用户名: 密码: 验证码:
西准噶尔古生代蛇绿混杂岩地质特征及其构造演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西准噶尔是中亚造山带重要组成部分,位于中亚造山带的西南缘,是研究中亚造山带古生代构造演化关键的地区。该地区蛇绿混杂岩分布广泛,保存比较完整,主要包括唐巴勒、玛依勒、达尔布特、克拉玛依、巴尔雷克等多条蛇绿混杂岩带。本文对这些混杂岩带进行详细研究,并结合前人已有的研究资料,探讨西准噶尔古生代洋盆的性质、时限、洋盆演化过程及所伴随的构造-岩浆作用等。
     玛依勒蛇绿混杂岩中辉长岩的LA-ICP-MS锆石年龄为572±9Ma,属于埃迪卡拉纪,该年龄是准噶尔乃至北疆地区报道的最古老的蛇绿混杂岩年龄,表明该蛇绿混杂岩带中至少存在埃迪卡拉纪和志留纪两期的洋壳组分。玛依勒蛇绿混杂岩中的枕状玄武岩为碱性玄武岩,岩石具有高Ti(TiO_2=1.65%~3.13%)、高Fe(FeOt=8.93%~18.11%)、高P(P_2O_5=0.17%~0.51%)及低Mg(MgO=3.95%~5.27%),Th/Ta比值相对较高(Th/Ta=1.1~1.9),LREE和HREE分异较为明显((La/Yb)N=2.5~7.4)等特征,这些特征与洋岛玄武岩类似,可能形成于大洋板内的大洋岛屿环境。其中的辉长岩地球化学特征不同于玄武岩,可能形成与俯冲有关的环境。玛依勒蛇绿混杂岩中玄武岩与EMI型洋岛玄武岩具有相似的地球化学特征,表明其岩浆源区可能为EMI型富集地幔。岩石成因与软流圈地幔关系密切,软流圈的上涌导致尖晶石相二辉橄榄岩地幔源区大比例部分熔融,是岩石圈-软流圈地幔相互作用的产物。
     唐巴勒SSZ-型蛇绿混杂岩时代应为寒武纪,其中玄武岩属于亚碱性拉斑系列,地球化学性质显示明显的弧岩浆特征,是来自上地幔岩石部分熔融的产物,源区至少发生了2%~5%尖晶石二辉橄榄岩部分熔融,其形成于岛弧或弧后盆地环境,结合前人研究认为在寒武-奥陶纪西准噶尔发生南向俯冲作用。
     达尔布特蛇绿混杂岩带是西准噶尔最大的蛇绿混杂岩带之一,前人对其时代有不同认识,本文在辉长岩及玄武岩中获得LA-ICP-MS锆石U-Pb年龄分别为:391±6Ma,368±11Ma和375±2Ma,确认时代为中-晚泥盆世。对其中最大的萨尔托海及苏鲁乔克两个混杂岩进行研究发现,玄武质岩石分为两类,一类为拉斑质,另一类为碱性系列。前者具有俯冲带岩浆特征,这些玄武质岩石源于2%~5%的尖晶石二辉橄榄岩部分熔融,而后者地球化学特征与OIB玄武岩极为相似,没有明显的Nb、Ta、Ti负异常,很可能与地幔热柱有关。源区组成可能为石榴石+尖晶石二辉橄榄岩,并发生了5%~10%的部分熔融。
     克拉玛依蛇绿混杂岩是近年科研和区域地质调查新发现的一条蛇绿混杂岩带,对其中玄武岩及辉长岩进锆石U-Pb同位素年代学分析,获得加权平均206Pb/238U年龄分别为395±3Ma,387±8Ma,与达尔布特蛇绿构造混杂岩年龄基本一致。克拉玛依蛇绿混杂岩中的辉长岩和玄武岩具有不同的地球化学特征,前者富集大离子亲石元素亏损高场强元素,特别是具有Nb、Ta的负异常,显示与俯冲带相关信息,即可能形成于SSZ环境,而后者轻稀土元素强烈富集,没有明显的Nb、Ta的负异常,并和典型的OIB玄武岩类似,源区含有2%~5%石榴石+3%尖晶石,显示与地幔柱相关的成因信息。
     巴尔雷克蛇绿混杂岩中玄武岩具有高TiO_2和Na2O,低Al2O3和K2O特征,REE配分模式与洋岛玄武岩(OIB)类似,岩石成因与软流圈地幔关系密切,软流圈的上涌导致尖晶石相二辉橄榄岩地幔源区大比例部分熔融,是岩石圈-软流圈地幔相互作用的产物,可能形成于弧后盆地的大洋岛屿环境。
     在前寒武纪浩瀚的西准噶尔大洋发育大洋高原,随后准噶尔洋向南俯冲形成了SSZ型的唐巴勒蛇绿混杂岩,由于俯冲作用向北后退,形成了SSZ型玛依勒蛇绿混杂岩,其中包含有前寒武纪洋岛的组分。泥盆世时期,俯冲板片继续后撤至巴尔雷克、达尔布特及克拉玛依一线,形成了几乎同一纬度的三条蛇绿混杂岩带,达尔布特及克拉玛依蛇绿混杂岩带中包含有与地幔柱有关的洋岛组分,石炭纪仍有俯冲作用并伴随有晚石炭世的洋脊俯冲,形成大规模的岩浆事件,可能一直延续至早二叠世末,最终洋盆关闭。
As part of Central Asian Orogenic Belt (CAOB), the West Junggar is located atthe southern margin of the CAOB, and is a key area for understanding thePaleozoic tectonic evolution of the CAOB. Several ophiolitic mélanges were formedand preserved in the West Junggar, including Tangbale, Mayle, Durbut, Karamayand Barleik ophiolitic mélange belts. As a result of detailed study on the ophioliticmélanges, combined with data from the literature, I discuss the nature, time andtectonic evolution of the West Junggar Paleozoic ocean basin, and associated withthe structure-magmatism.
     LA-ICP-MS zircon U-Pb weighted mean206Pb/238U age of the gabbros from theMayile ophiolitic mélange (MOM) in the West Junggar is572±9Ma, belong toEdiacaran, this is oldest age from ophiolitic mélange in the Junggar as well asNorth Xinjiang, indicating the Mayile ophiolitic mélange including Ediacaran andSilurian ocean crust at least. The alkalic pillow basalts from Mayile ophioliticmélange are similar with the ocean island basalt (OIB), characteristics by high Ti(TiO_2=1.65%~3.13%), Fe (FeOt=8.93%~18.11%), P (P_2O_5=0.17%~0.51%), andlow Mg (MgO=3.95%~5.27%), and high Th/Ta ratios (Th/Ta=1.1~1.9), and cleardifferentiation between LREE and HREE ((La/Yb)N=2.5~7.4). It is assumed that themagma extruded into ocean island or seamount of the ocean floor. However, thegeochemical characteristics of the gabbros different from basalts, may be formsubduction-related setting. The geochemical features of the basalts show theyhave ocean island basalts, derived from EMI type enriched-mantle. Petrogenesis isclosely related to asthenosphere mantle, asthenospheric mantle upwelling led to alarge proportion of spinel lherzolite mantle partial melting to forming the basaltmagam. It is a product of asthenosphere interacted with lithosphere.
     The time of SSZ-type Tangbale ophiolitic mélange (TOM) belongs to Cambrian.All of the tholeiitic basalt samples bear the signature of subduction related basalt.The rocks were derived from depleted2–5%spinel lherzolite mantle source in aisland-arc or back-arc basin setting. Geochemical data from this study and previous work constrains southward subduction model in the West Junggar for theCambrian–Ordovician.
