用户名: 密码: 验证码:
原位聚合型阻燃尼龙6的制备、性能及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有优异的化学稳定性、优良的机械性能和电性能,聚酰胺6(又名尼龙6,PA6)目前已被广泛的应用于工业领域。然而,由于其阻燃性较差,在一些领域的应用受到了限制。
     本文旨在通过引入三聚氰胺氰尿酸盐(MCA)结构发明一种制备具有阻燃性能尼龙6的新方法,并对其阻燃机理进行深入研究。此外,对原位聚合制备阻燃尼龙6纳米复合材料进行了工业化放大试验,并对其在纺丝领域的应用进行了研究。具体内容如下:
     (1)用熔融共混方法将三嗪系阻燃剂三聚氰胺氰尿酸盐(MCA)引入到制备阻燃MCA/PA6复合材料中。燃烧性能研究表明,随着MCA含量的增加,复合材料的LOI值不断提高,当阻燃剂的含量达到20wt%时,其LOI值提高到了36.8%,但是其垂直燃烧试验仍为V-2级。TEM表征表明,MCA在尼龙6基体中的分散性并不是很好,这也解释了共混方法制备的MCA/PA6复合材料机械性能和阻燃性能不佳的原因。
     (2)应用原位聚合方法制备阻燃MCA/PA6复合材料,并对其性能进行了深入系统的研究。实验过程中,首先分别将己二酸和三聚氰胺,己二胺和三聚氰酸在水相中反应,制备出三聚氰胺/己二酸盐和三聚氰酸/己二胺盐;然后在己内酰胺的水解开环聚合时,将这两种盐引入到聚合体系中,并对制备工艺条件进行了优化,从而制备得到原位聚合型MCA/PA6纳米复合材料。
     对这些复合材料的结构、机械性能和阻燃性能进行了系统的表征和研究。TEM表征表明:MCA在己内酰胺的水溶液中自组装成直径小于50nm的微晶粒子,并且这种纳米粒子尺寸规整,均匀地分散在尼龙6树脂基体中。FT-IR和XRD数据表明:体系中,MCA的自组装反应能够完全地进行。随着参与原位聚合的MCA纳米粒子含量的增加,复合材料的热稳定性呈现出下降的趋势。具体地说,与纯尼龙6相比,P-7.34(阻燃剂含量7.34wt%)和P-9.52(阻燃剂含量9.52wt%)的T10分别下降了45℃和64℃。同时,随着MCA含量的增加,其熔点由纯尼龙6的219℃降低到P-9.52的201℃,但是结晶度的变化却不是很明显。
     在本研究中,增加MCA的含量意味着阻燃性能的提高,但是与此同时可能会损害到复合材料的热稳定性和机械性能。相对于共混型MCA/PA6复合材料中的相分离现象,原位聚合MCA/PA6复合材料中MCA纳米粒子均匀地分散在树脂基体中,因此即使在MCA含量相对较低的情况下,复合材料也表现出良好的机械性能和阻燃性能。总之,这种新型的纳米复合材料在工业领域具有较好的应用前景。
     (3)对MCA粒子在尼龙6基体中的阻燃机理进行了研究。一方面,MCA阻燃剂的加入,改变了PA6的热降解过程,其Tmax2和残炭率均随着MCA含量的增加而不断提高;同时MCA可以降低复合材料的热降解活化能,提高了PA6基体的耐热性能。另一方面,MCA的加入虽然缩短了尼龙6的点燃时间,但是整个燃烧过程明显延长,同时放热速率峰值随着MCA含量的增加明显地线性减小,减缓了PA6基体树脂的燃烧激烈程度。
     (4)对原位聚合制备阻燃尼龙6纳米复合材料进行了工业化放大试验,以进一步验证小试实验并为下一步在纺丝领域的应用提供原料。研究表明,工业化放大试验重复性良好,复合材料的LOI值超过36%,具有良好的阻燃性能和机械性能,为今后工业化生产应用奠定了基础。
     (5)通过熔融纺丝技术制备出阻燃尼龙6纤维,并利用TEM、机械性能测试和LOI氧指数试验对其进行了表征。从TEM图可知,MCA结构均匀地分散在阻燃纤维中。LOI氧指数试验表明,阻燃纤维的LOI值超过35%,说明其具有优良的阻燃性能。而材料的物性测试表明,MCA纳米粒子的存在对其力学性质影响较小。
With satisfying chemical stability, mechanical performance and electrical properties, polyamide6(Nylon6, PA6) is vastly applied in industrial fields; however, the low flame resistance of PA6is limiting its usage under certain circumstances.
