用户名: 密码: 验证码:
自组装纳米材料在基因治疗和细胞培养中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因传递系统是基因治疗中的重要组成部分,缺少安全有效的基因载体是阻碍基因治疗临床试验成功的主要因素。在非病毒基因载体中聚乙烯亚胺(PEI)因具有“质子海绵效应”是研究的最为广泛的阳离子聚合物基因载体。根据文献报道,PEI的基因转染效率和毒性与其分子量密切相关。高分子量的PEI如PEI(25kDa)因具有较高的正电荷密度而具有较高的转染效率,但同时过高的电荷密度和分子本身的不可降解性也导致其细胞毒性比较大,体内应用受到限制。低分子量PEI(<2kDa)毒性很小却基本没有基因转染效率。因此如何利用无毒的低分子量PEI设计出低毒高效的基因载体在近年来受到广泛关注。很多学者通过PEI分子的PEG化修饰来实现降低载体细胞毒性和增强载体血清相容性的目的。
     与传统的将PEG分子接到聚合物或纳米粒子外围的修饰手段不同,在本论文第二章中我们将PEG分子作为主链,接枝小分子PEI合成基因载体。实验中首先通过麦克尔加成反应,将聚乙二醇二丙烯酸酯(PEGDA,258Da)与二硫苏糖醇(DTT)反应,得到含有可降解酯键的线性聚合物PEG-DTT,然后以羰基二咪唑(CDI)作为接头将PEI(800Da)连接到聚合物PEG-DTT上。通过控制PEGDA和DTT的比例(从1.2:1到1:1.2)得到五种不同分子量和结构的基因载体(PEG-DTT)-g-PEIs;通过凝胶渗透色谱(GPC)、氢核磁共振谱(1H-HMR)和傅里叶变换红外光谱(FTIR)对载体的分子量和结构进行了表征;研究了载体的毒性及其与DNA形成的复合物粒径和电位;并对该基因载体的体内外基因转染效率进行了评价。实验结果表明:(PEG-DTT)-g-PEIs/DNA复合物的粒径小于200nm,电位在+20-40mV;载体(PEG-DTT)-g-PEIs与PEI(25kDa)相比具有较低的细胞毒性;对HeLa、HepG2、MCF-7和COS-7四种肿瘤细胞系的转染效率都高于PEI(25kDa),并且转染效率不受高浓度血清(30%)的抑制;荷瘤裸鼠的瘤内基因转染结果说明该载体对HepG2肿瘤的转染效果优于PEI(25kDa)。这些结果表明(PEG-DTT)-g-PEIs系列基因载体具有很好的应用前景。
     为了得到具有更高转染效率的肿瘤靶向基因载体,在第三章中我们尝试通过核酸适配体筛选技术获得肿瘤细胞特异性的核酸适配体。
     因短肽类化合物具有易合成、低成本且能大量制备、易与各类生物活性分子结合、降解可控等优点,短肽类水凝胶具有很好的生物学应用前景。其中,因其含水量高、能够形成类似于细胞外基质的三维网络而被广泛用于细胞培养和组织工程。在细胞培养和组织工程用水凝胶中,存在着从胶体中分离培养细胞困难的问题。因此设计能够在外界刺激下实现从凝胶到溶液的转变的响应型水凝胶对于在水凝胶中培养的细胞的分离及后续的实验研究具有重要意义。
     在第四章中我们合成了几种含有金刚烷分子的多肽Ada-GFFYKn-ss-K(4-n)-CONH_2,能够被还原剂谷胱甘肽(GSH)或二硫苏糖醇(DTT)还原而形成水凝胶,且形成的水凝胶能够对β-环糊精或其衍生物产生凝胶-溶液的响应。小鼠胚胎成纤维细胞(NIH3T3)在胶上生长状态良好,并能够利用胶体对甲基-β-环糊精的响应特点实现NIH3T3细胞的快速分离,且这种分离方式对细胞活力无不利影响。这些研究结果说明这种响应型金刚烷-多肽水凝胶在水凝胶中培养细胞的进一步分析研究方面具有很大的应用潜能。
Gene delivery system is an important part of gene therapy, and the lack of safeand effective gene vectors is one of the major factors to hinder successful clinicaltrials of gene therapy. Poly(ethylene imine)(PEI) is one of the most efficient andwidely studied non-viral gene carriers in vitro and in vivo due to its “proton spongeeffect”, which can buffer the environment of the endosome and cause the release ofcomplexes into the cytoplasm. The gene transfection efficiency and cytotoxicity ofPEI are closely dependent on its macromolecular structure and molecular weightwhich have reported by many researchers. In general, high molecular weight PEI (25kDa) has a high transfection activity, but also has high toxicity due to its highpositive charge density and nondegradable property, which limits its application inclinical treatment. In contrast, low molecular weight PEI(LMW PEI,<2kDa)exhibits a much lower toxicity, but is transfection inefficient due to inefficient DNAcondensation. So, the designation of gene vectors with lower toxicity and higherefficiency based on non-toxic LMW PEIs has attracted widespread attentions. Someresearch groups have synthesized various poly(ethylene glycol)(PEG) modifiedLMW PEIs to enhance the transfection efficiency and the serum compatibility ofLMW PEI.