     The Darbut ophiolitic mélange (DOM) in the West Junggar is the largest andone of the best-preserved Paleozoic ophiolitic mélanges in the CAOB. However,the time of the Darbut ophiolitic mélange is still disputed. Zircon U–Pb analysesfrom the basalt and gabbro by LA-ICP-MS yielded weighted mean age of391±6Ma368±11Ma and375±2Ma, suggesting a Late Devonian emplacement.Based on detailed studying on the two largest Saertuohai and Suluqiaoke body,geochemically, the basaltic rocks includes at least two distinct magmatic units: oneis tholeiitic basalt, which were produced by ca.2%~5%spinel lherzolite partialmelting in a suprasubduction zone environment (SSZ), and the other contemporaryalkali lavas, which were characterized by no obvious Nb, Ta and Ti negativeanomalies, suggesting a typical OIB affinity, were derived from5%~10%garnet+minor spinel lherzolite partial melting in an oceanic plateau or a seamountassociated with a mantle plume-related magmatism.
     The Karamay ophiolitic mélange (KOM), which is a ophiolitic mélange found bygeological survey and research in recent years, located in the eastern part of theWest Junggar area in NW China. Zircon U-Pb analyses from the basalt and gabbroby laser-ablation ICP-MS yielded weighted mean206Pb/238U age of395±3Ma and387±8Ma, respectively, suggesting a Middle Devonian emplacement, andconsistent with the age of the DOM. The gabbros display tholeiitic basalt features,LILE enrichment and HFSE depletion, and obvious Nb and Ta negative anomalies,derived from a depleted mantle source with addition of fluids from a subducted slabwithin a suprasubduction zone environment. Compared to the gabbros, all basaltsbear the signature of Ocean Island Basalt (OIB) and are characterized by alkalinecomposition, LILE and LREE enrichment and HREE depletion, no obvious Nb, Taand Ti negative anomalies. I propose that these basaltic rocks were derived from amantle plume-related magmatism associated with the evolution of the PaleasianOceanic system, with an enriched mantle source could have contained2%-5%garnet and~3%spinel.
     Basalts from the Barleik ophiolitic mélange in the West Junggar displayalkaline basalt features, and have typical geochemical characteristics to those ofOIB, with high TiO_2, Na2O, and low Al2O3, K2O. The geochemical characteristics ofthe basalts show they have ocean island basalts, petrogenesis is closely related toasthenosphere mantle, asthenospheric mantle upwelling led to a large proportionof spinel lherzolite mantle partial melting to forming the basalt magam.
     Seamount/oceanic plateau developed in the vast West Junggar Ocean (WJO)in Precambrian, the SSZ-type Tangbale ophiolitic mélange formed following theWJO southward subducted. As subduction move to north, the SSZ-type Mayleophiolitic mélange, including Precambrian seamount from the WJO, formed in thenorth of the Tangbale. In pace with continuous subduction northward retreat, theBarleik, Darbut and Karamay ophiolitic mélange enplaced to the north of the Maylein the Late Devonian. Moreover, some seamount components related to mantleplume found in the Darbut and Karamay ophiolitic mélange. During the period ofCarboniferous, the West Junggar was dominated by normal northwestwardsubduction, and the ridge subduction commenced in the Late Carboniferous, andlead to large-scale magmatic events in the West Junggar. The ridge subdution maybe continued until final ocean basin closed.in the end of the Early Permian.
引文
[1] Seng r, A. M. C., Natal'in, B. A., Burtman, V. S. Evolution of the Altaid tectoniccollage and Palaeozoic crustal growth in Eurasia[J]. Nature,1993,364:299–307.
    [2] eng r, A. M. C. and Natal'in, B. A. Turkic-type orogeny and its role in the marking ofthe continental crust[J]. Annual Reviews of Earth and Planetary Sciences,1996,24:263–337.
    [3] Jahn, B. M., Windley, B. F., Natal'in, B. A., et al. Phanerozoic continental growth inCentral Asia[J]. Journal of Asian Earth Sciences,2004,23:599–603.
    [4] Windley, B. F., Alexeiev, D., Xiao, W. J., et al. Tectonic models for accretion of theCentral Asian Orogenic belt[J]. Journal of the Geological Society, London,2007,164:31–47.
    [5] Xiao, W. J., Han, C. M. Yuan, C., et al. Middle Cambrian to Permian subduction-relatedaccretionary orogenesis of North Xinjiang, NW China: implications for the tectonicevolution of Central Asia[J]. Journal of Asian Earth Sciences,2008,32:102–117.
    [6] Jahn, B. M., Wu, F. Y., and Chen, B. Massive granitoid generation in Central Asia: Ndisotope evidence and implication for continental growth in the Phanerozoic[J].Episodes,2000,23:82–92.
    [7] Feng, Y. M., Coleman, R. G., Tilton, G. R. Tectonic evolution of the West Junggarregion, Xinjiang, China[J]. Tectonics,1989,8:729–752.
    [8] Xiao, W.J., Huang, B.C., Han, C.M., Sun, S., Li, J.L.,2010. A review of the westernpart of the Altaids: A key to understanding the architecture of accretionary orogens.Gondwana Research18,253–273.
    [9] Xiao, W. J., Kusky, T. M. Geodynamic processes and metallogenesis of the CentralAsian and related orogenic belts: introduction[J]. Gondwana Research2009,16:167–169.
    [10] Xiao, W. J., Windley, B. F., Yuan, C., et al. Paleozoic multiple subduction-accretionprocesses of the southern altaids[J]. American Journal of Science,2009,309:221–270.
    [11] Xiao, W. J., Windley, B. F., Badarch, G., et al. Palaeozoic accretionary and convergenttectonics of the southern Altaids: implications for the lateral growth of Central Asia[J].Journal of the Geological Society, London,2004,161:339–342.
    [12] Shen, P., Shen, Y. C., Li, X. H. Northwestern Junggar Basin, Xiemisitai Mountains,China: A geochemical and geochronological approach[J]. Lithos (2012), doi:10.1016/j.lithos.2012.02.004.
    [13] Shen, P., Shen, Y. C., Liu, T. B., et al. Geochemical signature of porphyries in theBaogutu porphyry copper belt, western Junggar, NW China[J]. Gondwana Research,2009,16:227–242.
    [14] Shen, P., Shen, Y. C., Wang, J. B., et al. Methane-rich fluid evolution of the Baogutuporphyry Cu–Mo–Au deposit, Xinjiang, NW China[J]. Chemical Geology,2010,275:78–98.
    [15]沈远超,丁奎首,郑祥身,等.哈图金矿田成矿模式[J].西准噶尔地区岩浆活动与金矿化作用[M].沈远超,金成伟著.北京:科学出版社,1993,113–171.
    [16]沈远超,金成伟,齐进英,等.西准噶尔金矿化集中区的成矿模式和形成机理[J].见:涂光炽主编,新疆北部固体地球科学新进展[M].北京:科学出版社,1993,295–310.
    [17]张连昌,万博,焦学军,等.西准包古图含铜斑岩的埃达克岩特征及其地质意义[J].中国地质,2006,33(3):626–631.
    [18]何登发,张义杰,况军.准噶尔盆地构造特征与油气田分布规律[J].中国含油气盆地构造学[M].李德生,石油工业出版社.2002,1:598–619.
    [19]何登发,陈新发,况军,等.准噶尔盆地石炭系油气成藏组合特征及勘探前景[J].石油学报,2010,31(1):1–11.