     The object of this paper is to investigate on a novel method for the preparation of flame retarded PA6with melamine cyanurate (MCA), and the mechanism for the flame retardancy of MCA in PA6matrix was studied. Moreover, the industrialized amplification of the preparation of flame retarded PA6composites by in-situ polymerization was researched, and flame retarding PA6fiber was also prepared by melt spinning. The detailed content is described as follows:
     (1) Melamine cyanurate (MCA) was introduced into PA6matrix in the preparation of MCA/PA6composites by melt-blending method. According to the combustion characterization, the LOI value increased with the increasing of the content of MCA. To be more specifical, when the amount of MCA was20%, the LOI value reached36.8%though its grade was only V-2in the UL-94test. According to the TEM characterization, the dispersion of MCA in the nylon6matrix was not very good, which demonstrates the fact that MCA/PA6composites prepared by melt-blend method have low mechanical and flame-resistance properties.
     (2) In-situ polymerization method was adopted in the preparation of MCA/PA6composites, whose properties was further investigated. Firstly, through separate reactions of melamine with adipic acid, and cyanuric acid with hexane diamine at aqueous environment, melamine/adipic acid salt and cyanuric acid/hexane diamine salt were obtained. Then the two kinds of salts were introduced into the hydrolytic polymerization system of caprolactam to prepare MCA/PA6nanocomposites, and the preparation conditions were also optimized.
     The structures, mechanical and flame retarding properties of these composites were fully characterized and investigated. According to the TEM results, the MCA crystallites, which were self-assembled in the aqueous molten caprolactam, with diametric size of less than50nm, are nanoscaled, highly uniformly dispersed in the PA6matrix. From the FT-IR and XRD results, it can be seen that the self-assembly reaction is complete. With the in situ formed MCA nanoparticles increasing, the thermal stability of it shows a decreasing trend. More specifically, T10of P-7.34(the amount of MCA is7.34wt%) and P-9.52(the amount of MCA is9.52wt%) are45℃and64℃lower than that of pure PA6, respectively. With the amount of MCA increasing, Tm decreases from219℃(pure PA6) to201℃(P-9.52), but the change of percentage crystallinity is not so significant.
     In this research, increasing MCA content may relate to better flame retarding ability, but it would destroy the thermal stability and mechanical properties. Nanostructured MCA was well dispersed in the resin matrix of MCA/PA6composites prepared by in-situ polymerization method. Thus, these composites present good mechanical and flame retarding properties even at relative low MCA loading level. In a word, this novel nanomaterial may provide interesting practical application in industrial fields.
     (3) The mechanism of the flame retardancy of MCA in PA6matrix was studied. On the one hand, the introduction of MCA led to the change in the thermal degradation process of PA6, and the Tmax2and char yield rose with the increase of the content of MCA; meanwhile, MCA reduced the degradation activation energy△E, improving the heat resistance of PA6matrix. On the other hand, although it needed less time to lighten PA6as a result of introducing MCA, the entire combustion process has been significantly extended; at the same time, an obvious linear decrease occurred to the peak heat release rate with the addition of MCA, abating the burning intensity of PA6matrix resin.
     (4) The industrialized amplification of the preparation of flame retarded PA6composites by in-situ polymerization was researched in order to further verify the small-scale experiment and to provide raw materials for the spinning experiment. It is showed that the amplification test had favorable reproducibility, and the composites had a LOI value over36%with good mechanical and flame-resistance properties, laying a foundation for industrial production of these flame retarded PA6composites in the future.
     (5) Flame retarding PA6fiber was prepared by melt spinning. By TEM, mechanical property test and LOI experiment, fiber properties were evaluated. From TEM pictures, the MCA were uniformly dispersed in the flame retardant fiber. And from LOI test experiment, the LOI value was more than35%, which shows that it owns good flame retarding property. In the physical property test experiment, it shows the existence of MCA particle just influenced the physical property a little.
