用户名: 密码: 验证码:
多元共电沉积制备Mg-Li-X(X=Gd,Sb,Bi)合金及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以等质量的LiCl–KCl为熔盐电解质,采用循环伏安法、方波伏安法、计时电流法、计时电位和开路计时电位法研究了Gd(III)、Sb(III)和Bi(III)离子的电化学行为,探讨了在含有上述离子的LiCl–KCl–MgCl_2熔盐中多元共电沉积制备Mg–Li–Gd(Sb, Bi)合金的机理。应用XRD、SEM、EDS、OM、ICP-AES等技术对所得样品的结构和组成进行了分析。
     直接以Gd_2O_3为稀土Gd原料,在LiCl–KCl–MgCl_2–Gd_2O_3熔盐中共电沉积制备了Mg–Li–Gd合金。采用理论计算和实验相结合的方法证明了在LiCl–KCl熔盐中MgCl_2对Gd_2O_3有氯化作用,少量的Gd_2O_3与MgCl_2反应生成GdCl_3。循环伏安可知,Gd(III)离子在熔盐中的还原峰电位为-2.28V(vs Ag/AgCl)。在3.0wt%Gd_2O_3–2.0wt%MgCl_2–LiCl–KCl熔盐体系中考察了Gd(III)、Mg(II)和Li(I)离子的共电沉积机理。当阴极电流密度达到–0.776A/cm~2或阴极电位比–2.30V(vs Ag/AgCl)更负时,Gd(III)、Mg(II)和Li(I)离子共电沉积。研究了共电沉积条件对Mg–Li–Gd合金的影响。采用恒电流电解的方法共电沉积制备了Mg–Li–Gd合金,实验结果表明,在合金中存在Mg_3Gd和Mg2Gd相,分布在Mg–Li合金的晶界处。Mg–Li合金中添加金属Gd,细化了Mg–Li合金的晶粒,增强了合金的抗腐蚀性能。
     在673K,Mo电极上,研究了Sb(III))和Bi(III)离子在LiCl-KCl熔盐中的电化学性质。结果表明,Sb(III)和Bi(III)离子在熔盐中还原峰电位分别是-1.67和-2.03V(vsAg/AgCl),而且计算了Sb(III)和Bi(III)离子在熔盐中的扩散系数。循环伏安研究发现,金属Sb或Bi的沉积和氧化不是完全可逆的反应。计时电流法研究表明Sb(III)在Mo电极上被还原为金属Sb的成核过程是连续成核过程。
     在LiCl–KCl–MgCl_2–SbCl_3(BiCl_3)熔盐中考察了Sb(III)或Bi(III)、Mg(II)和Li(I)离子的共电沉积机理。在LiCl–KCl–MgCl_2(3.29×10~(–4)mol cm~(–3))–SbCl_3(2.53×10~(–4)mol cm~(–3))熔盐中,当阴极电流密度达到–0.466A/cm~2或阴极电位比–2.35V(vsAg/AgCl)更负时,Sb(III)、Mg(II)和Li(I)离子共电沉积。采用恒电流或恒电压电解的方法制备了Mg–Li–Sb、Mg–Li–Bi合金。XRD分析表明,在Mg–Li–Sb合金中存在Mg_3Sb_2和Li_3Sb相。在Mg–Li–Bi合金中存在Mg_3Bi_2和Li_3Bi相,Sb、Bi元素的面扫描和EDS分析可知,上述金属间化合物分布在Mg–Li合金的晶界处。
     在Al电极上研究了Sb(III)离子在LiCl–KCl熔盐中的电化学行为。与Mo电极相比,Sb(III)离子在Al电极上发生欠电位沉积的现象,这主要是由于Sb和Al能生成AlSb金属间化合物。应用开路计时电位方法,计算了生成AlSb合金化合物的热力学函数,并且电化学沉积制备了AlSb金属间化合物。
The electrochemical behaviour of Gd(III), Sb(III) and Bi(III) ions was investigated in theLiCl–KCl(50:50wt%) molten salt at673K. The reaction mechanism and transportparameters of electroactive species were determined by transient electrochemical techniques(such as cyclic voltammetry, square wave voltammetry, chronopotentiometry,chronoamperometry and open-circuit chronopotentiometry) at a molybdenum or analumimum electrodes, the mechanism of electrochamical co-deposition of ternaryMg–Li–X(X=Gd, SB, Bi) alloys were studied in LiCl–KCl–MgCl_2melts containing theGd(III), Sb(III) or Bi(III) ions. X–ray diffraction(XRD), scan electron micrograph (SEM),energy dispersive spectrometry (EDS), optical microscope(OM) and inductively coupledplasma atomic emission spectrometer(ICP-AES) were employed to characterize the alloys.