    [20]蔚远江.准噶尔西北缘前陆冲断带二叠纪逆冲推覆作用的沉积响应[J].中国含油气盆地构造学[M].李德生,石油工业出版社.2002,1:620–633.
    [21] Kwon, S. T., Tilton, G. R., Coleman, R. G., et al. Isotopic studies bearing on thetectonics of the West Junggar region, Xinjiang, China[J]. Tectonics,1989,8:719–727.
    [22] Buckman, S., Aitchison, J. C. Tectonic evolution of Paleozoic terranes in WestJunggar, Xinjiang, NW China[J]. In: Malpas, J., Fletcher, C.J.N., Aitchison, J.C.(Eds.), Aspects of the Tectonic Evolution of China[M]. Geological Society ofLondon, Special Publication2004,226:101–129.
    [23] Xu, Z., Han, B.F., Ren, R., Zhou, Y.Z., Zhang, L., Chen, J.F., Su, L., Li, X.H., Liu,D.Y.,2012. Ultramafic-mafic mélange, island arc and post-collisional intrusions inthe Mayile Mountain, West Junggar, China: implications for Paleozoic intra-oceanicsubduction-accretion process. Lithos132–133,141–161.
    [24] Yang, G. X., Li, Y. J., Gu, P. Y., et al. Geochronological and geochemical study of theDarbut Ophiolitic Complex in the West Junggar (NW China): Implications forpetrogenesis and tectonic evolution. Gondwana Research,2012, doi:10.1016/j.gr.2011.07.029.
    [25] Yang, G. X., Li, Y. J., Santosh, M., et al. A Neoproterozoic seamount in the PaleoasianOcean: Evidence from zircon U–Pb geochronology and geochemistry of the Mayileophiolitic mélange in West Junggar, NW China. Lithos,2012,doi:10.1016/j.lithos.2012.01.026.
    [26] Zhang, C., Zhai, M. G., Allen, B., et al. Implications of Paleozoic Ophiolites fromWestern Junggar, NW China, for the Tectonics of Central Asia[J]. Journal ofGeological Society,1993,150:551–561.
    [27]张弛,黄萱.新疆西准噶尔蛇绿岩形成时代和环境的探讨[J].地质论评,1992,38(6):509–523.
    [28]张弛新疆蛇绿岩某些地质特征[J].地质论评,1981,27(4):307–314.
    [29]张弛,黄萱,翟明国.新疆西准噶尔蛇绿岩地质特征及其形成构造环境和时代.中国科学院地质研究所集刊,1995,8:165–218.
    [30]张立飞.新疆西准噶尔唐巴勒蓝片岩40Ar/39Ar年龄及其地质意义.科学通报,1997,42(20):2178–2181.
    [31]张旗.蛇绿岩研究中的几个问题[J].岩石学报,1995,11(增刊):228–240.
    [32]张旗,钱青,王焰.蛇绿岩岩石组合及洋脊下岩浆作用[J].岩石矿物学杂志,19(l):1–7.
    [33]张旗,周国庆.中国蛇绿岩[M].北京:科学出版社,2001,1–182.
    [34]张元元,郭召杰.2008.甘新交界红柳河蛇绿岩形成和侵位年龄的准确限定及大地构造意义[J].岩石学报,24(4):803–809.
    [35]赵志长,李金铭,杨和平.新疆西准噶尔达拉布特岩带基性超基性岩体侵位方式与构造控制型式[J].西北地质,1981,(1):12–19.
    [36]赵中岩.西准噶尔萨尔托海蛇绿混杂岩的构造地质特征[D].北京,中国科学院地质研究所.博士论文,1988.
    [37]赵中岩.西准噶尔萨尔托海蛇绿岩岩石化学特征及其形成的大地构造环境[J].大陆岩石圈构造与资源[M].徐贵忠,常承法.北京:海洋出版社,1992,47–63.
    [38]赵中岩.西准噶尔萨尔托海蛇绿岩中尖晶石二辉橄榄岩中橄榄石的位错构造及其意义[J].地质科学,1993,28(3):279–283.
    [39]周国庆.蛇绿岩的概念及其演变[J].见:张旗主编.蛇绿岩与地球动力学研究[M].北京:地质出版社,1996,15–20.
    [40]周国庆.蛇绿岩分类的回顾[J].见:张旗主编.蛇绿岩与地球动力学研究[M].北京:地质出版社,1996,63–68.
    [41]何国琦,刘建波,张越迁,等.准噶尔盆地西北缘卡拉玛依早古生代蛇绿混杂岩的厘定[J].岩石学报,2007,23(7):1573–1576.
    [42]徐新,何国琦,李华芹,等.克拉玛依蛇绿混杂岩带的基本特征和锆石SHRIMP年龄信息[J].中国地质,2006,33(3):470–475.
    [43]徐新,周可法,王煜.2010.西准噶尔晚古生代残余洋盆消亡时间与构造背景研究[J].岩石学报,2010,26(11):3206–3214.
    [44]张元元,郭召杰.准噶尔北部蛇绿岩形成时限新证据及其东、西准噶尔蛇绿岩的对比研究[J].岩石学报,2010,26(2):421–430.
    [45]白吉文,Robinson P.,杨经绥,等.西准噶尔不同时代蛇绿岩及其构造演化[J].岩石学报,1995,11(增刊):62–72.
    [46]陈博,朱永峰.2010.新疆克拉玛依百口泉蛇绿混杂岩中辉长岩岩石学和地球化学研究[J].岩石学报,2010,26(8):2287–2298.
    [47]陈博,朱永峰,魏少妮,等.2008.西准噶尔克拉玛依蛇绿混杂岩中的石榴角闪岩[J].岩石学报,2008,24(5):1034–1040.
    [48]陈博,朱永峰,安芳,等.2011.新疆克拉玛依地区百口泉发现尖晶石橄榄岩[J].地质通报,2011,30(7):1017–1026.
    [49]陈石,郭召杰.达拉布特蛇绿岩带的时限和属性以及对西准噶尔晚古生代构造演化的讨论[J].岩石学报,2010,26(8):2336–2344.
    [50]朱永峰,徐新.西准噶尔白碱滩二辉橄榄岩中两种辉石的出溶结构及其地质意义[J].岩石学报,2007,23(5):1075–1086.
    [51]朱永峰,徐新,陈博,等.西准噶尔蛇绿混杂岩中的白云母大理岩和石榴角闪岩:早古生代残余洋壳深俯冲的证据[J].岩石学报,2008,24(12):2676–2777.
    [52]朱永峰,徐新,魏少妮,等.西准噶尔克拉玛依OIB型枕状玄武岩地球化学及其地质意义研究[J].岩石学报,2007,23(7):1739–1748.
    [53]辜平阳,李永军,张兵,等.西准噶尔达尔布特蛇绿岩中辉长岩LA–ICP–MS锆石U–Pb测年[J].岩石学报,2009,25(6):1364–1372.
    [54]刘希军,许继峰,王树庆,等.新疆西准噶尔达拉布特蛇绿岩E-MORB型镁铁质岩的地球化学、年代学及其地质意义[J].岩石学报,2009,25(6):1373–1389.
    [55]雷敏,赵志丹,侯青叶,等.新疆达拉布特蛇绿岩带玄武岩地球化学特征:古亚洲洋与特提斯洋的对比[J].岩石学报,2008,24(4):661–672.
    [56]李行,巩志超,董显扬,等.新疆西准噶尔地区基性超基性岩生成地质背景及区域成矿特征[J].中国地质科学院西安地质矿产研究所所刊,1987,18:3–140.