引文
[1]白颐.国内外聚酰胺系列产品发展分析.化学工业,2008,26(10):3-8
    [2]魏京华.尼龙纳米复合材料的产品开发进展.工程塑料应用,2004,32(4):67-70
    [3]王成云,杨左军,张伟亚等.聚酰胺纳米塑料研究进展.广东化工,2003,30(1):50-53
    [4]戴芳,肖德凯,孙安桓.2005年我国热塑性工程塑料进展.工程塑料应用,2006,34(4):61-67
    [5]Perez M, Ronda J C, Reina J A. Synthesis of functional polymers by chemical modification of PECH and PECH-PEO with substituted phenolates. Polymer, 2001,42(1):1-8
    [6]Liu H, Wu Q, Berglund L A, et al. Polyamide 6-clay nanocomposites /polypropylene-grafted-maleic anhydride alloys. Polymer,2001,42(19): 8235-8239
    [7]Ji Y, Ma J, Liang B. In situ polymerization and in situ compatibilization of polymer blends of poly (2,6-dimethyl-1,4-phenylene oxide) and polyamide 6. Materials Letters,2005,59(16):1997-2000
    [8]杨宁,贵大勇,刘吉平.尼龙共混及填充改性的研究现状.塑料,2003,32(5):53-57
    [9]韩哲文.高分子科学教程.上海:华东理工大学出版社,2001,1 24-125
    [10]Pae Y. Synthesis and properties of novel polyamide-g-nylon 6 and nylon 6-b-polyamide-b-nylon 6 copolymers. [PhD dissertation of The University of Akron], USA:The University of Akron,1999,6-12
    [11]Kim K J, Hong D S, Tripathy A R. Kinetics of adiabatic anionic copolymerization of ε-caprolactam in the presence of various activators. Journal of Applied Polymer Science,1997,66:1195-1207
    [12]刘维城,邵佳敏,陈建定.阴离子聚合高粘度PA进展.工程塑料应用,2002,30(4):56-58
    [13]Hubber T, Tschke P, Pompe G, et al. Stabilization of polyamide 6 synthesized by anionic polymerization of caprolactam. Macromolecular Materials and Engineering,2000,280:33-41
    [14]Utracki L A. History of commercial polymer alloys and blends (from a perspective of the patent literature). Polymer Engineering and Science,1995, 35(1):2-17
    [15]林志勇,杨俊,肖凤英等.炭纤维表面官能团异氰酸酯化及阴离子接枝尼龙6的研究.高分子材料科学与工程,2004,20(2):44-47
    [16]Xu W, Liu Y C, Xiong Y Q, et al. Anionic polymerization and properties of graft copolymers consisting of alternating styrene/maleimide copolymer main chains and polyamide 6 grafts. Journal of Applied Polymer Science,2008, 108(3):1880-1886
    [17]Crespy D, Landfester K. Anionic polymerization of-caprolactam in miniemulsion:synthesis and characterization of polyamide-6 nanoparticles. Macromolecules,2005,38(16):6882-6887
    [18]Joyce R M, Ritter D M. Process for making polymeric materials. US Patent. 2251519,1941-08-05
    [19]Hubber T, Tschke P, Pompe G, et al. Stabilization of polyamide 6 synthesized by anionic polymerization of caprolactam. Macromolecular Materials and Engineering,2000,280:33-41
    [20]Udipi K. Rubber modified reaction molded nylon-6 block copolymers. US Patent,5051469,1991-09-24
    [21]Udipi K. Rubber modified reaction molded nylon-6 block copolymers. US Patent,4882382,1989-11-21
    [22]Oshinski J, Keskkula H, Paul D R. Rubber toughening of polyamides with functionalized block copolymers:Nylon-6. Polymer,1992,33(2):268-283
    [23]Petrov P, Matteva R, Dimitrov R, et al. Structure and thermal behavior of nylon-6/polytetrahydrofuran triblock copolymers obtained via anionic polymerization. Journal of Applied Polymer Science,2002,84:1448-1456
