl Z. Mineral induced mechanochemical degradation: the imazaquincase. Chemosphere,2009,75:20-27.
    [82] Marzio M, Mulas G, Stefania D. Reduction of polychlorinated dibenzodioxins anddibenzofurans in contaminated muds by mechanically induced combustion reactions.Environ.Sci.Technol.,1999,33:2485-2488.
    [83] Raffaele C, Luca De S, Lamanna R. TG, FT-IR and NMR characterization of n-C16H34contaminated alumina and silica after mechanochemical treatment. Chemosphere,2008,70:10680-1076.
    [84] Pizzigallo M D R, Napola A, Spagnuolo M. Influence of inorganic soil components and humicsubstances on the mechanochemical removal of pentachlorophenol. J.Mater.Sci.2004,39:5455-5459.
    [85] Nasser A, Sposito G, Cheney M A. Mechanochemical degradation of2,4-adsorbed on syntheticbirnessite. Collod. Surf. A.2000,163:117-123.
    [86] Yasumitsu T,Zhang Q W,Fumio S. Mechanochemical Dechlorination of Trichlorobenzene onOxide Surfaces. J.Phys.Chem.B.,2003,107:11091-11097.
    [87] Nomura Y, Satoshi N. Elucidation of degradation mechanism of dioxins duringMechanochemical treatment. Environ.Sci.Technol.,2005,39:3799-3804.
    [88] Birke V, Mattik J, Runne D. Mechanochemical reductive dehalogenation of hazardouspolyhalogenated contaminants. J.Mater.Sci.,2004,39:5111-5116.
    [89] Cao G, Stefania D, Marzio M. Thermal and mechanochemical self-propagating degradation ofchloro-organic compounds: the case of hexachlorobenzene over calcium hydride.Ind.Eng.Chem.Res.,1999,38:3218-3224.
    [90] Delogua F, Orrub R, Caoa G. A novel macrokinetic approach for mechanochemical reactions.Chem. Eng. Sci.,2003,58:815-821.
    [91] Delogu F, Deidda C, Mulas G. A quantitative approach to mechanochemical processes.J.Mater.Sci.,2004,39:5121–5124.
    [92] Jallad K, Lynn B. Amine promoted, metal enhanced degradation of Mirex under hightemperature conditions. J. Hazard. Mater.,2006,135:437-442.
    [93] Wang B, Iino F. HRGC/HRMS analysis of mirex in soil of Liyang and preliminary assessmentof mirex pollution in China. Chemosphere,2010,79(3):299-304.
    [94] Hoh E, Zhu LY, Hites R A. Dechlorane plus, a chlorinated flame retardant, in the Great Lakes.Enviro. Sci. Technol.,2006,40:1184-1189.
    [95] Gauthier LT, Letcher R J. Isomers of dechlorane plus flame retardant in the eggs of herringgulls (Larus argentatus) from the Laurentian Great Lakes of North America: temporal changesand spatial distribution. Chemosphere,2009,75:115-120.
    [96] Kang, J H, Kim J C, Jin G Z, et al. Detection of dechlorane plus in fish from urban-industrialrivers. Chemosphere,2010,79:850-854.
    [97] Tas D O, Pavlostathis S G. Effect of nitrate reduction on the microbial reductive transformationof pentachloronitrobenzene. Environ. Sci. Technol.,2008,42:3234-3240.
    [98] The Institute for the Control of Agrochemicals (ICAMA). Comprehensive Inquiry System ofChina Pesticide Information Network. Available at http://www.chinapesticide.gov.cn/service/zhcx/shuoming.html
    [99] Wang Z Y. To cancel the tax drawback policy for glyphosate to promote the integration ofproduction. AgriGoodsHerald. July30,2010. Available at http://www.nzdb.com.cn/html/xwrd/2010-6/30/11_7_53_C7B8D.html
    [100] Brown T N, Wania F, Screening chemicals for the potential to be persistent organic pollutants: acase study of arctic contaminants. Environ. Sci. Technol.,2008,42:5202-5209.