    [57]朱宝清,冯益民.新疆西准噶尔板块构造及演化[J].新疆地质,1994,12(2):91–105.
    [58]朱宝清,冯益民,叶良和.新疆西准噶尔古生代蛇绿岩及其地质意义[J].中国北方板块构造论文集.地质出版社.1987,2:19–28.
    [59]朱宝清,王来生,王连晓.西准噶尔西南地区古生代蛇绿岩[J].中国地质科学院西安地质矿产研究所所刊,1987,17:3–116.
    [60]新疆维吾尔自治区地质矿产局.新疆区域地质志[M].北京:地质出版社,1993,442–504.
    [61] Coleman, R. G. Ophiolites[M]. New York: Springer-Verlag,1977:1–229.
    [62] Steinmann G. Der ophiolitischen Zonen in der Mediterranean Kettengebirgen[M].14thInternational Geological Congress in Madrid,1927,2:638–667.
    [63] Hess, H. H. Mid-ocean ridges and tectonics of the sea floor[C]//Whittard W F,Bradshaw R.Submarine geology and geophysics. Proceedings of the17thSymposium of the Colston Research Society, London, Butterworths,1965:317–334.
    [64] Hess, H. H. A primary peridotite magma[J]. American Journal of Science,1938,35:321–344.
    [65] Dilek, Y, Furnes, H. Ophiolite genesis and global tectonics:Geochemical and tectonicfingerprinting of ancient oceanic lithosphere[J].Geological Society of AmericaBulletin,2011,123:387–411,doi:10.1130/B30446.1.
    [66] Dilek, Y. Ophiolites in Earth History[C]//Dilek, Y., Robinson, P. T. Ophiolites in EarthHistory. Geological Society of London Special Publications,2003,218:9–19.
    [67] Dilek, Y. Ophiolite concept and its evolution[C]//Dilek, Y, Newcomb, S. Ophioliteconcept and the evolution of geological thought. Geological Society of AmericaSpecial Paper,2003,373:1–16.
    [68]张进,邓晋福,肖庆辉,等.蛇绿岩研究的最新进展[J].地质通报,2012,31(1):1–12.
    [69] Jennings, C. W., Strand, R. G.. Geologic Map of California, Santa Cruz quadrangle[M].California Division of Mines and Geology, scale1∶250000,1959,1sheet.
    [70] Aubouin, J., Ndojaj, I. Regard sur la geologie de l'Albanie et saplace dans la geologiedes Dinarides[J]. Bulletin de la SociétéGéologique de France,ser.7,1964, VI:593–625.
    [71] Dubertret, L. Géologie des roches vertes du NO de la Syrie et du Hatay(Turquie)[J].Notes et mémoires du Moyen-Orient,1955,6:13–179.
    [72] Miyashiro, A. The Troodos complex was probably formed in an island arc[J]. EarthPlanetary Science Letters,1973,19:218–224.
    [73] Hawkins, J. W. Petrological and geochemical characteristics of marginal basinbasalts[C]//Talwani M, Pitman W C III.Island arcs, deep sea trenches and back arcbasins. American Geophysical Union,1977,1:355–365.
    [74] Pearce, J. A., Lippard, S. J., Roberts, S. Characteristics and tectonic significance ofsupra-subduction zone ophiolites [C]//Kokelaar B P, Howells M F.Marginal BasinGeology: Volcanic and Associated Sedimentary and Tectonic Processes in Modernand Ancient Marginal Basins.Geological Society of London Special Publication,1984,16:77–94.
    [75]周国庆.蛇绿岩研究新进展及其定义和分类的再讨论[J].南京大学学报(自然科学版),2008,44:1–24.
    [76] Miyashiro, A. Classification, characteristics, and origin of ophiolites[J]. Journal ofGeology,1975,83:249–281.
    [77] Beccaluva, L., Ohnenstetter, D., Ohnentstetter, M., et al. Two magmatic series withisland arcs affinities within the Vourinos ophiolites[C]//Atti del Congresso dellaSocieta Italiana di Mineralogia e Petrologia Translated Title. Proceedings of theCongress of the Italian Society of Mineralogy and Petrology, Rendiconti della SocietaItaliana di Mineralogia e Petrologia,1982,38:900–901.
    [78] Church, W. R., Riccio, L. Fractionation trend of the bay of islands ophiolite ofNewfoundland: polycyclic cumulate sequences in ophiolites and their classification[J].Canadian Earth Sciences,1977,14:1156–1165.
    [79] Boudier, F., Nicolas, A. Harzburgite and lherzolite subtypes in ophiolitic and oceanicenvironments[J]. Earth Planetary Science Letters,1985,76:84–92.
    [80] Ishiwatari, A. Alpine ophiolites: Product of low-degree mantle melting in a Mesozoictranscurrent rift zone[J]. Earth Planetary Science Letters,1985,76:93–108.
    [81] Moores, E. M. Origin and emplacement of ophiolites[J]. Reviews of Geophysics andSpace Physics,1982,20:735–760.
    [82] Coleman, R. G. The diversity of ophiolites[J]. Geologic en Mijnbouw,1984,63:144–150.
    [83]王希斌,鲍佩声,戎合.中国蛇绿岩中变质橄榄岩的稀土元素地球化学[J].岩石学报,1995,11(增刊):24–41.
    [84] Wang, X. B., Bao, P. S. Types of melting residue and structural deformation of themantle peridotite bodies in orogenic belts of China[M]. Progress in geosciences ofChina(1985~1988), Paper to28thIGC,1989:63–66.
    [85]肖序常.从扩张速率试论蛇绿岩的类型划分[J].岩石学报,1995,11(增刊):10–23.
    [86]张旗.蛇绿岩的分类[J].地质科学,1990,25(1):54–61.
    [87] Sengor, A. M. C. The repeated rediscovery of melanges and its implications for thepossibility and the role of objective evidence in the scientific enterprise[J]. Ophioliteconcept and the evolution of geological thought[M]. Y. Dilek and S. Newcomb.Boulder, Colorado, Geological Society of America Special Paper,2003,373,385–446.
    [88] Raymond, L. A. Classification of melanges. Melanges: their nature, origin, andsignificance[J]. Raymond, L. A., Colorado B., Geological Society of America SpecialPaper,1984,198,7–20.
    [89] Needham, D. T.,1995. Mechanisms of melange formation: examples from SW Japanand southern Scotland[J]. Journal of Structural Geology,1995,17(7):971–985.
    [90] Catalano, S., Grasso, G., Mazzoleni, et al. Intracontinental tectonic melange inSouthern Apennines[J]. Terra Nova,2007,19,287–293.
    [91] Vollmer, F. W., Bosworth, W. Formation of melange in a foreland basin overthrustsetting: Example from the Taconic Orogen[J]. Melanges: their nature, origin, andsignificance[M]. L. A. Raymond. Boulder, Colorado, Geological Society of AmericaSpecial Paper,1984,198:53–70.
    [92] Page, B. M. and Suppe, J. The Pliocene Lichi Melange of Taiwan: Its plate tectonicand olistostromal origin[J]. American Journal of Science,1981,281:193–227.
    [93] Hashimoto, Y. and G. Kimura. Underplating process from melange formation toduplexing: Example from the Cretaceous Shimanto Belt, Kii Peninsula, southwestJapan[J]. Tectonics,1999,18(1):92–107.