     In chapter2, combining the advantages of LMW PEI and PEG, we synthesizeda new class of degradable non-viral gene vectors,(PEG-DTT)-g-PEI copolymers.Rather than using PEG as an external layer to shield the particles, as in previousreports, here PEG was used as the internal core of the copolymers and LMW PEIwas grafted to (PEG-DTT) main chain. We expected the structure to showdiminished aggregation and improved stealthiness in the bloodstream. First, aMichael addition reaction between poly(ethylene glycol) diacrylates (PEGDA,258Da) and D,L-dithiothreitol (DTT) was carried out to generate a linear degradablepolymer (PEG-DTT) having a terminal thiol, methacrylate and pendant hydroxylfunctional groups. Five PEG-DTT analogs were synthesized by varying the molar ratio of diacrylates to thiols from1.2:1to1:1.2. Then PEI (800Da) was grafted ontothe main chain of the PEG-DTTs using1,1’-carbonyldiimidazole as the linker. Theabove reaction gave rise to a new class of non-viral gene vectors,(PEG-DTT)-g-PEIcopolymers. The molecular weights and structures of the copolymers werecharacterized by gel permeation chromatography;1H nuclear magnetic resonanceand Fourier transform infrared spectroscopy. Then the cytotoxicities of thecopolymers and the particle size and zeta potential of the copolymer/DNAcomplexes were studied. The transfection efficiency of five polymers was evaluatedin vitro and in vivo. The size of the nanoparticles was <200nm and the surfacecharge of the nanoparticles, expressed as the zeta potential, was between+20and+40mV. Cytotoxicity assays showed that the copolymers exhibited much lowercytotoxicities than high molecular weight PEI (25kDa). Transfection was performedin cultured HeLa, HepG2, MCF-7and COS-7cells in vitro. The copolymers showedhigher transfection efficiencies than PEI (25kDa) tested in four cell lines. Thepresence of serum (up to30%) had no inhibitory effect on the transfection efficiency.The higher transfection efficiencies than PEI (25kDa) was also found in HepG2tumor-beared nude mice. These results indicate that this new class of non-viral genevectors may be a promising gene carrier that is worth further investigation.
     In order to get more efficient gene carriers, we did some attempts of tumorspecific aptamers selection in chapter3. The selected aptamers could be conjugatedto the above synthesized (PEG-DTT)-g-PEIs to generated tumor targeted nonviralgene vectors.
     Due to the advantages of easy synthesis, low cost, easy combination withvarious bioactive molecules and controllable degradation, polypeptide-basedhydrogels have a good prospects for biological applications. They could formthree-dimensional networks similar to the extracellular matrix and are widely used incell culture and tissue engineering. It will be greatly beneficial to develop hydrogelsthat can be converted to clear solutions by an external biocompatible stimulus,because hydrogels with this unique property can facilitate separation and furtheranalysis of cells postculture.
     In order to achieve this goal, in chapter4we report several responsive small molecular hydrogels based on adamantane-peptides whose gel to clear solutionphase transition can be achieved by addition of β-cyclodextrin (β-CD)derivatives.The small molecular hydrogels are formed by our recently developed method ofdisulfide bond cleavage by glutathione (GSH). Mouse fibroblast3T3cells attach andgrow well at the surface of hydrogels. Furthermore,3T3cells postculture can berecovered from the gels by the addition of a β-CD derivative due to formation ofclear solutions by the adamantane-β-CD interaction. The culture on hydrogels andrecovery process do not cause obvious efects on behaviors of3T3cells. The resultsindicate that small molecular hydrogels based on adamantane-peptides have greatpotentials in research fields where further analysis of cells is needed.
引文
[1] Whitesides GM, Grzybowski B. Self-assembly at all scales. Science,2002,295(5564):2418-21.
    [2] Whitesides GM, Mathias JP, Seto CT. Molecular self-assembly and nanochemistry: achemical strategy for the synthesis of nanostructures. Science,1991,254(5036):1312-9.
    [3] Leininger S, Olenyuk B, Stang PJ. Self-assembly of discrete cyclic nanostructuresmediated by transition metals. Chemical reviews,2000,100(3):853-908.
    [4] Zhang S. Emerging biological materials through molecular self-assembly. Biotechnologyadvances,2002,20(5-6):321-39.
    [5] Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Naturebiotechnology,2003,21(10):1171-8.
    [6] Ziane S, Schlaubitz S, Miraux S, et al. A thermosensitive low molecular weight hydrogelas scaffold for tissue engineering. European cells&materials,2012,23:147-60;discussion60.
    [7] Ulijn RV, Smith AM. Designing peptide based nanomaterials. Chemical Society reviews,2008,37(4):664-75.
    [8] Zelzer M, Ulijn RV. Next-generation peptide nanomaterials: molecular networks,interfaces and supramolecular functionality. Chemical Society reviews,2010,39(9):3351-7.
    [9] Lowik DW, Leunissen EH, van den Heuvel M, et al. Stimulus responsive peptide basedmaterials. Chemical Society reviews,2010,39(9):3394-412.
    [10] Matsumoto S, Yamaguchi S, Ueno S, et al. Photo gel-sol/sol-gel transition and itspatterning of a supramolecular hydrogel as stimuli-responsive biomaterials. Chemistry,2008,14(13):3977-86.
    [11] Wang Y, Byrne JD, Napier ME, et al. Engineering nanomedicines using stimuli-responsivebiomaterials. Advanced drug delivery reviews,2012,64(11):1021-30.
    [12] Zhang S. Designer self-assembling Peptide nanofiber scaffolds for study of3-d cellbiology and beyond. Advances in cancer research,2008,99:335-62.
    [13] Zhang S, Gelain F, Zhao X. Designer self-assembling peptide nanofiber scaffolds for3Dtissue cell cultures. Seminars in cancer biology,2005,15(5):413-20.
    [14] Gelain F, Bottai D, Vescovi A, et al. Designer self-assembling peptide nanofiber scaffoldsfor adult mouse neural stem cell3-dimensional cultures. PloS one,2006,1: e119.
    [15] Altunbas A, Pochan DJ. Peptide-based and polypeptide-based hydrogels for drug deliveryand tissue engineering. Topics in current chemistry,2012,310:135-67.
    [16] Kumar P, Pillay V, Modi G, et al. Self-assembling peptides: implications for patenting indrug delivery and tissue engineering. Recent patents on drug delivery&formulation,2011,5(1):24-51.