    [24]Zhu C S, Kang X, He S Q, et al. Sythesis and characterization of organomontmorillonite and polyamide 66/montmorillonite nanocomposites. Chinese Journal of Polymer Science,2002,20(6):551-557
    [25]崔周平,盖雨聆,李国禄等.玻璃纤维增强MC尼龙复合材料的力学性能.北京机械工业学院学报,1999,14(1):11-15
    [26]刘卫平.硅灰石玻璃纤维掺混增强尼龙6的研究.中国塑料,1998,12(1):52-57
    [27]Garc M, Vliet G V, Van Zyl W E, et al. Large-scale extrusion processing and characterization of hybrid nylon-6/SiO2 nanocomposites. Polymers for Advanced Technologies,2004,15(4):164-172
    [28]Ou Y C, Yang F, Yu Z Z. A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization. Journal of Polymer Science Part B:Polymer Physics,1998,36(5):789-795
    [29]Li H, Li Z. Investigation of phase morphology, thermal behavior, and impact properties of polyamide-1010/polystyrene blends compatibilized by lightly sulfonated polystyrene ionomers. Journal of Applied Polymer Science,1998, 67(1):61-69
    [30]Takayanagi M. Polymer composites of rigid and flexible molecules:blend system of poly(p-phenylene terephthalamide) and ABS resin. Journal of Applied Polymer Science,1984,29(8):2547-2559
    [31]白宗武,冯威,金日光.分子复合型尼龙6合金材料的研究进展.专论与综述,1997(1):32-36
    [32]Maiti P, Nam P H, Okamoto M, et al. The effect of crystallization on the structure and morphology of polypropylene/clay nanocomposites. Polymer Engineering and Science,2002,42(18):64-71
    [33]Nam P H, Maiti P, Okamoto M, et al. Foam processing and cellular structure of polypropylene/clay nanocomposites. Polymer Engineering and Science,2002, 42(19):7-18
    [34]余鼎声,张楠,徐日炜等.阴离子开环原位聚合法制备尼龙6/蒙脱土混杂复合材料.北京化工大学学报,2000,27(4):32-35
    [35]王玉花,程超.尼龙6/粘土纳米复合材料的性能及研究进展.广东化工2007,34(9):36-38
    [36]Qu L, Veca L M, Lin Y, et al. Soluble nylon-functionalized carbon nanotubes from anionic ring-opening polymerization from nanotube surface. Macromolecules,2005,38(24):10328-10331
    [37]Xu W, Liu Y C, Xiong Y Q, et al. Anionic polymerization and properties of graft copolymers consisting of alternating styrene/maleimide copolymer main chains and polyamide 6 grafts. Journal of Applied Polymer Science,2008, 108(3):1880-1886
    [38]程晓春,固旭,张强华.共聚改性MC尼龙的制备和DSC分析.应用化工2005,34(5):282-284
    [39]Liu Y C, Xu W, Xiong Y Q, et al. Modification of polyamide 6 with polyamidnoamide-g-polyethylene glycol via hydrolytic polymerization. Chinese Journal of Polymer Science,2009,27(3):343-350
    [40]许永昌,吴水珠,赵建青等.尼龙用抗静电剂的制备与性能.塑料工业,2005,7:52-54
    [41]张军,纪奎江,夏延致.聚合物燃烧与阻燃技术.北京:化学工业出版社,2005,45-120
    [42]欧育湘,陈宇,王筱梅.阻燃高分子材料.北京:国防工业出版社,2001,2-18
    [43]彭治汉,施组培.塑料工业手册-聚酰胺.北京:化学工业出版社,2001,50-174
    [44]Zong R, Hu Y, Liu N, et al. Inverstigation of thermal degradation and flammability of polyamid-6 and polyamide-6 nanocomposites. Journal of Applied Polymer Science,2007,104:2297-2303
    [45]张燕,彭少贤.阻隔性尼龙6/有机蒙脱土纳米复合材料的制备.化学建材,2009,25(6):28-30
    [46]应莹,顾莉琴,肖茹等.抗菌尼龙6纤维的制备及其性能的研究.合成纤维,2009,2:26-29
    [47]李小伟,种国双.耐高温尼龙的研究进展.化工新型材料,2009,37(8):38-40
    [48]李闻芝,阻燃制品保障公共场所防火安全,中国化工报,2009-05-11
    [49]石建江,陈宪宏,肖鹏.阻燃玻纤增强尼龙66的研制及其应用.塑料科技,2007,35(1):74-77
    [50]Kashiwagi T, Grulke E, Hilding J, et al. Application and progress of non-halogen flame-retardant. Macromolecular Rapid Communications,2002, 23:71-765