    [94] Kusky, T. M. and D. C. Bradley. Kinematic analysis of melange fabrics: examples andapplications from the McHugh Complex, Kenai Peninsula, Alaska[J]. Journal ofStructural Geology,1999,21:1773–1796.
    [95] Bettelli, G. and P. Vannucchi. Structural style of the offscraped Ligurian oceanicsequences of the Northern Apennines: new hypothesis concerning the development ofmelange block-in-matrix fabric[J]. Journal of Structural Geology,2003,25:371–388.
    [96] Fukui, A. and K. I. Kano. Deformation process and kinematics of melange in the EarlyCretaceous accretionary complex of the Mino-Tamba Belt, eastern southwest Japan[J].Tectonics,2007,26: doi:10.1029/2006TC001945.
    [97] Jacobi, R. D.,1984. Modern submarine sediment slides and their implications formelange and the Dunnage Formation in north-central Newfoundland[J]. Melanges:their nature, origin, and significance. L. A. Raymond. Boulder, Colorado, GeologicalSociety of America Special Paper.198:81–102.
    [98] Brandon, M. T. Deformational styles in a sequence of olistostromal melanges, PacificRim Complex, western Vancouver Island, Canada[J]. Geological Society of AmericaBulletin,1989,101:1520–1542.
    [99] Kimura, G., S. Maruyama, Y. Isozaki, et al. Well-preserved underplating structure ofthe jadeitized Franciscan complex, Pacheco Pass, California[J]. Geology,1996,24(1):75–78.
    [100] Sarwar, G. and K. A. DeJong,1984. Composition and origin of the Kanar Melange,southern Pakistan[J]. Melanges: their nature, origin, and significance. L. A. Raymond.Boulder, Colorado, Geological Society of America Special Paper,198:127–137.
    [101] Ujiie, K.,2002. Evolution and kinematics of an ancient decollement zone, melangein the Shimanto accretionary complex of Okinawa Island, Ryukyu Arc[J]. Journal ofStructural Geology,24:937–952.
    [102]王玉净,舒良树.中国蛇绿岩带形成时代研究中的两个误区[J].古生物学报,2001,40(4):529–532.
    [103]杨丽红,王汝建.南海南部1.2MaBP以来古生态环境变化事件的放射虫记录[J].科学通报,2002,47(14):1098–1102
    [104]王金宝,李新正.我国放射虫分类学和生态学研究进展与展望[J].海洋科学,2003,27(9):28–29,80.
    [105]崔春龙.硅质岩研究中的若干问题[J].矿物岩石,2001,21(3):100–104.
    [106]吴浩若.放射虫硅质岩对华南古地理的启示[J].古地理学报,1999,1(2):28–35.
    [107]吴浩若.《中国的近海放射虫》的古环境启示[J].地质科学,2000,35(4):507.
    [108]程振波,石学法.白令海表层沉积物中的放射虫与海洋环境[J].2000,12(1):24–31.
    [109]陆松年,李怀坤,于海峰.地质事件、序列和事件群[J].地质论评,2001,47(5):521–526.
    [110]支霞臣. Re–Os同位素体系和大陆岩石圈地幔定年[J].科学通报,1999,44(22):2362–2371.
    [111]杨树德.1994.新疆北部的古板块构造[J].新疆地质,12(1):1–8.
    [112]王宗秀,周高志,李涛.2003.对新疆北部蛇绿岩及相关问题的思考和认识[J].岩石学报,19(4):683–691.
    [113]肖序常,汤耀庆,冯益民,等.新疆北部及其邻区大地构造[M].北京:地质出版社,1992,1–169.
    [114] Jian, P., Liu, D.Y., Shi, Y.R., et al. SHRIMP dating of SSZ ophiolites from northernXinjiang Province, China: Implications for generation of oceanic crust in the centralAsian orogenic belt[J]. In: Sklyarov EV (ed.). Structural and Tectonic Correlationacross the Central Asian Orogenic Collage: Northeastern Segment. Guidebook andAbstract Volume of the Siberian Workshop IGCP-480,2005,1–246.
    [115]魏荣珠.新疆西准噶尔玛依勒山枕状熔岩地质特征及大地构造意义[J].新疆地质,2010,28(3):229–235.
    [116]黄建华,金章东,李富春.洪古勒楞蛇绿岩Sm–Nd同位素特征及时代界定[J].科学通报,1999,44(9):1004–1007.
    [117]张传林,周刚,王洪燕,等.塔里木和中亚造山带西段二叠纪大火成岩省的两类地幔源区[J].地质通报,2010,29(6):779–794.
    [118]朱永峰,徐新.新疆塔尔巴哈台山发现早奥陶世蛇绿混杂岩[J].岩石学报,2006,22(12):2833–2842.
    [119]冯益民.西准噶尔古板块构造特征[J].中国地质科学院西安地质矿产研究所所刊,1987,18:141–160.
    [120]唐红峰,苏玉平,刘丛强,等.新疆北部克拉麦里斜长花岗岩的锆石U–Pb年龄及其构造意义[J].大地构造与成矿学,2007,31(1):110–117.
    [121]何国琦,李茂松,贾进斗,等.2001.论新疆东准噶尔蛇绿岩的时代及其意义[J].北京大学学报(自然科学版),2001,37(6):852–858.
    [122]汪帮耀,姜常义,李永军,等.新疆东准噶尔卡拉麦里蛇绿岩的地球化学特征及大地构造意义[J].矿物岩石,2009,29(3):74–82.
    [123]舒良树,王玉净.新疆卡拉麦里蛇绿岩带中硅质岩的放射虫化石[J].地质论评,2003,49(4):408–412.
    [124]李锦轶.试论新疆东准噶尔早古生代岩石圈板块构造演化[J].中国地质科学院院报,1991,23:1–12.
    [125]刘伟,张湘炳.乌伦古-斋桑泊构造杂岩带特征及其地质意义[J].见:涂光炽主编.新疆北部固体地球科学新进展[M].北京:科学出版社,1993,217–228.
    [126]肖文交,韩春明,袁超,等.新疆北部石炭纪-二叠纪独特的构造-成矿作用:对古亚洲洋构造域南部大地构造演化的制约[J].岩石学报,2006,22(5):1062–1076.
    [127]简平,刘敦一,张旗,等.蛇绿岩及蛇绿岩中浅色岩的SHRIMP U–Pb测年[J].地学前缘,2003,10(4):439–456.
    [128]张海祥,牛贺才, Terada K,等.新疆北部阿尔泰地区库尔提蛇绿岩中斜长花岗岩的SHRIMP年代学[J].科学通报,2003,48(12):1350–1354.
    [129] Horn, I., Rudnick, R. L., Mcdonough, W.F. Precise elemental and isotope ratiodetermination by simultaneous solution nebulization and laser ablation–ICPMS:Application to U–Pb geochronology[J]. Chemical Geology,2000,167:405–425.
    [130] Ballard, J.R., Palin, J.M., Williams, I.S. Two ages of porphyry intrusion resolved forthe super-giant Chuquicamata copper deposit of northern Chile by LA–ICP–MS andSHRIMP[J]. Geology,2001,9:383–386.
    [131] Kosler, J., Fonneland, H., Sylvester, P. U–Pb dating of detrital zircons for sedimentprovenance studies—a comparison of laser ablation LA–ICPMS and SIMStechniques[J]. Chemical Geology,2002,182:605–618.
    [132]袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U–Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511–1520.
    [133] Andersen, T. Correction of common lead in U–Pb analyses that do not report204Pb[J].Chemical Geology,2002,192:59–79.