    [17] Kyle S, Aggeli A, Ingham E, et al. Recombinant self-assembling peptides as biomaterialsfor tissue engineering. Biomaterials,2010,31(36):9395-405.
    [18] Matson JB, Stupp SI. Self-assembling peptide scaffolds for regenerative medicine. ChemCommun (Camb),2012,48(1):26-33.
    [19] Gelain F, Horii A, Zhang S. Designer self-assembling peptide scaffolds for3-d tissue cellcultures and regenerative medicine. Macromolecular bioscience,2007,7(5):544-51.
    [20] Sadatmousavi P, Soltani M, Nazarian R, et al. Self-assembling peptides: potential role intumor targeting. Current pharmaceutical biotechnology,2011,12(8):1089-100.
    [21] Semino CE. Self-assembling peptides: from bio-inspired materials to bone regeneration.Journal of dental research,2008,87(7):606-16.
    [22] Verma IM, Weitzman MD. Gene therapy: twenty-first century medicine. Annual review ofbiochemistry,2005,74:711-38.
    [23] Romano G, Michell P, Pacilio C, et al. Latest developments in gene transfer technology:achievements, perspectives, and controversies over therapeutic applications. Stem Cells,2000,18(1):19-39.
    [24] Verma IM, Somia N. Gene therapy--promises, problems and prospects. Nature,1997,389(6648):239-42.
    [25] Sinn PL, Sauter SL, McCray PB, Jr. Gene therapy progress and prospects: development ofimproved lentiviral and retroviral vectors--design, biosafety, and production. Gene therapy,2005,12(14):1089-98.
    [26] Polak J, Hench L. Gene therapy progress and prospects: in tissue engineering. Genetherapy,2005,12(24):1725-33.
    [27] Coutelle C, Themis M, Waddington SN, et al. Gene therapy progress and prospects: fetalgene therapy--first proofs of concept--some adverse effects. Gene therapy,2005,12(22):1601-7.
    [28] Campbell EM, Hope TJ. Gene therapy progress and prospects: viral trafficking duringinfection. Gene therapy,2005,12(18):1353-9.
    [29] Editorial. Will the floodgates open for gene therapy? Nature biotechnology,2012,30(9):805.
    [30] Sullivan SM. Non-viral cancer gene therapy: an industrial perspective. Current opinion indrug discovery&development,1999,2(2):129-33.
    [31] Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors forgene therapy. Nature reviews Genetics,2003,4(5):346-58.
    [32] Romano G. Current development of lentiviral-mediated gene transfer. Drug news&perspectives,2005,18(2):128-34.
    [33] Sinn PL, Burnight ER, McCray PB, Jr. Progress and prospects: prospects of repeatedpulmonary administration of viral vectors. Gene therapy,2009,16(9):1059-65.
    [34] Kaiser J. Clinical research. Death prompts a review of gene therapy vector. Science,2007,317(5838):580.
    [35] Bouchie A. Gene-therapy death prompts suit. Nature biotechnology,2002,20(7):647.
    [36] Fox JL. Gene-therapy death prompts broad civil lawsuit. Nature biotechnology,2000,18(11):1136.
    [37] Marshall E. Gene therapy death prompts review of adenovirus vector. Science,1999,286(5448):2244-5.
    [38] Tang GP, Lu X. Progress in research on non-viral gene delivery vectors. Journal ofZhejiang University Medical sciences,2009,38(1):1-6.
    [39] Schatzlein AG. Non-viral vectors in cancer gene therapy: principles and progress.Anti-cancer drugs,2001,12(4):275-304.
    [40] Ma H, Diamond SL. Nonviral gene therapy and its delivery systems. Currentpharmaceutical biotechnology,2001,2(1):1-17.
    [41] Li S, Ma Z. Nonviral gene therapy. Current gene therapy,2001,1(2):201-26.
    [42] Felgner PL, Gadek TR, Holm M, et al. Lipofection: a highly efficient, lipid-mediatedDNA-transfection procedure. Proceedings of the National Academy of Sciences of theUnited States of America,1987,84(21):7413-7.
    [43] Wu GY, Wu CH. Receptor-mediated in vitro gene transformation by a soluble DNAcarrier system. The Journal of biological chemistry,1987,262(10):4429-32.
    [44] Suzuki R, Yamada Y, Harashima H. Development of small, homogeneous pDNA particlescondensed with mono-cationic detergents and encapsulated in a multifunctionalenvelope-type nano device. Biological&pharmaceutical bulletin,2008,31(6):1237-43.
    [45] Ward CM, Read ML, Seymour LW. Systemic circulation of poly(L-lysine)/DNA vectors isinfluenced by polycation molecular weight and type of DNA: differential circulation inmice and rats and the implications for human gene therapy. Blood,2001,97(8):2221-9.
    [46] Gomez-Valades AG, Molas M, Vidal-Alabro A, et al. Copolymers of poly-L-lysine withserine and tryptophan form stable DNA vectors: implications for receptor-mediated genetransfer. Journal of controlled release: official journal of the Controlled Release Society,2005,102(1):277-91.
    [47] Li Y, Zhu Y, Xia K, et al. Dendritic poly(L-lysine)-b-Poly(L-lactide)-b-dendriticpoly(L-lysine) amphiphilic gene delivery vectors: roles of PLL dendritic generation andenhanced transgene efficacies via termini modification. Biomacromolecules,2009,10(8):2284-93.
    [48] Pichon C, Goncalves C, Midoux P. Histidine-rich peptides and polymers for nucleic acidsdelivery. Advanced drug delivery reviews,2001,53(1):75-94.
    [49] Dekie L TV, Dubruel P, Schacht EH, et al. Poly-L-glutamic acid derivatives as vectors forgene therapy. Journal of controlled release: official journal of the Controlled ReleaseSociety,2000,65(1-2):187-202.