    [51]欧育湘.实用阻燃技术.北京:化学工业出版社,2001,25 1-279
    [52]Levchik S V, Balabanovich A I, Levchik G F, et al. Recent Advanced Flame Retard. Journal of polymer materials,1996,7:64-76
    [53]贾修伟,刘治国.硅系阻燃剂研究进展.化工进展,2003,22(3):818-822
    [54]Hsiue G H, Liu Y L, Liao H H, et al. Flame-retardant epoxy resins:An approach from organic-inorganic hybrid nanocomposites. Journal of Polymer Science Part A,2001,39(7):986-996
    [55]唐伟家.高效含硼无卤阻燃剂.塑料助剂,2009,5:57
    [56]Rothon R N, Hornsby P R, Flame retardant effects of magnesium hydroxide. Polymer Degradation and Stability,1996,54(2-3):383-385
    [57]郭如新.透过国外氢氧化镁阻燃剂的发展看中国.精细与专用化学品,1999,15:13-16
    [58]向兰,吴会军,金永成等.阻燃型氢氧化镁制备技术评述.海盐湖化工2001,30(5):1-4
    [59]查忠勇,侯文斌,晏华等.无卤阻燃材料的研究进展.材料导报网刊,2008,3(3):11-14
    [60]Schartel B, Potschke P, Knoll U. Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. European Polymer Journal,2005,41(5): 1061-1071
    [61]Gilman J W, Kashiwagi T, Lichtenhan J D. Nanocomposites:a revolutionary new flame retardant approach. Sampe Journal (USA),1997,33(4):40-46
    [62]Lvchick SV, Camino G, Costa L, et al. Mechanism of action of phosphorus-based flame retardants in nylon 6. I. Ammonium polyphosphate. Fire and Materials,1995,19(1):1-10
    [63]李玉荣,李立,范辰东.包覆红磷的研制和应用.现代化工,1997(2):19-34
    [64]丁向东,李绍文.微胶囊化红磷阻燃剂的应用.安徽化工,2004,30(2):31-33
    [65]Gihnan J W, Pdtchie S J, Kashiwagi T, et al. Fire retardant additives for polymeric material-intumescent formation from silica gel-potassium carbonate. Fire and Materials,1997,21(1):23-32
    [66]王新龙,韩平.有机磷阻燃剂研究进展.精细石油化工进展,2002,3(6):33-37
    [67]Chen Y, Wang Q. Preparation, properties and characterizations of halogen-free nitrogen-phosphorous flame-retarded glass fiber reinforced polyamide 6 composite. Polymer Degradation and Stability,2006,91(9):2003-2013
    [68]Roy S, Maiti S. Synthesis and characterization of thermally stable cardo polyphosphonates. Polymer,1998,39(16):3809-3813
    [69]王良恩,吴燕翔,朱跃姿.缩聚磷酸苯酯的研制,福州大学学报(自然科学版),1995,23(1):89-91
    [70]韦玮,王建民.新型阻燃聚醚多元醇的合成研究.西安交通大学学报,1998.32(1):80-84
    [71]郑现国,李馥梅,唐小平等.磷氮系阻燃尼龙6工程塑料.阻燃材料与技术,2004,2:9-11
    [72]宗若雯,胡源,汪少锋.尼龙的阻燃研究进展.火灾科学,2003,12(1):46-50
    [73]Kleiner H J, Budzinsky W, Kith G. The use of cyclic aluminum salts of 1-hydroxydihydrophosphole oxide and 1-hydroxyphospholane oxides. European Patent.794191,1997-09-10
    [74]王贵生,郑建虎,王建国.工业聚磷酸铵的简易制备,化工时刊,1999, 13(11):34-36
    [75]张文昭,陈晓元,瞿谷仁等.聚磷酸铵的合成研究及其应用,江苏化工1994,4:9-11
    [76]Tsutsumi T, Kato N, Morikawa M, et al. Flame-retarding polymide composition. US Patent.4001177,1977-01-04
    [77]Galli D, Speroni F. Flame-ratardant polymide molding compositions. US Patent.6608123,2003-08-19
    [78]Asrar J, Weiss C R. Fire retarded polymide. US Patent.5952406,1999
    [79]Moore W P. Intumescent thermoplastic polyamide graft polymers. US Patent. 5756571,1998-05-26
    [80]Baierweck P, Gareiss B, Ulmerich K, et al. Halogen-free flameproofed thermoplastic polymide molding materials. US Patent.5482985,1996-01-09
    [81]冯美平,何冀云.氮系阻燃剂的现状与展望.精细石油化工,1998,1,24-28
    [82]刘继红,王建华.三聚氰胺系阻燃剂在尼龙中的应用.2006,6(54):33-36