    [101] USEPA, Reregistration Eligibility Decision for Pentachloronitrobenzene.2006, Available at:http://www.epa.gov/oppsrrd1/REDs/pcnb_red.pdf
    [102] Health Canada Pest Management Regulatory Agency. Re-evaluation decision: Quintozene.2010, Available at: http://dsp-psd.pwgsc.gc.ca/collections/colle-ction_2010/arla-pmra/H113-28-2010-6-eng.pdf
    [103] Environmental risk management authority decision on grounds for reassessment of a substance:quintozene.2010, Available at: http://www.ermanz.govt.nz/find/WebResultsDetails.aspx? ID=1678.
    [104] Holt E, Weber R, Stevenson G. Polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs) impurities in pesticides: a neglected source of contemporary relevance. Environ. Sci.Technol.,2010,44:5409-5415.
    [105]卫樱蕾.机械化学法降解POPs实验及机理研究[博士学位论文].杭州,浙江大学工程物理系,2010.
    [106] Tanaka Y, Zhang Q W, Saito F. Decomposition of monochlorobiphenyl by grinding with rareearth oxides. J. Chem. Eng. Jpn.,2006,39:469-474.
    [107] Todres Z V. Organic mechanochemistry and its practical applications. CRC Taylor&FrancisGroup, LLC,2006.
    [108] Tuinstra F, Koenig J L. Raman spectrum of graphite. J. Chem. Phy.,1970,53:1126-1130.
    [109] Xingbao G, Wei W, Xiao L. Low-temperature dechlorination of hexachlorobenzene on solidsupports and the pathway hypothesis. Chemosphere,2008,71:1093-1099.
    [110] Xingbao G, Wei W, Xiao L. Dechlorination reaction of hexachlorobenzene with calcium oxideat300-400C. J. Hazard. Mater.,2009,169:279-284.
    [111] Nakayama K. Triboemission of electrons, ions, and photons from diamondlike carbon films andgeneration of tribomicroplasma. Surf. Coat. Technol.,2004,188:599-604.
    [112] Matta C, Eryilmaz O L, Barros B, et al. On the possible role of triboplasma in friction and wearof diamond-like carbon films in hydrogen-containing environments. Phys. D: Appl. Phys.,2009,42:305-307.
    [113] Masahiro H, Tateaki O, Masatake S. Mechano-radicals produced from ground quartz and quartzglass. Powder Techno.,1995,85:269-274.
    [114] Robert D, Kathy C K, Brian A, et al. Dechlorination comparison of mono-substituted PCBswith Mg/Pd in different solvent systems. Chemosphere,2008,73(6):896-900.
    [115] Tianyu L, Yongmei C, Pingyu W, et al. Chemical degradation of drinking water disinfectionbyproducts by millimeter-sized particles of iron-silicon and magnesium-aluminum alloys. J.Am. Chem. Soc.,2010,132(8):2500-2501.
    [116] Matheson L J, Tratnyek P G. Reduetive dehalogenation of chlorinated methanes by iron metal.Environ.Sci. Technol.,1994,28:2045-2053.
    [117] Kim Y H, Carraway E R. Reductive dechlorination of PCE and TCE by Vitamin B12andZVMs. Environ.Sci. Technol.,2002,23(10):1135-1145.
    [118] Amnorzahira A, Woojin L. Enhanced reductive dechlorination of tetrachloroethene bynano-sized zero valent iron with vitamin B12. Chem.Eng.J.,2011,170:492-497..
    [119] Jianjun W, Xinhua X, Yong L,et al. Catalytic hydrodechlorination of2,4-dichlorophenol overnanoscale Pd/Fe: Reaction pathway and some experimental parameters,Water Res.2006,40:348-354.
    [120]何小娟,刘菲,黄园英,等.利用零价铁去除挥发性氯代脂肪烃的试验.环境科学,2003,24(01):139-142.
    [121]胡劲召,陈少瑾,谢凝子,等.零价铁对土壤中4-氯苯酚还原脱氯研究.生态环境,2005,14(3):349-352.