    [134] Ludwig, K. R.,1991. Isoplot-A plotting and regression program forradiogenic-isotope data[R]. US Geological Survey Open-File Report,1991,39:91–445.
    [135] Ludwig, K. R.,1999. Using Isop lot/EX, version2, a geochronological tool kit forMicrosoft Excel[J]. Berkeley Geochronological Center Special Publication (la),1999,47.
    [136] Coleman, R. G. Continental Growth of Northwest China[J]. Tectonics,1989,8(3):621–635.
    [137]冯益民,朱宝清,肖序常,等.中国新疆西准噶尔山系构造演化[J].古中亚复合巨型缝合带南缘构造演化.肖序常,汤耀庆.北京,北京科学技术出版社:1991,66–91.
    [138]冯益民.西准噶尔优地槽褶皱带沉积建造特征及其多旋回发展[J].中国地质科学院西安地质矿产研究所所刊,1985,(10):29–42.
    [139]吴浩若,潘正蒲.新疆西准蛇绿岩套地质特征及含矿性研究报告[R].新疆维吾尔自治区人民政府国家305项目办公室,1990.
    [140]吴浩若,潘正莆.“构造杂岩”及其地质意义—以西准噶尔为例[J].地质科学,1991,(1):1–8.
    [141]郭丽爽,刘玉琳,王政华,等.西准噶尔包古图地区地层火山岩锆石LA–ICP–MS U–Pb年代学研究[J].岩石学报,2010,26(2):471–477.
    [142]安芳,朱永峰.新疆西准噶尔包古图组凝灰岩锆石SHRIMP年龄及其地质意义[J].岩石学报,2009,25(6):1437–1445.
    [143]王福同.新疆维吾尔自治区古地理及地质生态图集[G].北京:中国地图出版社.2006.
    [144]宋春晖,王金荣,黄华芳.西准噶尔白碱滩北部太勒古拉组深水沉积研究[J].兰州大学学报(自然科学版),1996,32(3):132–137.
    [145]张琴华,孙少华,秦清香.新疆北部石炭纪岩相古地理、沉积建造及其含矿性
    [M].长沙:中南工业大学出版社,1997,1–164.
    [146]孙少华,魏洲龄,张琴华.准噶尔盆地西北缘包古图组的沉积环境[J].新疆石油地质,1990,11(1):25–31.
    [147]佟丽莉,李永军,张兵,等.新疆西准噶尔达尔布特断裂带南包古图组安山岩LA–ICP–MS锆石U–Pb测年及地质时代[J].新疆地质,2009,27(3):226–230.
    [148]何登发,陈新发,况军,等.准噶尔盆地石炭系油气成藏组合特征及勘探前景[J].石油学报,2010,31(1):1–11.
    [149]李菊英,晋慧娟.新疆准噶尔盆地西北缘石炭纪浊积岩系中遗迹化石的发现及其意义[J].地质科学,1989,63:9–15.
    [150]晋慧娟,李育慈.准噶尔盆地西北缘石炭纪生物成因的沉积构造研究[J].科学通报,1998,43(17):1888–1891.
    [151]周良仁,赵志长,张金声.西准噶尔地区地质构造发展及岩浆演化特征[J].中国地质科学院西安地质矿产研究所所刊,1987,16:3–55.
    [152]金成伟,张秀棋.新疆西准噶尔花岗岩类的时代及其成因[J].地质科学,1993,28(1):28–36.
    [153]王金荣,宋春晖,黄华芳,等.西准噶尔扎依尔山花岗岩类地球化学与构造环境[J].兰州大学学报(自然科学版),1996,32(4):155–162.
    [154] Chen, B., Arakawa, Y. Elemental and Nd-Sr isotopic geochemistry of granitoids fromthe West Junggar foldbelt (NW China), with implications for Phanerozoic continentalgrowth[J]. Geochimica et Cosmochimical Acta,2005,69:1307–1320.
    [155] Chen, B., Jahn, B. M. Genesis of post-collisional granitoids and basement nature ofthe Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence[J]. Journalof Asian Earth Sciences,2004,23:691–703.
    [156] Chen, J.F., Han, B.F., Ji, J.Q., et al. Zircon U–Pb ages and tectonic implications ofPaleozoic plutons in northern West Junggar, North Xinjiang, China[J]. Lithos,2010,115:137–152.
    [157] Geng, H.Y., Sun, M., Yuan, C., et al. Geochemical, Sr–Nd and zircon U–Pb–Hfisotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang:Implications for ridge subduction?[J] Chemical Geology,2009,266:364–389.
    [158] Tang, G..J., Wang, Q., Wyman, D.A., et al. Recycling oceanic crust for continentalcrustal growth: Sr–Nd–Hf isotope evidence from granitoids in the western Junggarregion, NW China[J]. Lithos,2010,128:73–83.
    [159] Tang, G.J., Wang, Q., Wyman, D.A., et al. Late Carboniferous high εNd(t)–εHf(t)granitoids, enclaves and dikes in western Junggar, NW China:Ridge-subduction-related magmatism and crustal growth[J]. Lithos (2012), doi:10.1016/j.lithos.2012.01.025.
    [160] Tang, G.J., Wang, Q., Wyman, et al. Ridge subduction and crustal growth in theCentral Asian Orogenic Belt: evidence from Late Carboniferous adakites andhigh-Mg diorites in the western Junggar region, northern Xinjiang (west China)[J].Chemical Geology,2010,277:281–300.
    [161]唐功建,王强,赵振华,等.西准噶尔包古图成矿斑岩年代学与地球化学:岩石成因与构造、铜金成矿意义[J].地球科学,2009,34(1):56–74.
    [162]韩宝福,季建清,宋彪,等.新疆准噶尔晚古生代陆壳垂向生长(I)-后碰撞深成岩浆活动的时限[J].岩石学报,2006,22(5):1077–1086.
    [163]苏玉平,唐红峰,侯广顺,等.新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究[J].地球化学,2006,35(1):55–67.
    [164] Yin, J.Y., C. Yuan, M. Sun, et al. Late Carboniferous high-Mg dioritic dikes inWestern Junggar, NW China: Geochemical features, petrogenesis and tectonicimplications[J]. Gondwana Research,2009, doi:10.1016/j.gr.2009.05.011.
    [165]伍建机,陈斌.西准噶尔庙尔沟后碰撞花岗岩微量元素和Nd–Sr同位素特征及成因[J].新疆地质,2004,22(1):29–35.
    [166]李睿.西准噶尔地区海西中晚期中酸性侵入岩的演化及成因[J].新疆有色金属,199,(1):1–6.
    [167]王方正,杨梅珍,郑建平.准噶尔盆地岛弧火山岩地体拼合基底的地球化学证据[J].岩石矿物学杂志,2002,21(1):1–10.
    [168] Zhou, T.F., Yuan, F., Fan, Y., et al. Granites in the Sawuer region of the West Junggar,Xinjiang Province, China: Geochronological and geochemical characteristics andtheir geodynamic significance[J]. Lithos,2008,106:191–206.
    [169]陈家富,韩宝福,张磊.西准噶尔北部晚古生代两期侵入岩的地球化学、Sr–Nd同位素特征及其地质意义[J].岩石学报,2010,26(8):2317–2335.
    [170]白文吉,任有祥,王书蓉,等.新疆洪古勒楞蛇绿岩的岩石学、矿物学和铬铁矿成因研究[J].中国地质科学院地质研究所所刊,1986,(14):1–60.
    [171]杨瑞瑛.西准噶尔地区中奥陶纪火山岩的地球化学特征[J].地球化学,1993,(4):399–408.