    [50] Nam HY, Hahn HJ, Nam K, et al. Evaluation of generations2,3and4arginine modifiedPAMAM dendrimers for gene delivery. International journal of pharmaceutics,2008,363(1-2):199-205.
    [51] Santos JL, Oramas E, Pego AP, et al. Osteogenic differentiation of mesenchymal stemcells using PAMAM dendrimers as gene delivery vectors. Journal of controlled release:official journal of the Controlled Release Society,2009,134(2):141-8.
    [52] Shieh MJ, Peng CL, Lou PJ, et al. Non-toxic phototriggered gene transfection byPAMAM-porphyrin conjugates. Journal of controlled release: official journal of theControlled Release Society,2008,129(3):200-6.
    [53] Fernandes JC, Wang H, Jreyssaty C, et al. Bone-protective effects of nonviral genetherapy with folate-chitosan DNA nanoparticle containing interleukin-1receptorantagonist gene in rats with adjuvant-induced arthritis. Molecular therapy: the journal ofthe American Society of Gene Therapy,2008,16(7):1243-51.
    [54] Zheng F, Shi XW, Yang GF, et al. Chitosan nanoparticle as gene therapy vector viagastrointestinal mucosa administration: results of an in vitro and in vivo study. Lifesciences,2007,80(4):388-96.
    [55] Kim TH, Jin H, Kim HW, et al. Mannosylated chitosan nanoparticle-based cytokine genetherapy suppressed cancer growth in BALB/c mice bearing CT-26carcinoma cells.Molecular cancer therapeutics,2006,5(7):1723-32.
    [56] Boussif O, Lezoualc'h F, Zanta MA, et al. A versatile vector for gene and oligonucleotidetransfer into cells in culture and in vivo: polyethylenimine. Proceedings of the NationalAcademy of Sciences of the United States of America,1995,92(16):7297-301.
    [57] Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) and its role in gene delivery. Journalof controlled release: official journal of the Controlled Release Society,1999,60(2-3):149-60.
    [58] Jeong JH SS, Lim DW, Lee H, et al. DNA transfection using linear poly(ethylenimine)prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline). J Control Release2001,73(2-3):391-9.
    [59] Thomas M, Lu JJ, Ge Q, et al. Full deacylation of polyethylenimine dramatically boostsits gene delivery efficiency and specificity to mouse lung. Proceedings of the NationalAcademy of Sciences of the United States of America,2005,102(16):5679-84.
    [60] Fischer D, Bieber T, Li Y, et al. A novel non-viral vector for DNA delivery based on lowmolecular weight, branched polyethylenimine: effect of molecular weight on transfectionefficiency and cytotoxicity. Pharmaceutical research,1999,16(8):1273-9.
    [61] von Harpe A, Petersen H, Li Y, et al. Characterization of commercially available andsynthesized polyethylenimines for gene delivery. Journal of controlled release: officialjournal of the Controlled Release Society,2000,69(2):309-22.
    [62] Akinc A, Thomas M, Klibanov AM, et al. Exploring polyethylenimine-mediated DNAtransfection and the proton sponge hypothesis. The journal of gene medicine,2005,7(5):657-63.
    [63] Suh J PH, Hwang BK. Ionization of Poly(ethylenimine) and Poly(allylamine) at variouspHs. Bioorgchem,1994,22:318-27.
    [64] Benjaminsen RV, Mattebjerg MA, Henriksen JR, et al. The Possible "Proton Sponge "Effect of Polyethylenimine (PEI) Does Not Include Change in Lysosomal pH. Moleculartherapy: the journal of the American Society of Gene Therapy,2012,185:[Epub ahead ofprint].
    [65] Lasic DD, Martin FJ, Gabizon A, et al. Sterically stabilized liposomes: a hypothesis on themolecular origin of the extended circulation times. Biochimica et biophysica acta,1991,1070(1):187-92.
    [66] Senior J, Delgado C, Fisher D, et al. Influence of surface hydrophilicity of liposomes ontheir interaction with plasma protein and clearance from the circulation: studies withpoly(ethylene glycol)-coated vesicles. Biochimica et biophysica acta,1991,1062(1):77-82.
    [67] Kursa M, Walker GF, Roessler V, et al. Novel shielded transferrin-polyethyleneglycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer.Bioconjugate chemistry,2003,14(1):222-31.
    [68] Tang GP, Zeng JM, Gao SJ, et al. Polyethylene glycol modified polyethylenimine forimproved CNS gene transfer: effects of PEGylation extent. Biomaterials,2003,24(13):2351-62.
    [69] Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake andintracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol,2004,83(3):97-111.
    [70] Duan Y, Yang C, Zhang Z, et al. Poly(ethylene glycol)-grafted polyethylenimine modifiedwith G250monoclonal antibody for tumor gene therapy. Human gene therapy,2010,21(2):191-8.
    [71] Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: criticalissues in pharmacokinetics, opsonization and protein-binding properties. Progress in lipidresearch,2003,42(6):463-78.
    [72] Torchilin VP, Omelyanenko VG, Papisov MI, et al. Poly(ethylene glycol) on the liposomesurface: on the mechanism of polymer-coated liposome longevity. Biochimica etbiophysica acta,1994,1195(1):11-20.
    [73] Dunlap DD, Maggi A, Soria MR, et al. Nanoscopic structure of DNA condensed for genedelivery. Nucleic acids research,1997,25(15):3095-101.
    [74] Godbey WT WK, Mikos AG. Size matters: molecular weight affects the efficiency ofpoly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res,1999,45(3):268-75.
    [75] Mintzer MA SE. Nonviral vectors for gene delivery. Chemical reviews,2009,109(2):259-302.
    [76] Schaffer DV FN, Dan N, Lauffenburger DA. Vector unpacking as a potential barrier forreceptor-mediated polyplex gene delivery. Biotechnology and bioengineering,2000,67(5):598-606.