     Mg–Li–Gd alloys were directly obtained by electrochemical codeposition method inLiCl–KCl–MgCl_2–Gd_2O_3molten salt on molybdenum electrode at1073K. The resultssuggested that a little of Gd_2O_3could dissolve in LiCl–KCl–MgCl_2molten salt while it couldnot in LiCl–KCl melt. The codeposition of Mg, Li and Gd occurred when applied potentialswere more negative than–2.30V (vs. Ag/AgCl) or current densities were higher than–0.776A/cm~2in3.0wt%Gd_2O_3–2.0wt%MgCl_2–LiCl–KCl melt. Electrolysis temperature exerted agreat influence on current efficiency,78.87%current efficiency was obtained whenelectrolysis temperature was873K. Li content in Mg–Li–Gd alloys increased with the highcurrent densities. XRD results showed that Mg_3Gd and Mg2Gd intermetallic compoundsformed in Mg–Li–Gd alloys. Grain size of Mg-Li alloy became smaller as the Gd metalcontent increased in the alloy. The analysis of SEM and EDS demonstrated that the Mg_3Gdand Mg2Gd intermetallic compounds were mainly distributed at grain boundaries. Thecorrosion resistance of Mg-Li alloys was enhanced with addition of Gd metal.
     The electrochemical behavior of Sb(III) or Bi(III) ions was investigated inLiCl–KCl(50:50wt%) molten salt on molybdenum at673K. The results showed thatelectrochemical reduction of Sb(III) or Bi(III) ions in LiCl–KCl melts occurred at-1.67V and-2.03V vs. Ag/AgCl respectively. A voltammogram with a different scan rate in LiCl–KClcontaining SbCl_3(BiCl_3) showed that the deposition/dissolution reaction of Sb or Bi were notcompletely reversible. The diffusion coefficient of Sb(III) or Bi(III) ions in LiCl–KCl molten salt was calculated at673K. Chronoamperometric studies indicated progressive nucleation ofantimony whatever the applied overpotential.
     Mg–Li–Sb(Bi) alloys were obtained by galvanostatic electrolysis or potentiostaticelectrolysis at673K. The electrochemical codeposition of Mg, Li and Sb was investigated ona molybdenum electrode in LiCl–KCl–MgCl_2(3.29×10~(–4)mol cm~(–3))–SbCl_3(2.53×10~(–4)molcm–3) melts at673K by cyclic voltammetry, chronopotentiometry and chronoamperometry.Cyclic voltammograms, chronopotentiometry and chronoamperometry measurementsindicated that the electrochemical codeposition of Mg, Li and Sb metal occurred at currentdensities lower than–0.466A cm-2or at an applied potential more negative than–2.35V vs.Ag/AgCl. XRD results suggested that Mg_3Sb_2and Li3Sb were formed in Mg–Li–Sb alloys,Mg_3Bi_2and Li_3Bi were formed in Mg–Li–Bi alloys. The analysis of SEM and EDS indicatedthat the Sb(Bi) intermetallic compounds showed a distribution in grain boundaries of Mg-Lialloy.
     The electroreduction of Sb(III) ions at an Al electrode was also studied by cyclicvoltammetry and open circuit chronopotentiometry in the temperature range of668–742K.The redox potential of Sb(III)/Sb at an Al electrode was observed at the more positivepotentials values than those at an inert electrode. This potential shift due to the formation ofAlSb intermetallic compound with Al electrode. AlSb intermetallic compound was preparedin LiCl–KCl–SbCl_3melts at742K by potentiostatic electrolysis at an Al electeode. Thethermodynamic properties of AlSb formation were also calculated by open-circuitchronopotentiometry method.
引文
[1]陈振华,严红革,陈吉华等.镁合金.北京:化学工业出版社,2004:446
    [2]颜永得.镁锂基合金电解法制备及机理研究.哈尔滨工程大学博士学位论文.2009年:1
    [3] Peng Q M, Wu Y M, Fang D Q, et al. Microstructures and properties of Mg–7Gdalloy containing Y[J]. Journal of Alloys and Compounds,2007,430:252–256
    [4]石南林.复合材料导论.自编教材.中科院金属研究所,2004:9–10
    [5]王辅忠,李荣华,费英. Mg–Li基复合材料研究进展[J].材料科学与工程学报.2003,21(1):134–137
    [6]乐启帜,崔建忠,李红斌等. Mg–Li合金研究最新进展及其应用.材料导报.2003,17(12):1–4
    [7]蒋斌,张丁非,彭建等. Mg–Li超轻合金的研究与应用[J].材料导报.2005,19(5):38–40
    [8]曹富荣,崔建忠.超轻Mg–8Li合金超塑性力学性能的研究[J].稀有金属材料与工程.1997,26(2):27–30
    [9]马春江. Mg-Li基复合材料.稀有金属材料与工程[J].1998,27(3):125–129
    [10]谢刚.熔融盐理论与应用.北京:冶金工业出版社,1998:1–109
    [11]张明杰,王兆文.熔盐电化学原理与应用.北京:化学工业出版社,2006:1–13
    [12]李汝雄,王建基.绿色溶剂—液体的制备与应用[J].化工进展,2002,(1):43–48
    [13]黄碧纯,黄仲涛.离子液体的研究开发及其在催化反应中的应用[J].工业催化,2003,(2):1–5
    [14] Castrillejo Y, Martinez A M, Pardo R, et al. Electrochemical behaviour of magnesiumions in the equimolar CaCl2-NaCl mixture at550°C[J]. Electrochimica Acta,1997,42(12):1869–1876