    [122]吴德礼,王红武,马鲁铭,等. Fe0催化还原转化水中CCl4的实验研究.环境科学,2008,29(12):3433-3438.
    [123] Cheng R, Wang J L, Zhang W X. Comparison of reductive dechlorination of p-chlorophenolusing Fe0and nanosized Fe0. J. Hazard. Mater.,2007,144:334-339.
    [124] Zhang X L, Deng B L, Guo J, et al. Ligand-assisted degradation of carbon tetrachloride bymicroscale zero-valent iron. J. Environ. Manage.,2011,92:1328-1333.
    [125] Zhan J J, Kolesnichenko I, Bhanukiran S, et al. Multifunctional iron-carbon nanocompositesthrough an aerosol-based process for the in situ remediation of chlorinated hydrocarbons.Environ. Sci. Technol.,2011,45:1949-1954.
    [126] Zhengang L, Zhang F S. Nano-zerovalent iron contained porous carbons developed from wastebiomass for the adsorption and dechlorination of PCBs. Biores. Technol.,2010,101:2562-2564.
    [127]邓述波,徐夫元,徐杰,等.用于有机卤化物脱卤的高效吸附还原复合金属炭材料的制备方法[P].2010,申请号:201010249243.0.
    [128]吴德礼,王红武,马鲁铭. Ag/Fe催化还原体系处理水体中氯代烃的研究.环境科学,2006,27(9):1802-1807.
    [129] Zhang W H, Quan X, Zhang Z Y. Catalytic reductive dechlorination of p-chlorophenol in waterusing Ni/Fe nanoscale particles. J. Environ. Sci.,2007,19(3):362-366.
    [130]吴德礼,马鲁铭.氯代烷烃在Fe-Cu二相金属体系中的催化还原脱氯研究.净水技术,2004,23(3):14-17.
    [131] Nairuo Z, Luan H W, Yuan S H, et al. Effective dechlorination of HCB by nanoscale Cu/Feparticles. J. Hazard. Mater.,2010,176:1101-1105.
    [132] Yoshiharu M, Taizo U, Naoyoshi E. Approach to highly efficient dechlorination of PCDDs,PCDFs, coplanar PCBs using metallic,calcium in ethanol under atmospheric pressure at roomtemperature. Environ. Sci. Technol.,2004,38(4):1216-1220.
    [133] Kumiko M, Takehiko N, Yasuhara A, et al. Dechlorination of hexachlorobiphenyl by usingpotassium-sodium alloy. Chemosphere,2000,41(6):819-824.
    [134] Kumiko M, Takehiko N, Yasuhara A, et al. Detoxification of hexachlorobenzene bydechlorination with potassium-odium alloy. Chemosphere,2004,55(1):1439-1446.
    [135] Phillip M, Robert D, Novaes-Card S. Dechlorination of polychlorinated biphenyls usingmagnesium and acidified alcohols. J. Hazard. Mater,2011,87(1-3):235-40.
    [136] Hong S K, Young A J, Kyung Y H, et al. Atmospherically stable nanoscale zero-valent ironparticles formed under controlled air contact: characteristics and reactivity. Environ. Sci.Technol.,2010,44:1760-1766.
    [137] Wang Q, Snyder S, Kim J, Choi H. Aqueous ethanol modified nanoscale zero-valent iron inbromate reduction: Synthesis, characterization, and reactivity, Environ. Sci. Technol.,2009,43:8871-8876.
    [138] Han Y, Li W, Zhang M H, et al. Catalytic dechlorination of monochlorobenzene with a new typeof nanoscale Ni(B)/Fe(B) bimetallic catalytic reductant, Chemosphere,2008,72:53-58.
    [139] Lisa J G, Jovanovic G. Dechlorination of p-chlorophenol on a Pd/Fe catalyst in a magneticallystabilized fluidized bed: implications for sludge and liquid remediation, Chem. Eng. Sci.,1999,54:3085-3093.
    [140] Lv Y L, Wang Y Q, Shan M J, et al. Denitrification of coking wastewater withmicro-electrolysis, J. Environ. Sci.,2011,23:128-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700