    [77] Godbey WT, Barry MA, Saggau P, et al. Poly(ethylenimine)-mediated transfection: a newparadigm for gene delivery. Journal of biomedical materials research,2000,51(3):321-8.
    [78] Funhoff AM vNC, Koning GA, Schuurmans-Nieuwenbroek NM, et al. Endosomal escapeof polymeric gene delivery complexes is not always enhanced by polymers buffering atlow pH. Biomacromolecules,2004,5(1):32-9.
    [79] Kunath K vHA, Fischer D, Petersen H, et al. Low-molecular-weight polyethylenimine as anon-viral vector for DNA delivery: comparison of physicochemical properties,transfection efficiency and in vivo distribution with high-molecular-weightpolyethylenimine. Journal of controlled release: official journal of the Controlled ReleaseSociety,2003,89(1):113-25.
    [80] Gosselin MA GW, Lee RJ. Efficient gene transfer using reversibly cross-linked lowmolecular weight polyethylenimine. Bioconjug Chem,2001,12(6):989-94.
    [81] Thomas M GQ, Lu JJ, Chen J, et al. Crosslinked small polyethylenimine: while stillnontoxic, deliver DNA efficiently to mammalian cells in vitro and in vivo. Pharmaceuticalresearch,2005,22(3):373-80.
    [82] Ahn CH, Chae SY, Bae YH, et al. Biodegradable poly(ethylenimine) for plasmid DNAdelivery. Journal of controlled release: official journal of the Controlled Release Society,2002,80(1-3):273-82.
    [83] Tang GP, Guo HY, Alexis F, et al. Low molecular weight polyethylenimines linked bybeta-cyclodextrin for gene transfer into the nervous system. The journal of gene medicine,2006,8(6):736-44.
    [84] Jere D JH, Arote R, Kim YK, et al. Degradable polyethylenimines as DNA and smallinterfering RNA carriers. Expert Opinion on Drug Delivery2009;6:827-34.
    [85] Peng Q, Zhong Z, Zhuo R. Disulfide cross-linked polyethylenimines (PEI) prepared viathiolation of low molecular weight PEI as highly efficient gene vectors. Expert Opin DrugDeliv2009,6(8):827-34.
    [86] Xu S, Chen M, Yao Y, et al. Novel poly(ethylene imine) biscarbamate conjugate as anefficient and nontoxic gene delivery system. Journal of controlled release: official journalof the Controlled Release Society,2008,130(1):64-8.
    [87] Xiong MP, Forrest ML, Ton G, et al. Poly(aspartate-g-PEI800), a polyethylenimineanalogue of low toxicity and high transfection efficiency for gene delivery. Biomaterials,2007,28(32):4889-900.
    [88] Huang H, Yu H, Tang G, et al. Low molecular weight polyethylenimine cross-linked by2-hydroxypropyl-gamma-cyclodextrin coupled to peptide targeting HER2as a genedelivery vector. Biomaterials,2010,31(7):1830-8.
    [89] Liu XQ, Du JZ, Zhang CP, et al. Brush-shaped polycation withpoly(ethylenimine)-b-poly(ethylene glycol) side chains as highly efficient gene deliveryvector. International journal of pharmaceutics,2010,392(1-2):118-26.
    [90] Zheng M, Zhou L, Cheng R, et al. Poly(ethylene oxide) grafted with low molecularweight polyethylenimines for non-viral gene transfer. Journal of controlled release,2011,152Suppl1: e186-7.
    [91] Gleave ME, Monia BP. Antisense therapy for cancer. Nature reviews Cancer,2005,5(6):468-79.
    [92] Duca M, Vekhoff P, Oussedik K, et al. The triple helix:50years later, the outcome.Nucleic acids research,2008,36(16):5123-38.
    [93] Krieg AM. Toll-like receptor9(TLR9) agonists in the treatment of cancer. Oncogene,2008,27(2):161-7.
    [94] Gewirtz AM. On future's doorstep: RNA interference and the pharmacopeia of tomorrow.The Journal of clinical investigation,2007,117(12):3612-4.
    [95] de Fougerolles A, Vornlocher HP, Maraganore J, et al. Interfering with disease: a progressreport on siRNA-based therapeutics. Nature reviews Drug discovery,2007,6(6):443-53..
    [96] Bates PJ, Laber DA, Miller DM, et al. Discovery and development of the G-richoligonucleotide AS1411as a novel treatment for cancer. Experimental and molecularpathology,2009,86(3):151-64.
    [97] Juliano R, Alam MR, Dixit V, et al. Mechanisms and strategies for effective delivery ofantisense and siRNA oligonucleotides. Nucleic acids research,2008,36(12):4158-71.
    [98] Nimjee SM, Rusconi CP, Sullenger BA. Aptamers: an emerging class of therapeutics.Annual review of medicine,2005,56:555-83.
    [99] Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands.Nature,1990,346(6287):818-22.
    [100] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNAligands to bacteriophage T4DNA polymerase. Science1990;249:505-10.
    [101] Farokhzad OC, Jon S, Khademhosseini A, et al. Nanoparticle-aptamer bioconjugates: anew approach for targeting prostate cancer cells. Cancer research,2004,64(21):7668-72.
    [102] Farokhzad OC, Karp JM, Langer R. Nanoparticle-aptamer bioconjugates for cancertargeting. Expert opinion on drug delivery,2006,3(3):311-24.
    [103] Romig TS, Bell C, Drolet DW. Aptamer affinity chromatography: combinatorial chemistryapplied to protein purification. Journal of chromatography B, Biomedical sciences andapplications,1999,731(2):275-84.
    [104] Burgstaller P GA, Blind M. Aptamers as tools for target prioritization and leadidentification. Drug Discov Today,2002,7(24):7221-8.