    [15] Martinez A M, Castrillejo Y, B rresen B, et al. Chemical and electrochemicalbehaviour of chromium in molten chlorides[J]. Journal of Electroanalytical Chemistry,2000,493:1–14
    [16] Gao F X, Wang C S, Liu L S, et al. Electrode process of La(III) in molten LiCl-KCl[J].Journal of Rare Earths,2009,27(6):986–990
    [17] Constantin V, Popescu A-M, Olteanu M. Electrochemical studies on cerium(III) inmolten fluoride mixtures[J]. Journal of Rare Earths,2010,28(3):428–434
    [18] Hamel C, Chamelot P, Taxil P. Neodymium(III) cathodic processes in moltenfluorides[J]. Electrochimica Acta,2004,49:4467–4476
    [19] Caravaca C, Cordoba G. D, Tomas M J, et al. Electrochemical behaviour ofgadolinium ion in molten LiCl–KCl eutectic[J]. Journal of Nuclear Materials,2007,360:25–31
    [20] Kim B Y, Lee D H, Lee JY, et al. Electrochemical and spectroscopic investigations ofTb(III) in molten LiCl–KCl eutectic at high temperature[J]. ElectrochemistryCommunications,2010,12:1005–1008
    [21] Bermejo M R, Gomez J, Marti nez A M, et al. Electrochemistry of terbium in theeutectic LiCl–KCl[J]. Electrochimica Acta,2008,53:5106–5112
    [22] Smolenski V, Novoselova A, Osipenko A, et al. Electrochemistry of ytterbium (III) inmolten alkali metal chlorides[J]. Electrochimica Acta,2008,54:382–387
    [23] Cassayre L, Serp J, Soucek P, et al. Electrochemistry of thorium in LiCl–KCl eutecticmelts[J]. Electrochimica Acta,2007,52:7432–7437
    [24] Masset P, Apostolidis C, Konings R J M, et al. Electrochemical behaviour ofneptunium in the molten LiCl–KCl eutectic[J]. Journal of Electroanalytical Chemistry,2007,603:166–174
    [25] Osipenko A, Maershin A, Smolenski V, et al. Electrochemical behaviour of curium(III)ions in fused3LiCl–2KCl eutectic[J]. Journal of Electroanalytical Chemistry,2011,651:67–71
    [26]胡会利,李宁.电化学测量.北京:国防工业出版社,2007:147-153页
    [27] Ueda M, Kigawa H, Ohtsuka T. Co-deposition of Al–Cr–Ni alloys using constantpotential and potential pulse techniques in AlCl3–NaCl–KCl molten salt[J].Electrochimica Acta,2007,52:2515–2519
    [28] Gibilaro M, Massot L, Chamelot P, et al. Co-reduction of aluminium and lanthanideions in molten fluorides: Application to cerium and samarium extraction from nuclearwastes[J]. Electrochimica Acta,2009,54:5300–5306
    [29] Iida T, Nohira T, Ito Y. Electrochemical formation of Yb–Ni alloy films by Licodeposition method in a molten LiCl–KCl–YbCl3system[J]. Electrochemica Acta,2003,48:1531–1536
    [30] Konishi H, Nohira T, Ito Y. Formation of Dy-Fe alloy films by molten saltelectrochemical process[J]. Electrochimica Acta,2002,47:3533–3539
    [31] Iida T, Nohira T, Ito Y. Electrochemical formation of Sm–Ni alloy films in a moltenLiCl–KCl–SmCl3system[J]. Electrochemica Acta,2001,46:2537–2544
    [32] Ghallali H E, Groult H, Barhoun A, et al. Electrochemical synthesis of Ni–Sn alloys inmolten LiCl–KCl[J]. Electrochimica Acta,2009,54:3152–3160
    [33] Bermejo M R, Barrado E, Martínez A M, et al. Electrodeposition of Lu on W and Alelectrodes: Electrochemical formation of Lu–Al alloys and oxoacidity reactions ofLu(III) in the eutectic LiCl–KCl[J]. Journal of Electroanalytical Chemistry,2008,617:85–100
    [34] Bermejo M R, Rosa F D L, Barrado E, et al. Cathodic behaviour of europium (III) onglassy carbon, electrochemical formation of Al4Eu, and oxoacidity reactions in theeutectic LiCl–KCl[J]. Journal of Electroanalytical Chemistry,2007,603:81–95
    [35] Bermejo M R, Gómez J, Medina J, et al. The electrochemistry of gadolinium in theeutectic LiCl–KCl on W and Al electrodes[J]. Journal of Electroanalytical Chemistry,2006,588(2):253–266
    [36] Castrillejo Y, Bermejo M R, Díaz Arocas P, et al. Electrochemical behaviour ofpraseodymium (III) in molten chlorides[J]. Journal of Electroanalytical Chemistry,2005,575:61–74
    [37] Castrillejo Y, Bermejo M R, Barrado A I, et al. Electrochemical behaviour ofdysprosium in the eutectic LiCl–KCl at W and Al electrodes[J]. Electrochemica Acta,2005,50(10):2047–2057
    [38] Castrillejo Y, Fernández P, Bermejo M R, et al. Electrochemistry of thulium on inertelectrodes and electrochemical formation of a Tm–Al alloy from molten chlorides[J].Electrochimica Acta,2009,54:6212–6222.