    [83]Jahromi S, Gabrielse W, Braam A. Effect of melamine polyphosphate on thermal degradation of polyamides:a combined X-ray diffraction and solid-state NMR study. Polymer,2003,44(1):25-37
    [84]Liu Y, Wang Q. Melamine cyanurate-microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66. Polymer Degradation and Stability,2006,91(12):3103-3109
    [85]Yuan L, Qi W. Preparation of microencapsulated red phosphorus through melamine cyanurate self-assembly and its performance in flame retardant polyamide 6. Polymer Engineering and Science,2006,1548-1553
    [86]Arduini M, Crego-Calama M, Timmerman P, et al. A novel type of hydrogen-bonded assemblies based on the melamine cyanuric acid motif. The Journal of Organic Chemistry,2003,68(3):1097-1106
    [87]Staniec P A, Perdigao L M A, Rogers B L, et al. Honeycomb networks and chiral superstructures formed by cyanuric acid and melamine on Au(Ⅲ). The Journal of Physical Chemistry C,2007,111 (2):886-893
    [88]Ranganathan A, Pedireddi V R, Rao C N R, et al. Hydrothermal synthesis of organic channel structures:1:1 hydrogen-bonded adducts of melamine with cyanuric and trithiocyanuric acids. Journal of the American Chemical Society, 1999,121(8):1752-1753
    [89]Kimizuka N, Kawasaki T, Hirata K, et al. Supramolecular membranes. spontaneous assembly of aqueous bilayer membrane via formation of hydrogen bonded pairs of melamine and cyanuric acid derivatives. Journal of the American Chemical Society,1998,120(17):4094-4104
    [90]Bielejewska A G, Marjo C E, Prins L J, et al. Thermo dynamic stabilities of linear and crinkled tapes and cyclic rosettes in melamine cyanurate assemblies: a model description. Journal of the American Chemical Society,2001,123(31): 7518-7533
    [91]Shinichi Yuki, Tokyo, Kouji Shishido. Surface-treated melamine cyanurate powder and process for its production. US Patent.5510059,1996-04-23
    [92]Paul Jean-Michel. Process for the synthesis of melamine cyanurate. US Patent. 5202438,1993-04-13
    [93]Wakimura Kazuo, Yoshiyama Tetsuo, Kato Hiroshi, et al. Granular melamine cyanurate and preparation process thereof. US Patent.5493023,1996-02-22
    [94]苗迎彬,李光,林天峰等.新型磷-氮阻燃剂的合成及其与三聚氰胺氰尿酸盐在PA6中的协效应用.工程塑料应用,2006,34(11):9-13
    [95]刘渊.通过分子复合改性三聚氰胺尿酸盐及其对PA6阻燃性能的研究:[四川大学博士学位论文].成都:四川大学,2004
    [96]Kierkels R H, Bleiman P W, Schaafsma S H, et al. Free flowing melamine cyanurate agglomerate. US Patent.7547738,2009-06-16
    [97]Fumihito Imai, Michio Nagai, Keigo Kawasaki. Portable communication terminal. US Patent.377341,1997-01-14
    [98]Chen Y, Wang Q, Yan W, et al. Preparation of flame retardant polyamide 6 composite with melamine cyanurate nanoparticles in situ formed in extrusion process. Polymer Degradation and Stability,2006,91(11):2632-2643
    [99]欧育湘,李建军.阻燃剂-性能、制造及应用.北京:化学工业出版社,2006,3-15
    [100]刘渊,王琪,胡付余.改性三聚氰胺氰尿酸盐阻燃PA6的研究.高分子材料科学与工程,2004,20(3):220-223
    [101]李彦涛,杨景兴,肖继君等.阻燃润滑剂MCA在聚酰胺中的应用.河北省科学院学报.2004,21(3):47-50
    [102]吴朝亮,刘海燕,戴文利等.阻燃尼龙的研究进展.广东化工.2010,37(3):24-25
    [103]Luo W J, Yang W, Jiang S, et al. Microencapsulation of decabromodiphenyl ether by in situ polymerization:Preparation and characterization, Polymer Degradation and Stability,2007,93(7):1359-1364