    [105] Green LS BC, Janjic N. Aptamers as reagents for high-throughput screening.Biotechniques,2001,30(5):1094-6.
    [106] Schafer R, Wiskirchen J, Guo K, et al. Aptamer-based isolation and subsequent imaging ofmesenchymal stem cells in ischemic myocard by magnetic resonance imaging. RoFo:Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin,2007,179(10):1009-15.
    [107] Shamah SM, Healy JM, Cload ST. Complex target SELEX. Accounts of chemicalresearch,2008,41(1):130-8.
    [108] Ng EW, Shima DT, Calias P, et al. Pegaptanib, a targeted anti-VEGF aptamer for ocularvascular disease. Accounts of chemical research,2008,41(1):130-8.
    [109] Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle-aptamer bioconjugates forcancer chemotherapy in vivo. Proceedings of the National Academy of Sciences of theUnited States of America,2006,103(16):6315-20.
    [110] Fichou Y, Ferec C. The potential of oligonucleotides for therapeutic applications. Trendsin biotechnology,2006,24(12):563-70.
    [111] Skogen M, Roth J, Yerkes S, et al. Short G-rich oligonucleotides as a potential therapeuticfor Huntington's Disease. BMC neuroscience,2006,7:65.
    [112] Perkins AC, Missailidis S. Radiolabelled aptamers for tumour imaging and therapy. Q JNucl Med Mol Imaging,2007,51(4):292-6.
    [113] Tan W, Wang H, Chen Y, et al. Molecular aptamers for drug delivery. Trends inbiotechnology,2011,29(12):634-40.
    [114] Barbas AS, Mi J, Clary BM, et al. Aptamer applications for targeted cancer therapy.Future Oncol,2010,6(7):1117-26.
    [115] Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, et al. Nanotechnology and aptamers:applications in drug delivery. Trends in biotechnology,2008,26(8):442-9.
    [116] Ye M, Hu J, Peng M, et al. Generating Aptamers by Cell-SELEX for Applications inMolecular Medicine. International journal of molecular sciences,2012,13(3):3341-53.
    [117] Zhu G, Ye M, Donovan MJ, et al. Nucleic acid aptamers: an emerging frontier in cancertherapy. Chem Commun (Camb),2012,48(85):10472-80.
    [118] Ni X, Castanares M, Mukherjee A, et al. Nucleic acid aptamers: clinical applications andpromising new horizons. Current medicinal chemistry,2011,18(27):4206-14.
    [119] Zhou J, Battig MR, Wang Y. Aptamer-based molecular recognition for biosensordevelopment. Analytical and bioanalytical chemistry,2010,398(6):2471-80.
    [120] Zhang Y, Hong H, Cai W. Tumor-targeted drug delivery with aptamers. Current medicinalchemistry,2011,18(27):4185-94.
    [121] Lee JH, Yigit MV, Mazumdar D, et al. Molecular diagnostic and drug delivery agentsbased on aptamer-nanomaterial conjugates. Advanced drug delivery reviews,2010,62(6):592-605.
    [122] Ulrich H, Trujillo CA, Nery AA, et al. DNA and RNA aptamers: from tools for basicresearch towards therapeutic applications. Combinatorial chemistry&high throughputscreening,2006,9(8):619-32.
    [123] Thiel KW, Giangrande PH. Therapeutic applications of DNA and RNA aptamers.Oligonucleotides,2009,19(3):209-22.
    [124] Song KM LS, Ban C. Aptamers and Their Biological Applications. Sensors (Basel),2012,12(1):612-31.
    [125] Pristoupil TI, Kramlova M. Microchromatographic separation of ribonucleic acids fromproteins on nitrocellulose membranes. Journal of chromatography,1968,32(4):769-70.
    [126] Gopinath SC. Methods developed for SELEX. Analytical and bioanalytical chemistry,2007,387(1):171-82.
    [127] Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosensors&bioelectronics,2005,20(12):2424-34.
    [128] Mairal T, Ozalp VC, Lozano Sanchez P, et al. Aptamers: molecular tools for analyticalapplications. Analytical and bioanalytical chemistry,2008,390(4):989-1007.
    [129] Song KM, Cho M, Jo H, et al. Gold nanoparticle-based colorimetric detection ofkanamycin using a DNA aptamer. Analytical biochemistry,2011,415(2):175-81.
    [130] Vianini E, Palumbo M, Gatto B. In vitro selection of DNA aptamers that bindL-tyrosinamide. Bioorganic&medicinal chemistry,2001,9(10):2543-8.
    [131] Levesque D, Beaudoin JD, Roy S, et al. In vitro selection and characterization of RNAaptamers binding thyroxine hormone. The Biochemical journal,2007,403(1):129-38.
    [132] Wang C, Yang G, Luo Z, et al. In vitro selection of high-affinity DNA aptamers forstreptavidin. Acta biochimica et biophysica Sinica,2009,41(4):335-40.
    [133] Niazi JH, Lee SJ, Gu MB. Single-stranded DNA aptamers specific for antibioticstetracyclines. Bioorganic&medicinal chemistry,2008,16(15):7245-53.
    [134] Joeng CB, Niazi JH, Lee SJ, et al. ssDNA aptamers that recognize diclofenac and2-anilinophenylacetic acid. Bioorganic&medicinal chemistry,2009,17(15):5380-7.
    [135] Mendonsa SD, Bowser MT. In vitro selection of aptamers with affinity for neuropeptide Yusing capillary electrophoresis. Journal of the American Chemical Society,2005,127(26):9382-3.
    [136] Mendonsa SD, Bowser MT. In vitro selection of high-affinity DNA ligands for human IgEusing capillary electrophoresis. Analytical chemistry,2004,76(18):5387-92.