    [39] Castrillejo Y, Bermejo M R, Barrado E, et al. Electrochemical behaviour of erbium inthe eutectic LiCl–KCl at W and Al electrodes[J]. Electrochemica Acta,2006,51(10):1941–1951
    [40] Castrillejo Y, Bermejo M R, Barrado E, et al. Electrodeposition of Ho andElectrochemical Formation of Ho–Al Alloys from the Eutectic LiCl–KCl[J]. Jounal ofthe Electrochemical Society,2006,153(10): C713–721P
    [41] Chamelot P, Massot L, Cassayre L, et al. Electrochemical behaviour of thorium(IV) inmolten LiF–CaF2medium on inert and reactive electrodes[J]. Electrochimica Acta,2010,55:4758–4764
    [42] Gibilaro M, Massot L, Chamelot P, et al. Electrochemical preparation ofaluminium–nickel alloys by under-potential deposition in molten fluorides[J]. Journalof Alloys and Compounds,2009,471:412–420
    [43] Gibilaro M, Massot L, Chamelot P, et al. Electrochemical extraction of europium frommolten fluoride media[J]. Electrochimica Acta,2009,55:281–287.
    [44] Konishi H, Nohira T, Ito Y. Formation and phase control of Dy alloy films byelectrochemical implantation and displantation[J]. Jounal of the ElectrochemicalSociety,2001,148(7): C506–511
    [45] Nohira T, Kambara H, Amezawa K, et al. Electrochemical formation and phasecontrol of Pr–Ni alloys in a molten LiCl–KCl–PrCl3system[J]. Jounal of theElectrochemical Society,2005,152(4): C183–189
    [46] Iida T, Nohira T, Ito Y. RBS analysis of Sm–Ni alloy films prepared by a molten saltelectrochemical process[J]. Journal of Alloys and Compounds,2005,386:207–210
    [47] Chen Y, Ye K, Zhang M L. Preparation of Mg–Yb alloy film by electrolysis in themolten LiCl–KCl–YbCl3system at low temperature[J]. Journalof Rare Earths,2010,28(1):128–133
    [48] Han Q, Chen J S, Liu K R, et al. Preparation and electrochemical properties ofcomposite LaNix/Ni–S–Co alloy film[J]. Iinternational Journal of Hydrogen Energy,2008,33:4495–4500
    [49] Castrillejo Y, Bermejo M R, Díaz Arocas P, et al. The electrochemical behaviour ofthe Pr(III)/Pr redox system at Bi and Cd liquid electrodes in molten eutecticLiCl–KCl[J]. Journal of Electroanalytical Chemistry,2005,579:343–358
    [50]苏明忠,宋丕莹,邹天楚等.熔盐电解制取Al-Dy合金[J].稀土.1995,16(5):61–63
    [51]李义根.液态阴极熔盐电解法制备锌-稀土中间合金的研究[J].有色矿冶.1992,5:24–29
    [52] Frost P D. Technical and economic status of magnesium-lithium alloys. WashingtonDC: NASA,1965:4–18
    [53] Elkin F M, Davydov V G. Russian ultralight constructional Mg-Li alloys. Theirstructure, properties, manufacturing, applications, magnesium. Proceedings of the6thInternational Conference Magnesium Alloys and Their Applications,2004:94–99
    [54] Ohnishi T, Ito T. Work-hardening and annealing characteristics of Mg-Li binaryalloys[J]. Joumal of Japanese Institute of Light Metals,1989,39:15–20
    [55] Matsuzawa K, Koshihara T, Kojima Y. Age-hardening and mechanical properties ofMg-Li-Al alloys[J]. Joumal of Japanese Institute of Light Metals,1989,39:45–51
    [56] Saito N, Mabuchi M, Nakanishi M, et al. The aging behavior and the mechanicalproperties of the Mg-Li-Al-Cu alloy [J]. Scripta Materialia,1997,36(5):551–555
    [57] Takuda H, Enami T, Kubota K, et al. The formability of a thin sheet of Mg–8.5Li–1Znalloy [J]. Journal of Materials Processing Technology,2000,101(1–3):281–286
    [58]张华.镁锂合金表面腐蚀防护研究.东北大学博士学位论文.2008年
    [59]张彩丽.合金元素对Mg–Li–x强/韧化作用机制的第一性原理研究.太原理工大学博士学位论文.2011年
    [60]易庆喜. Mg-14Li-x镁锂合金制备工艺及其组织性能的研究.湖南大学硕士学位论文.2007年
    [61]程丽任.铸造态、挤压态、半固态Mg-Li-Al系合金组织和力学性能研究.吉林大学博士学位论文.2011年
    [62]颜永得;张密林;韩伟等. KCl-LiCl-MgCl2熔盐体系中共电沉积制备Mg-Li合金及理论分析[J].无机化学学报,2008,24(6):902–906
    [63] Han W, Tian Y, Zhang M L, et al. Preparing different phases of Mg–Li–Sm alloys bymolten salt electrolysis in LiCl–KCl–MgCl2–SmCl3melts [J]. Journal of Rare Earths,2010,28(2):227–231
    [64] Gao L L, Zhang C H, Zhang M L, et al. Phytic acid conversion coating on Mg–Lialloy[J]. Journal of Alloys and Compounds,2009,485(1–2):789–793
    [65] Ma C X, Lu Y, Sun P P, et al. Characterization of plasma electrolytic oxidationcoatings formed on Mg-Li alloy in an alkaline polyphosphate electrolyte [J]. Surfaceand Coatings Technology,2011,206(2-3):287–294