    [172]韩松,董金泉,于福生,等.新疆西准噶尔玛依拉山—萨雷诺海蛇绿岩岩石地球化学特征[J].新疆地质,2004,22(3):290–295.
    [173]霍有光.达拉布特蛇绿岩带北亚带中大棍熔岩的地质意义[J].西北地质,1986,(1):1–5.
    [174]霍有光,冯益民.西准噶尔放射虫硅质岩类型、环境及地质意义[J].西北地质,1990,(3):1–7.
    [175]鲍佩声,王希斌,彭根永,等.新疆西准噶尔豆荚状铬铁矿矿床形成环境的讨论[J].中国地质科学院地质研究所所刊,1992,(23):48–63.
    [176]白文吉, P. Robinson,杨经绥,等.西准噶尔不同时代蛇绿岩及其构造演化[J].岩石学报,1995,11:62–72.
    [177]李金铭.新疆西准噶尔地区不同时期应力场分析及其地质意义[J].中国地质科学院西安地质矿产研究所所刊,1990,(30):125–135.
    [178]李金铭.新疆西准噶尔地区唐巴勒超基性岩体地幔岩残体的超微构造与组构特征[J].西北地质科学,1994,15(1):1–10.
    [179]李金铭,董显扬,黄孝瑛,等.中国超基性岩变质作用与超微构造分析[J].西北地质科学,1994,15(2):1–13.
    [180]李金铭,师占义.新疆西准噶尔地区地幔岩的特征及其演化[J].西北地质,1985,(3):20–28.
    [181]李金铭,师占义.新疆西准噶尔地区超基性岩中地幔团块的结构与组构[J].中国地质科学院西安地质矿产研究所所刊,1985,(11):33–49.
    [182]李金铭,师占义.论新疆拉巴—达拉布特弧形推覆构造[J].中国地质科学院南京地质矿产研究所所刊,1986,(1):59–62.
    [183]李金铭,师占义,李振兴.新疆唐巴勒超基性岩体地幔岩残体的组构特征及其地质意义[C].国际交流地质学术论文集,1985,3:111–122.
    [184]胡霭琴,王中刚,涂光炽,等.新疆北部地质演化及成岩成矿规律[M].北京:科学出版社,1997,1–246.
    [185]霍有光.西准噶尔唐巴勒地区蛇绿岩套岩石化学和稀土元素特征及其地质意义[J].中国地质科学院西安地质矿产研究所所刊,1984,(7):82–94.
    [186]李嵩龄,张志德,杨德朴,1986.新疆西准噶尔地区早古生代超基性岩岩石化学特征[J].新疆地质,1986,4(2):45–53.
    [187]肖序常,汤耀庆,李锦轶,等.古中亚复合巨型缝合带南缘构造演化.见:肖序常,汤耀庆主编,古中亚复合巨型缝合带南缘构造演化[M].北京:北京科学技术出版社,1991,1–29.
    [188]管云彬.新疆西准噶尔地区唐巴勒蛇绿岩的岩石学及地球化学研究(摘要).地质地球化学.1990.
    [189] Peng, G. Y.. Podiform chromite and associated rocks in West Junggar, China[D].Ph.D:1996,1–369.
    [190] Wang, Z.H., Sun, S., Li, J.L. Paleozoic tectonic evolution of the northern Xinjiang,China: Geochemical and geochronological constrains from the ophiolites[J].Tectonics,2003,22(2):1014–1029.
    [191]鲍佩声,王希斌,彭根永,等.新疆西准噶尔重点含铬岩体成矿条件及找矿方向的研究[M].北京,地质出版社,1992.
    [192]肖增岳,沈远超.火山岩岩石基本特征.西准噶尔地区岩浆活动与金矿化作用[M].沈远超,金成伟.北京,科学出版社,1993,79–112.
    [193] Zhang, L.F., M. Sun, B. Xu. Phase relations in garnet-bearing metabasites ofprehnite-pumpellyite facies from the Darbut-Sartuohai ophiolite, Western Junggar ofXinjiang, China[J]. Mineralogy and Petrology,2001,71:67–85.
    [194]霍有光.西准噶尔达拉布特蛇绿岩稀土元素岩石化学特征及特质意义[J].中国地质科学院西安地质矿产研究所所刊,1985,(10):55–68.
    [195]霍有光.西准噶尔的放射虫硅质岩[J].西北地质,1987,(3):15–20.
    [196]冯鸿儒,李旭,刘继庆.准噶尔海槽西准格尔地段板块构造演化特征[J].西安地质学院学报,10(3):1988,28–37.
    [197]朱祥坤.西准噶尔达拉布特蛇绿岩套硼、金的地球化学[J].地质地球化学,1989,(3).
    [198]姜勇,李少贞,郑启之,等.西准噶尔达拉布特超镁铁岩岩石化学特征及形成环境[J].新疆地质,2003,21(2):260–261.
    [199] He, W. J.,2002. The Dalabute ophiolite of the West Junggar region, Xinjiang, NWChina: Origin, emplacement and subsequent tectonic evolution[D]. The University ofHongkong. Master,2002,1–175.
    [200]雷敏.新疆北部蛇绿岩带玄武岩地球化学及其意义[D].中国地质大学(北京).硕士.2007.
    [201]王莉娟,朱和平.新疆准噶尔盆地西缘哈图金矿成矿流体[J].中国地质,2006,33(3):666–671.
    [202]王瑞,朱永峰.西准噶尔宝贝金矿地质与容矿火山岩的锆石SHRIMP U–Pb年龄[J].高校地质学报,2007,13(3):590–602.
    [203]刘绍忠.新疆西准噶尔齐I金矿氧、硫、氢、碳同位素特征及成矿机理探讨[J].新疆地质,1990,8(1):22–31.
    [204]刘绍忠,秦爱华.新疆西准噶尔齐I金矿火山岩地球化学特征[J].新疆地质,1990,8(2):159–168.
    [205]李华芹,陈富文,蔡红.新疆西准噶尔地区不同类型金矿床Rb–Sr同位素年代研究[J].地质学报,2000,74(2):181–192.
    [206]王卫国,孙亚林.新疆哈西金矿地质特征及找矿方向浅析[J].新疆地质,2005,23(1):31–35.
    [207]朱永峰,王涛,徐新.新疆及邻区地质与矿产研究进展[J].岩石学报,2007,23(8):1785–1794.
    [208] Zhang, J.E., Xiao, W.J., Han, C.M.. Kinematics and age constraints of deformation ina Late Carboniferous accretionary complex in Western Junggar, NW China[J].Gondwana Research,2011,15,958–974.
    [209] Zhang, J.E., Xiao, W.J., Han, C.M. A Devonian to Carboniferous intra-oceanicsubduction system in Western Junggar, NW China[J]. Lithos,2011,125,592–606.
    [210]彭根永,鲍佩声,王希斌.新疆洪古勒楞蛇绿岩中含长二辉橄榄岩的成因探讨[J].岩石矿物学杂志,1991,10(2):114–127.
    [211]杨庚,王晓波,李本亮.准噶尔西北缘斜向挤压构造与走滑断裂[J].地质科学,2011,46(3):696–708.
    [212]徐芹芹,季建清,龚俊峰.新疆西准噶尔晚古生代以来构造样式与变形序列研究[J].岩石学报,2009,25(3):636–644.
    [213]陈宣华,杨农,叶宝莹.中亚成矿域多核成矿系统西准噶尔成矿带构造体系特征及其对成矿作用的控制[J].大地构造与成矿学,2011,35(3):325–338.