    [137] Guo KT, Ziemer G, Paul A, et al. CELL-SELEX: Novel perspectives of aptamer-basedtherapeutics. International journal of molecular sciences,2008,9(4):668-78.
    [138] Shangguan D, Li Y, Tang Z, et al. Aptamers evolved from live cells as effective molecularprobes for cancer study. Proceedings of the National Academy of Sciences of the UnitedStates of America,2006,103(32):11838-43.
    [139] Shangguan D, Cao Z, Meng L, et al. Cell-specific aptamer probes for membrane proteinelucidation in cancer cells. Journal of proteome research,2008,7(5):2133-9.
    [140] Tang Z, Shangguan D, Wang K, et al. Selection of aptamers for molecular recognition andcharacterization of cancer cells. Analytical chemistry,2007,79(13):4900-7.
    [141] Tsai RY, Reed RR. Identification of DNA recognition sequences and protein interactiondomains of the multiple-Zn-finger protein Roaz. Molecular and cellular biology,1998,18(11):6447-56.
    [142] Khati M, Schuman M, Ibrahim J, et al. Neutralization of infectivity of diverse R5clinicalisolates of human immunodeficiency virus type1by gp120-binding2'F-RNA aptamers.Journal of virology,2003,77(23):12692-8.
    [143] Misono TS, Kumar PK. Selection of RNA aptamers against human influenza virushemagglutinin using surface plasmon resonance. Analytical biochemistry,2005,342(2):312-7.
    [144] Steed JW. Supramolecular gel chemistry: developments over the last decade. ChemCommun (Camb),2011,47(5):1379-83.
    [145] Sangeetha NM, Maitra U. Supramolecular gels: functions and uses. Chemical Societyreviews,2005,34(10):821-36.
    [146] Frey S, Gorlich D. A saturated FG-repeat hydrogel can reproduce the permeabilityproperties of nuclear pore complexes. Cell,2007,130(3):512-23.
    [147] Su J, Hu BH, Lowe WL, et al. Anti-inflammatory peptide-functionalized hydrogels forinsulin-secreting cell encapsulation. Biomaterials,2010,31(2):308-14.
    [148] Li X, Kuang Y, Shi J, et al. Multifunctional, biocompatible supramolecular hydrogelatorsconsist only of nucleobase, amino acid, and glycoside. Journal of the American ChemicalSociety,2011,133(43):17513-8.
    [149] Chow LW, Wang LJ, Kaufman DB, et al. Self-assembling nanostructures to deliverangiogenic factors to pancreatic islets. Biomaterials,2010,31(24):6154-61.
    [150] Kiyonaka S, Sada K, Yoshimura I, et al. Semi-wet peptide/protein array usingsupramolecular hydrogel. Nature materials,2004,3(1):58-64.
    [151] Schwartz JJ, Zhang S. Peptide-mediated cellular delivery. Current opinion in moleculartherapeutics,2000,2(2):162-7.
    [152] Silva GA, Czeisler C, Niece KL, et al. Selective differentiation of neural progenitor cellsby high-epitope density nanofibers. Science,2004,303(5662):1352-5.
    [153] Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization ofpeptide-amphiphile nanofibers. Science,2001,294(5547):1684-8.
    [154] Paramonov SE, Jun HW, Hartgerink JD. Modulation of peptide-amphiphile nanofibers viaphospholipid inclusions. Biomacromolecules,2006,7(1):24-6.
    [155] Behanna HA, Donners JJ, Gordon AC, et al. Coassembly of amphiphiles with oppositepeptide polarities into nanofibers. Journal of the American Chemical Society,2005,127(4):1193-200.
    [156] Paramonov SE, Jun HW, Hartgerink JD. Self-assembly of peptide-amphiphile nanofibers:the roles of hydrogen bonding and amphiphilic packing. Journal of the AmericanChemical Society,2006,128(22):7291-8.
    [157] Wang H, Yang C, Wang L, et al. Self-assembled nanospheres as a novel delivery systemfor taxol: a molecular hydrogel with nanosphere morphology. Chem Commun (Camb),2011,47(15):4439-41.
    [158] Ren C, Song Z, Zheng W, et al. Disulfide bond as a cleavable linker for molecularself-assembly and hydrogelation. Chem Commun (Camb),2011,47(5):1619-21.
    [159] Yang Z, Gu H, Zhang Y, et al. Small molecule hydrogels based on a class ofantiinflammatory agents. Chem Commun (Camb),2004,2):208-9.
    [160] Toledano S, Williams RJ, Jayawarna V, et al. Enzyme-triggered self-assembly of peptidehydrogels via reversed hydrolysis. Journal of the American Chemical Society,2006,128(4):1070-1.
    [161] Liu H, Hu Y, Wang H, et al. A thixotropic molecular hydrogel selectively enhances Flk1expression in differentiated murine embryonic stem cells. Soft Matter,2011,11:5430-6.
    [162] Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Europeanjournal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaftfur Pharmazeutische Verfahrenstechnik eV,2008,68(1):34-45.
    [163] Qiu Z, Yu H, Li J, et al. Spiropyran-linked dipeptide forms supramolecular hydrogel withdual responses to light and to ligand-receptor interaction. Chem Commun (Camb),2009,23):3342-4.
    [164] Galler KM, Aulisa L, Regan KR, et al. Self-assembling multidomain peptide hydrogels:designed susceptibility to enzymatic cleavage allows enhanced cell migration andspreading. Journal of the American Chemical Society,2010,132(9):3217-23.
    [165] Pek YS, Wan AC, Shekaran A, et al. A thixotropic nanocomposite gel forthree-dimensional cell culture. Nature nanotechnology,2008,3(11):671-5.
    [166] Pek YS, Wan AC, Ying JY. The effect of matrix stiffness on mesenchymal stem celldifferentiation in a3D thixotropic gel. Biomaterials,2010,31(3):385-91.