    [66] Song D L, Jing X Y, Wang J, et al. Microwave-assisted synthesis of lanthanumconversion coating on Mg-Li alloy and its corrosion resistance [J]. Corrosion Science,2011,53(11):3651–3656
    [67] Liu X H, Gu S H, Wu R Z, et al. Microstructure and mechanical properties of Mg-Lialloy after TIG welding [J]. Transactions of Nonferrous Metals Society of China,2011,21(3):477–481
    [68] Wu L B, Cui C L, Wu R Z, et al. Effects of Ce-rich RE additions and heat treatment onthe microstructure and tensile properties of Mg-Li–Al–Zn-based alloy[J]. MaterialsScience and Engineering: A,2011,528(4–5):2174–2179.
    [69] Meng X R, Wu R Z, Zhang M L, et al. Microstructures and properties of superlightMg-Li–Al–Zn wrought alloys[J]. Journal of Alloys and Compounds,2009,486(1–2):722–725
    [70] Li J Q, Qu Z K, Wu R Z, et al. Microstructure, mechanical properties and agingbehaviors of as-extruded Mg–5Li–3Al–2Zn–1.5Cu alloy[J]. Materials Science andEngineering: A,2011,528(10-11):3915–3920
    [71] Haferkamp H, Bach F W, Juchmann P. New magnesium-lithium alloys of higherductility[J]. Aluminium,2000,76:1046–1050
    [72]马春江,张荻.超轻型Mg-Li合金[J].宇航材料工艺.1998,28(2):27–32
    [73] Yang L H, Li J Q, Yu X, et al. Lanthanum-based conversion coating on Mg–8Lialloy[J]. Applied Surface Science,2008,255(5):2338–2341
    [74] Yuan G Y, Liu Z L, Wang Q D, et al. Microstructure refinement of Mg–Al–Zn–Sialloys[J]. Materials Letters,2002,56:53–58
    [75]陈振华,严红革,陈吉华等.镁合金.北京:化学工业出版社,2004:30
    [76] Yang M B, Zhu Y, Liang X F, et al. Effects of Gd addition on as-cast microstructureand mechanical properties of Mg–3Sn–2Ca magnesium alloy[J]. Materials Scienceand Engineering: A,2011,528(3):1721–1726
    [77] Zhang K, Li X G, Li Y J, et al. Effect of Gd content on microstructure and mechanicalproperties of Mg-Y-RE-Zr alloys[J]. Transactions of Nonferrous Metals Society ofChina,2008,18: s12–s16
    [78] Yang J, Xiao W L, Wang L D, et al. Influences of Gd on the microstructure andstrength of Mg–4.5Zn alloy[J]. Materials Characterization,2008,59(11):1667–1674
    [79] Chang J W, Guo X W, He S M, et al. Investigation of the corrosion forMg–xGd–3Y–0.4Zr (x=6,8,10,12wt%) alloys in a peakaged condition[J].Corrosion Science,2008,50(1):166–177
    [80] Yang M B, Pan F S, Cheng R J, et al. Comparison about effects of Sb, Sn and Sr onas-cast microstructure and mechanical properties of AZ61–0.7Si magnesium alloy[J].Materials Science and Engineering: A,2008,489:413–418
    [81] Balasubramani N, Srinivasan A, Pillai U T S, et al. Effect of antimony addition on themicrostructure and mechanical properties of ZA84magnesium alloy[J]. Journal ofAlloys and Compounds,2008,455:168–173
    [82] Alizadeh R, Mahmudi R. Effect of Sb additions on the microstructural stability andmechanical properties of cast Mg–4Zn alloy[J]. Materials Science and Engineering: A,2010,527:5312–5317
    [83] Wang J Q, Ding Z L, Qi F J, et al. Effects of antimony addition on the microstructuresof ZA84magnesium alloy[J]. Journal of Alloys and Compounds,2010,507:322–325
    [84] Wang J Q, Qi H B, Zhu H, et al. A study of the effect of antimony content on dampingcapacity of ZA84magnesium alloy[J]. Materials and Design,2011,32:4567–4572
    [85] Srinivasan A, Ningshen S, Mudali U K, et al. Influence of Si and Sb additions on thecorrosion behavior of AZ91magnesium alloy[J]. Intermetallics,2007,15:1511–1517
    [86] Jung G Y, Rhee C K. Two electrochemical processes for the deposition of Sb onAu(100) and Au(111): irreversible adsorption and underpotential deposition[J].Journal of Electroanalytical Chemistry,1997,436:277–280
    [87] Yan J W, Wu Q, Shang W H, et al. Electrodeposition of Sb on Au(100) atunderpotentials: structural transition involving expansion of the substrate surface[J].Electrochemistry Communications,2004,6:843–848
    [88] Cattarin S, Musiani M M, Casellato U, et al. Cathodic deposition of ternary In+As+Sb alloys and formation of InAsxSbl-x[J]. Journal of Electroanalytical Chemistry,1995,380:209–218