    [104]Lee Y H, Kim C A, Jang W H, et al. Synthesis and electro-rheological characteristics of microencapsulated polyaniline particles with melamine-formaldehyde resins. Polymer,2001,42(19):8283-8277
    [105]Mehdipour-Ataei S, Babanzadeh S. New types of heat-resistant, flame-retardant ferrocene-based polyamides with improved solubility. Reactive and Functional Polymers,2007(67):883-892
    [106]徐旭波,林金清.原位聚合法制备尼龙6复合材料的研究进展,化工新型材料.2007,35(1):5-7
    [107]Hu G H, Cartier H, Feng L F, et al. Kinetics of the in situ polymerization and in situ compatibilization of poly(propylene) and polyamide 6 blends. Journal of Applied Polymer Science,2004,91(3):1498-1504
    [108]Yasuda S, Wu G C, Tanaka H, et al. Synthesis of polyester by direct polycondensation with triphenylphosphine. Journal of Polymer Science: Polymer Chemistry Edition,1983,21(9):2609-2616
    [109]Tunga J, Guptab R K, Simona G P, et al. Rheological and mechanical comparative study of in situ polymerized and melt-blended nylon 6 nanocomposites. Polymer,2005,46(23):10405-10418
    [110]Zapata-Espinosa A, Medellin-Rodriguez F J, Stribeck N, et al. Complex isothermal crystallization and melting behavior of nylon 6 nanoclay hybrids. Macromolecules,2005,38 (10):4246-4253
    [111]Ou Y C, Yang F, Yu Z Z. A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization. Journal of Polymer Science Part B:Polymer Physics,1998,36(5):789-795
    [112]欧玉春,杨锋,庄严等.在位分散聚合聚甲基丙烯酸甲酯/二氧化硅纳米复合材料研究.高分子学报,1997,4(2):199-204
    [113]Li Y L, Ferreiro V, Xie T X, et al. Study of polyamidel212/polyamide 6 composites with microfiber structure via in-situ anionic polymerization. Macromolecules,2007,40(22):7984-7988
    [114]Xu Z, Gao C. In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules,2010,43(16):6716-6723
    [115]Lenke G M, Wiff D R. In situ composites. US Patent.5223588,1993-06-29
    [116]Young, R.J.; Lovell, P. Introduction to polymers. UK:Chapman & Hall; 1991
    [117]Avarami M. Kinetics of phase change. I. General theory. The Journal of Chemical Physics,1939,7:1103-1112
    [118]Avarami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. The Journal of Chemical Physics,1940,8: 212-224
    [119]Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer, 1978,19(10):1142-1144
    [120]Budin J, Brozek J, Roda J. Polymerization of lactams,96 anionic copolymerization of ε-caprolactam with ω-laurolactam. Polymer,2006,47(1): 140-147
    [121]Ahn T O, Hong S C, Jeong H M, et al. Nylon 6-polyethersulfone-nylon 6 block copolymer: synthesis and application as compatibilizer for polyethersulfone/nylon 6 blend. Polymer,1997,38(1):207-216
    [122]Ricco L, Russo S, Orefice G, et al. Honeycomb networks and chiral superstructures formed by cyanuric acid and melamine on Au(III), Macromolecules,1999,32(23),7726-7731
    [123]Hou L L, Yang G S. Morphology and thermal behavior of MCPA6/SAN blends prepared by anionic ring-opening polymerization of ε-caprolactam, Journal of Applied Polymer Science,2006,10(2):1357-1363