    [167] Cherng JY, van de Wetering P, Talsma H, et al. Effect of size and serum proteins ontransfection efficiency of poly ((2-dimethylamino)ethyl methacrylate)-plasmidnanoparticles. Pharmaceutical research,1996,13(7):1038-42.
    [168] Bosman AW, Janssen HM, Meijer EW. About Dendrimers: Structure, Physical Properties,and Applications. Chemical reviews,1999,99(7):1665-88.
    [169] Wong K, Sun G, Zhang X, et al. PEI-g-chitosan, a novel gene delivery system withtransfection efficiency comparable to polyethylenimine in vitro and after liveradministration in vivo. Bioconjugate chemistry,2006,17(1):152-8.
    [170] Forrest ML, Koerber JT, Pack DW. A degradable polyethylenimine derivative with lowtoxicity for highly efficient gene delivery. Bioconjugate chemistry,2003,14(5):934-40.
    [171] Wen Y, Pan S, Luo X, et al. A biodegradable low molecular weight polyethyleniminederivative as low toxicity and efficient gene vector. Bioconjugate chemistry,2009,20(2):322-32.
    [172] Zhong Z, Song Y, Engbersen JF, et al. A versatile family of degradable non-viral genecarriers based on hyperbranched poly(ester amine)s. Journal of controlled release: officialjournal of the Controlled Release Society,2005,109(1-3):317-29.
    [173] Luten J vNC, De Smedt SC, Hennink WE. Biodegradable polymers as non-viral carriersfor plasmid DNA delivery. Journal of controlled release: official journal of the ControlledRelease Society,2008,126(2):97-110.
    [174] Anderson DG AA, Hossain N, Langer R. Structure/property studies of polymeric genedelivery using a library of poly(beta-amino esters). Mol Ther,2005,11(3):426-34.
    [175] Kichler A, Chillon M, Leborgne C, et al. Intranasal gene delivery with apolyethylenimine-PEG conjugate. Journal of controlled release: official journal of theControlled Release Society,2002,81(3):379-88.
    [176] Glodde M, Sirsi SR, Lutz GJ. Physiochemical properties of low and high molecularweight poly(ethylene glycol)-grafted poly(ethylene imine) copolymers and theircomplexes with oligonucleotides. Biomacromolecules,2006,7(1):347-56.
    [177] Ogris M, Brunner S, Schuller S, et al. PEGylated DNA/transferrin-PEI complexes:reduced interaction with blood components, extended circulation in blood and potentialfor systemic gene delivery. Gene therapy,1999,6(4):595-605.
    [178] Kunath K, von Harpe A, Petersen H, et al. The structure of PEG-modified poly(ethyleneimines) influences biodistribution and pharmacokinetics of their complexes withNF-kappaB decoy in mice. Pharmaceutical research,2002,19(6):810-7.
    [179] Petersen H, Kunath K, Martin AL, et al. Star-shaped poly(ethyleneglycol)-block-polyethylenimine copolymers enhance DNA condensation of low molecularweight polyethylenimines. Biomacromolecules,2002,3(5):926-36.
    [180] Zhong Z, Feijen J, Lok MC, et al. Low molecular weight linearpolyethylenimine-b-poly(ethylene glycol)-b-polyethylenimine triblock copolymers:synthesis, characterization, and in vitro gene transfer properties. Biomacromolecules,2005,6(6):3440-8.
    [181] Akinc A, Lynn DM, Anderson DG, et al. Parallel synthesis and biophysicalcharacterization of a degradable polymer library for gene delivery. Journal of theAmerican Chemical Society,2003,125(18):5316-23.
    [182] Neu M, Fischer D, Kissel T. Recent advances in rational gene transfer vector design basedon poly(ethylene imine) and its derivatives. The journal of gene medicine,2005,7(8):992-1009.
    [183] Wolfert MA, Seymour LW. Atomic force microscopic analysis of the influence of themolecular weight of poly(L)lysine on the size of polyelectrolyte complexes formed withDNA. Gene therapy,1996,3(3):269-73.
    [184] Arote R, Kim TH, Kim YK, et al. A biodegradable poly(ester amine) based onpolycaprolactone and polyethylenimine as a gene carrier. Biomaterials,2007,28(5):735-44.
    [185] Huang YF, Shangguan D, Liu H, et al. Molecular assembly of an aptamer-drug conjugatefor targeted drug delivery to tumor cells. Chembiochem: a European journal of chemicalbiology,2009,10(5):862-8.
    [186] Cao Z, Tong R, Mishra A, et al. Reversible cell-specific drug delivery withaptamer-functionalized liposomes. Angew Chem Int Ed Engl,2009,48(35):6494-8.
    [187] Kurosaki T, Higuchi N, Kawakami S, et al. Self-assemble gene delivery system formolecular targeting using nucleic acid aptamer. Gene,2012,491(2):205-9.
    [188] Tong R, Yala L, Fan TM, et al. The formulation of aptamer-coated paclitaxel-polylactidenanoconjugates and their targeting to cancer cells. Biomaterials,2010,31(11):3043-53.
    [189] V. Jayawarna, M. Ali, T.A. Jowitt, et al. Nano-structured hydrogels for3D cell culturethrough self-assembly of Fmoc-dipeptides. Adv Mater,2006,16(5):611-4.
    [190] Muraoka T, Koh CY, Cui H, et al. Light-triggered bioactivity in three dimensions. AngewChem Int Ed Engl,2009,48(32):5946-9.
    [191] Lai Y, Xie C, Zhang Z, et al. Design and synthesis of a potent peptide containing bothspecific and non-specific cell-adhesion motifs. Biomaterials,2010,31(18):4809-17.
    [192] Wang H, Wang Z, Song D, et al. Enzyme-assisted formation of nanosphere: a potentialcarrier for hydrophobic compounds. Nanotechnology,2010,21(15):155602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700