    [89] Parka K, Xiao F, Yoo B Y, et al. Electrochemical deposition of thermoelectric Sb Tethin films and nanowires[J]. Journal of Alloys and Compounds,2009,485:362–366
    [90] Erdogan I Y, Demir ü. Synthesis and characterization of Sb2Te3nanofilms viaelectrochemical co-deposition method[J]. Journal of Electroanalytical Chemistry,2009,633:253–258
    [91] Zhang S Q, Chen C H. The synthesis of composite Sn–SnSb films for lithium-ionbatteries by electrochemical deposition[J]. Materials Research Bulletin,2008,43:3601–3606
    [92] Li G R, Lu X H, Tong Y X. Electrochemical reduction synthesis of In–Sb nanoropesand terraced micropyramids[J]. Electrochemistry Communications,2008,10:127–130
    [93] Tsuda T, Hussey C L. Electrodeposition of photocatalytic AlInSb semiconductoralloys in the Lewis acidic aluminum chloride1–ethyl–3–methylimidazolium chlorideroom–temperature ionic liquid[J]. Thin Solid Films,2008,516:6220–6225
    [94] Linnebach R, Benz K W. Bridgman growth of AlSb[J]. Journal of Crystal Growth,1981,53(3):579–585
    [95] Linnebach R, Benz K W. Liquid phase epitaxy of AlSb from Sb solutions[J]. Journalof Crystal Growth,1981,55(3):531–538
    [96] Baufay L, Andrew R, Pigeolet A, et al. Preparation of AlSb films by laser annealing[J].Thin Solid Films,1982,90(1):69–74
    [97] Triches D M, Souza S M, Poffo C M, et al. Structural instability and photoacousticstudy of AlSb prepared by mechanical alloying[J]. Journal of Alloys and Compounds,2010,505:762–767
    [98] He J X, Wu L L, Feng L H, et al. Structural, electrical and optical properties ofannealed Al/Sb multiayer films[J]. Solar Energy Materials&Solar Cells,2011,95:369–372
    [99] Sherohman J W. Estimation of the nonstoichiometry of AlSb, UCRL–80654,20January1978.
    [100] Kutny V E, Rybka A V, Abyzov A S, et al. AlSb single-crystal grown by HPBM[J].Nuclear Instruments and Methods in Physics Research A,2001,458:448–454
    [101] Pino R, Ko Y, Dutta P S. Adhesion-free growth of AlSb bulk crystals in silicacrucibles[J]. Journal of Crystal Growth,2006,290:29–34
    [102] Gandhi T, Raja K S, Misra M. Room temperature electrodeposition of aluminumantimonide compound semiconductor[J]. Electrochimica Acta,2008,53:7331–7337
    [103] Lu X H, Zhao W X, Li G R et al. Electrochemical synthesis and shape control ofAl–Sb nanostructures[J]. Materials Letters,2008,62:4280–4282
    [104] Zhou W, Aung N N, Sun Y S. Effect of antimony, bismuth and calcium addition oncorrosion and electrochemical behaviour of AZ91magnesium alloy[J]. CorrosionScience,2009,51:403–408
    [105] Keyvani M, Mahmudi R, Nayyeri G. Effect of Bi, Sb, and Ca additions on the hothardness and microstructure of cast Mg–5Sn alloy[J]. Materials Science andEngineering: A,2010,527:7714–7718
    [106] Yuan G Y, Sun Y S, Ding W J. Effects of bismuth and antimony additions on themicrostructure and mechanical properties of AZ91magnesium alloy[J]. MaterialsScience and Engineering: A,2001,308:38–44
    [107] Osipovich N P, Streltsov E A, Susha A S. Bismuth underpotential deposition ontellurium[J]. Electrochemistry Communications,2000,2:822–826
    [108] Uhm S Y, Yun Y S, Tak Y S. EQCM analysis of Bi oxidation mechanism on a Ptelectrode[J]. Electrochemistry Communications,2005,7:1375–1379
    [109] Toprak M, Zhang Y, Muhanmmed M. Chemical alloy alloying and characterization ofnano–crystalline bismuth telluride[J]. Materials Letters,2003,57:3976–3982
    [110] Nakagiri Y, Development of film–shaped thermoelectric materials for thermoelectricmodules[J]. Applied Energy,1998(2–3):147–162
    [111] Zhang H T, Luo XG, Wang C H, et al. Characterization of nanocrystalline bismuthtelluride synthesized by a hydrothermal method[J]. Journal of Crystal Growth,2004,265:558–562
    [112] Giani A, Boulouz A, Pascal-Delannoy F, et al. MOCVD growth of Bi2Te3layers usingdiethyl-tellurium as a precursor[J]. Thin Solid Films,1998,315:99–103