    [124]成煦.尼龙6共混材料聚集态结构研究:[四川大学硕士学位论文].成都:四川大学,2003,9-10
    [125]Liu Y C, Xu W, Xiong Y Q, et al. An efficient route for the synthesis of graft copolymers with rigid backbones via anionic ring-opening polymerization of caprolactam, Materials Letters,2008,62(12-13):1849-1852
    [126]常铁军,祁欣.材料近代分析测试方法.哈尔滨:哈尔滨工业大学出版社,2003,110-213
    [127]沈兴.差热、热重分析与非等温固相反应动力学.北京:冶金工业出版社,1995,5-7
    [128]Dallas G, Kelly T, Danley R, et al. A new technology to improve DSC performance. American Laboratory,2001,33(16):26-32
    [129]Zhao C S, Huang F L, Xiong W C, et al. A novel halogen-free flame retardant for glass-fiber-reinforced poly(ethylene terephthalate). Polymer Degradation and Stability,2008,93(6):1188-1193
    [130]Kiliaris P, Papaspyrides C D, Pfaendner R. Polyamide 6 filled with melamine cyanurate and layered silicates:evaluation of flame retardancy and physical properties. Macromolecular Materials and Engineering.2008,293(9):740-751
    [131]Wang Z Y, Feng Z Q, Liu Y, et al. Flame retarding glass fibers reinforced polyamide 6 by melamine polyphosphate/polyurethane-encapsulated solid acid. Journal of Applied Polymer Science,2007,105(6):3317-3322
    [132]Zhang Q, Chen Y H. Synergistic effects of ammonium polyphosphate/melamine intumescent system with macromolecular char former in flame-retarding polyoxymethylene. Journal of Polymer Research, 2011,18(2):293-303
    [133]Casu A, Camino G, DeGiorgi M. Fire-retardant mechanistic aspects of melamine in polyamide copolymer. Polymer Degradation and Stability,1997, 58(3):297-302
    [134]Gijsman P, Sseenbakkers R, Furst C, et al. Diference in the retardant mechanism of melamine cyanulate in polyamide 6 and polyamide 66. Polymer Degradation and Stability,2002,78(2):219-224
    [135]Kissinger H E. Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards, 1956,57:217-219
    [136]欧育湘.阻燃剂.北京:国防工业出版社,2009,1-20
    [137]董纪震,赵耀明,陈雪英等.合成纤维生产工艺学(第二版).北京:中国纺织出版社,1996,176-192
    [138]田军,刘吉平,钱诚等.阻燃抗滴落PA6纤维的性能研究.合成纤维工业,2006,29(4):5-7
    [139]纪全,夏延致,张友夏.阻燃锦纶的纺丝及性能研究.青岛大学学报,2001,16(2):10-13
    [140]董秋兰,陈国华,李建府等.尼龙6纤维织物的阻燃研究进展.化工进展,2009,28(6):982-985
    [141]施菊,姜伟伟,张红兵.阻燃涂层胶FR-III在尼龙织物上的应用.印染,2006,32(9):31-32
    [142]Yang H, Yang C Q. Durable flame retardant finishing of the nylon/cotton blend fabric using ahydroxyl-functional organophosphorus oligomer. Polymer Degradation and Stability,2005,88(3):363-370
    [143]Yao K D, Han W P, Han D C. Flame-retarding modification of nylon 6 textile. Journal of Applied Polymer Science,1992,46(3):467-470
    [144]Li L Y, Chen G H, Liu W, et al. The anti-dripping intumescent flame retardant finishing for nylon-6,6 fabric. Polymer Degradation and Stability,2009,94(6): 996-100
    [145]Well E D, Levvehik S. Current praetice and recent commercial developments in flameretardancy of polyamides. Journal of Fire Sciences,2004,22(3): 251-164
    [146]Zhang S, Horroeks A R. Substantive intumescence from phosphor rylatedl 1, 3-propanediol derivatives substituted onto eellulose. Journal of Applied Polymer Science,2003,90(12):3165-317

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700