    [113] Glatz W, Durrer L, Schwyter E, et al. Novel mixed method for the electrochemicaldeposition of thick layers of Bi2+xTe3xwith controlled stoichiometry[J].Electrochimica Acta,2008,54:755–762
    [114] Zhu W, Yang J Y, Gao X H, et al. The underpotential deposition of bismuth andtellurium on cold rolled silver substrate by ECALE[J]. Electrochimica Acta,2005,50:5465–5472
    [115] Erdogan I Y, Demirü. Orientation-controlled synthesis and characterization of Bi2Te3nanofilms, and nanowires via electrochemical co-deposition[J]. Electrochimica Acta,2011,56:2385–2393
    [116] Qiu L Q, Zhou J, Cheng X, et al. Electrochemical deposition of Bi/Te-based thinfilms[J]. Journal of Physics and Chemistry of Solids,2010,71:1131–1136
    [117] Michel S, Diliberto S, Boulanger C, et al. Effect of electrochemical depositionconditions on the crystallographic texture of bismuth telluride alloys[J]. Journal ofCrystal Growth,2006,296:227–233
    [118] Saitou M, Yamaguchi R, Oshikawa W. Novel process for electrodeposition of Bi2S3thin films[J]. Materials Chemistry and Physics,2002,73:306–309
    [119] Oznuluer T, Demir U. Formation of Bi2S3thin films on Au(111) by electrochemicalatomic layer epitaxy: kinetics of structural changes in the initial monolayers[J].Journal of Electroanalytical Chemistry,2002,529:34–42
    [120] Peng H J, Zhou J L, Tang D, et al. Preparation and characterization of Bi2Se3nanowires by electrodeposition[J]. Electrochimica Acta,2011,56:5085–5089
    [121] Li J, Wang B, Liu F Y, et al. Preparation and characterization of Bi-doped antimonyselenide thin films by electrodeposition[J]. Electrochimica Acta,2011,56:8597–8602
    [122] Li F H, Wang W. Electrodeposition of BixSb2-xTeythermoelectric thin films fromnitric acid and hydrochloric acid systems[J]. Applied Surface Science,2009,255:4225–4231
    [123] Tsai Y D, Hu C C, Lin C C. Electrodeposition of Sn–Bi lead-free solders: Effects ofcomplex agents on the composition, adhesion, and dendrite formation[J].Electrochimica Acta,2007,53:2040–2047
    [124] Fukuda M, Imayoshi K, Matsumoto Y. Effect of polyoxyethylenelaurylether onelectrodeposition of Pb-free Sn–Bi alloy[J]. Electrochimica Acta,2001,47:459–464
    [125] Yao C Z, Zhang P, Liu M, et al. Electrochemical preparation and magnetic study ofBi–Fe–Co–Ni–Mn high entropy alloy[J]. Electrochimica Acta,2008,53:8359–8365
    [126] Yang S H, Yang F L, Liao C F, et al. Electrodeposition of magnesium-yttrium alloysby molten salt electrolysis[J]. Journal of Rare Earths,2010,28:385-388
    [127] Tan S, Ayd nol K, ztürk T, et al. Direct synthesis of Mg–Ni compounds from theiroxides[J]. Journal of Alloys and Compounds,2010,504:134–140
    [128] Yang F L, Yang S H, Wang Z W, et al. Preparation of aluminum-magnesium alloysfrom magnesium oxide by molten salt electrolysis method[J]. Materials ScienceForum,2008,610-613:874-879
    [129] Chen Z, Zhang M L, Han W, et al. Electrodeposition of Zr and electrochemicalformation of Mg–Zr alloys from the eutectic LiCl–KCl[J]. Journal of Alloys andCompounds,2008,459:209–214
    [130] Chen Z, Zhang M L, Han W, et al. Electrodeposition of Li and electrochemicalformation of Mg–Li alloys from the eutectic LiCl–KCl[J]. Journal of Alloys andCompounds,2008,464:174–178
    [131] Yan Y D, Zhang M L, Han W, et al. Electrochemical formation of Mg–Li alloys atsolid magnesium electrode from LiCl–KCl melts[J]. Electrochimica Acta,2008,53:3323–3328
    [132] Ye K, Zhang M L, Chen Y, et al. Electrochemical codeposition of Al-Li-Mg alloys atsolid aluminum electrode from LiCl-KCl-MgCl2molten salt system[J]. Metallurgicaland Materials Transactions B: Process Metallurgy and Materials Processing Science,2010,41:691-698
    [133] Ye K, Zhang M L, Chen Y, et al. Study on the preparation of Mg-Li-Mn alloys byelectrochemical codeposition from LiCl-KCl-MgCl2-MnCl2molten salt[J]. Journal ofApplied Electrochemistry,2010,40:1387-1393
    [134] Yan Y D, Zhang M L, Xue Y, et al. Electrochemical study of Mg–Li–Al alloys bycodeposition from LiCl–KCl–MgCl2–AlCl3melts[J]. Journal of AppliedElectrochemistry,2009,39(3):455–461.
    [135] Yan Y D, Zhang M L, Xue Y, et al. Study on the preparation of by Mg–Li–Zn alloyselectrochemical codeposition from LiCl–KCl–MgCl2–ZnCl2melts[J]. ElectrochimicaActa,2009,54(11):3387–3393.
    [136] Han W, Tian Y, Zhang M L et al. Preparation of Mg–Li–Sm alloys byelectrocodeposition in molten salt [J]. Journal of Rare Earths,2009,27(6):1046–1050
    [137] Cao P, Zhang M L, Han W, et al. Electrochemical behaviour of erbium and preparationof Mg-Li-Er alloys by codeposition[J]. Journal of Rare Earths,2011,29(8):763-767
    [138]杜森林,吴美煌,杜富英等.稀土氧化物在碱金属和碱土金属氟化物熔盐中的溶解度[J].稀土,1987;2:59–62
    [139] Binnewies M, Milke E. Thermochemical data of elements and compounds.Wiley-VCH Verlag GmbH, Weinheim,2002.316,339,362,551,668
    [140]褚衍龙.熔盐电解制备Mg-Li-Pr合金及熔盐物理化学性质的研究.哈尔滨工程大学硕士论文,2009
    [141] Nayyeri G, Mahmudi R. Effects of Sb additions on the microstructure and impressioncreep behavior of a cast Mg–5Sn alloy[J]. Materials Science and Engineering: A,2010,527:669–678
    [142] Yan H, Hu Y, Wu X Q. Influence of Sb modification on microstructures andmechanical properties of Mg2Si/AM60composites[J]. Transactions of NonferrousMetals Society of China,2010,20: s411–s415
    [143] Uzun O, Y lmaz F, Kolemen U, et al. Sb effect on microstructural and mechanicalproperties of rapidly solidified Al–12Si alloy[J]. Journal of Alloys and Compounds,2011,509:21–26
    [144] Balasubramani N, Srinivasan A, Pillai U T S, et al.. Effect of Pb and Sb additions onthe precipitation kinetics of AZ91magnesium alloy[J]. Materials Science andEngineering: A,2007,457:275–281
    [145] Srinivasan A, Swaminathan J, Pillai U T S, et al. Effect of combined addition of Si andSb on the microstructure and creep properties of AZ91magnesium alloy[J]. MaterialsScience and Engineering: A,2008,485:86–91
    [146] Nayyeri G, Mahmudi R, Salehi F. The microstructure, creep resistance, andhigh–temperature mechanical properties of Mg–5Sn alloy with Ca and Sb additions,and aging treatment[J]. Materials Science and Engineering: A,2010,527:5353–5359
    [147] Hamel C, Chamelot P, Laplace A, et al. Reduction process of uranium(IV) anduranium(III) in molten fluorides[J]. Electrochimica Acta,2007,52:3995–4003
    [148] Serrano K, Taxil P. Electrochemical reduction of trivalent uranium ions in moltenchlorides[J]. Journal of Applied Electrochemistry,1999,29:497–503
    [149] Berzins T, Delahay P. Oscillographic polarographic waves for the reversibledeposition of metals on solid[J]. Journal of the American Chemical Society,1953,75:555–559
    [150] Plambeck J A, in: A.J. Bard (Ed.), Encyclopedia of electrochemistry of the elements,vol.10. Fused Salt Systems, Marcel Dekker, New York,1976
    [151] Scharifker B, Hills G., Theoretical and experimental studies of multiple nucleation[J].Electrochimica Acta,1983,28:879–889
    [152] Konishi H, Nishikiori T, Nohira T, et al. Thermodynamic properties of Dy–Niintermetallic compounds[J]. Electrochimica Acta,2003,48:1043–1408
    [153] Chase, M. W.; Nist–JANAF Thermochemical Tables,4rd Ed.(1998), by AmericanChemical Society, American Institute of Physics, National Bureau of Standards, NewYork
    [154] Barin, I.; Thermochemical Data of Pure Substances,2nd, VCH, Weinheim (1992)
    [155] Knacke, O, Kubaschewski, O, Hesselmann, K. Thermochemical properties ofinorganic substances, Springer, Berlin (1991)
    [156] Bard A J, Faulkner L R. Electrochemical methods fundamentals and applications.New York: John Wiley&Sons,1980:156–163
    [157] Southampton electrochemistry group. Instrumental methods in electrochemistry.Chichester: Ellis Horwood,1985:210–239

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700