    [214] Claesson S, Vetrin V, Bayanova T. U-Pb zircon age from a Devonian carbonatitedyke, Kola peninsula, Russia: a record of geological evolution from the Archaean tothe Palaeozoic[J]. Lithos,2000,51(1-2):95–108.
    [215] Fernando C, John MH, Paul WHO, et al. Atlas of zircon textures[J]. Reviews inMineralogy and Geochemistry,2003,53:469–500.
    [216] Compston W, Williams IS, Kirschvink JL. Zircon U-Pb ages for the Early Cambriantime-scale[J]. Journal of Geological Society. London,1992,149:171–184.
    [217]李红生.新疆克尔哈达中志留世放射虫[J].微体古生物学报,1994,11(2):259–272.
    [218] Pearce J.A. Basalt geochemistry used to investigate past tectonic environments onCyprus[J]. Tectonophysics,1975,25:41–67.
    [219] Alabaster T, Pearce JA and Malpas J. The volcanic stratigraphy and petrogenesis ofthe Oman ophiolite complex[J]. Contrib. Mineral Petrol,1982,81:168–183.
    [220] Wilson M. Igneous Petrogenesis[M]. London: Unwin Hyman,1989,1–25.
    [221] Stern RA, Syme EC and Lucas SB. Geochemistry of1.9Ga MORB-and OIB-likebasalts from the Amisk collage, Flin Flon Belt, Canada: Evidence for an intra-oceanicorigin[J]. Geocheimtca et Cosmochimica Acta,1995,59(15):3131–3154.
    [222]郭安林,张国伟,孙延贵,等.阿尼玛卿蛇绿岩带OIB和MORB的地球化学及空间分布特征:玛积雪山古洋脊热点构造证据[J].中国科学(D辑),2006,36(7):618–629.
    [223] Le Bas MJ, Le Maitre RW, Streckeisen A. A chemical classification of volcanic rocksbased on the total alkalic-silica diagram[J]. Journal of Petrology,1986,27:745–750.
    [224] Winchester JA and Floyd PA. Geochemical discrimination of different magma seriesand their differentiation products using immobile elements[J]. Chemical Geology,1977,20:325–343.
    [225] Sun SS and McDonough WF. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[M]. In: Sauders AD and Norry MJ(eds). Magmatism in the Ocean Basins. Spec. Publ. Geol. Soc. Lond.,1989,42:313–345.
    [226] Xia B, Chen GW, Wang R, et al. Seamount volcanism associated with the Xigazeophiolite, Southern Tibet[J]. Journal of Asian Earth Sciences,2008,32:396–405.
    [227] Hofmann A and Jochum K. Source characteristics derived from very incompatibletrace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific DrillingProject[J]. Journal of Geophysical Research,1996,101:831–839.
    [228]夏林圻,夏祖春,徐学义,等.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志,2007,26(1):77–89.
    [229] Weaver BL. The origin of ocean island basalt end-member compositions: Traceelement and isotopic constraints[J]. Earth and Planetary Science Letters,1991,104:381–397.
    [230] Chung SL. Trace element and isotope characteristics of Cenozoic basalts around theTanlu Fault with implications for the eastern plate boundary between north and southChina[J]. Journal of Geology,1999,107:301–312.
    [231] G ncüoglu, M.C., Sayit, K., Tekin, U.K. Oceanization of the northern Neotethys:geochemical evidence from ophiolitic mélange basalts within the Izmir–Ankara suturebelt, NW Turkey[J]. Lithos,2010,116:175–187.
    [232] Maheo, G., Bertrand, H., Guillot, S, et al. The South Ladakh ophiolites (NWHimalaya, India): an intra-oceanic tholeiitic arc origin with implication for the closureof the Neo-Tethys[J]. Chemical Geology,2004,203:273–303.
    [233] Saccani, E., Photiades, A. Petrogenesis and tectonomagmatic significance ofvolcanic and subvolcanic rocks in the Albanide–Hellenide ophiolitic mélanges[J]. TheIsland Arc,2005,14:494–516.
    [234] Aldanmaz, E., Yaliniz, M.K., Güctekin, A. Geochemical characteristics of maficlavas from the Neotethyan ophiolites in western Turkey: implications forheterogeneous source contribution during variable stages of ocean crust generation[J].Geological Magazine,2008,145:37–54.
    [235] Gurenko, A., Hoernle, K., Hauff, F. Major, trace element and Nd–Sr–Pb–O–He–Arisotope signatures of shield stage lavas from the central and western Canary Islands:insights into mantle and crustal processes[J]. Chemical Geology,2006,233:75–112.
    [236] Dai, J.G., Wang, C.S., Hébert, R. Late Devonian OIB alkaline gabbro in the YarlungZangbo Suture Zone: remnants of the Paleo-Tethys?[J] Gondwana Research,2011,19:232–243.
    [237] Aldanmaz, E., Koprubasi, N., Gurer,.F. Geochemical constraints on theCenozoic,OIB-type alkaline volcanic rocks of NW Turkey: implications for mantlesources and melting processes[J]. Lithos,2006,86:50–76.
    [238] Stern RJ, Bloomer SH, Lin PH. Submarine arc volcanism in the southern MarianaArc as an ophiolite analogue[J]. Teconophysics,1989,168:151–170.
    [239] Pearce JA and Cann JR. Tectonic setting of basic volcanic rocks determined usingtrace element analyses[J]. Earth and Planetary Sciences Letters,1973,9:290–300.
    [240] Wood DA.1980. The application of a Th-Hf-Ta diagram to problems oftectonomagmatic classification and to establishing the nature of crustal contaminationof basic lavas of the British Tertiary volcanic province[J]. Earth and PlanetarySciences Letters,1980,50:11–30.
    [241] Meschede M. A method of discriminating between different types of mid-ocean ridgebasalts and continental tholeiites with the Nb–Zr–Y diagram[J]. Chemical Geology,1986,56:207–218.
    [242] Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications toophiolite classification and the search for Archean oceanic crust[J]. Lithos,2008,100:14–48.
    [243] Shervais, J. Ti–V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earthand Planetary Science Letters,1982,59:101–118.
    [244] Chen, C., Frey, F., Garcia, M. Evolution of alkalic lavas at Haleakala Volcano, eastMaui, Hawaii[J]. Contributions to Mineralogy and Petrology,1990,105:197–218.
    [245] Gaffney, A., Nelson, B., Blichert-Toft, J. Geochemical constraints on the role ofoceanic lithosphere in intra-volcano heterogeneity at West Maui, Hawaii[J]. Journal ofPetrology,2004,45:1663–1687.
    [246] Kimura, J., Sisson, T., Nakano, N., et al. Isotope geochemistry of early Kilaueamagmas from the submarine Hilina bench: the nature of the Hilina mantlecomponent[J]. Journal of Volcanology and Geothermal Research,2006,151:51–72.
    [247] Xu, Z., Han, B.F., Ren, R., et al. Ultramafic–mafic mélange, island arc andpost-collisional intrusions in the Mayile Mountain, West Junggar, China: implicationsfor Paleozoic intra-oceanic subduction–accretion process[J]. Lithos,2012,132–133:141–161.
    [248]冯益民.西准噶尔蛇绿岩生成环境及其成因类型[M].西安地质矿产研究所所刊,1986,13:37–44.
    [249]王懿圣,张金生.达尔布特蛇绿岩带基本地质特征及成因模式讨论[J].中国地质科学院西安地质矿产研究所所刊,1982,4:42–55.
    [250]师占义,李金铭,李振兴.新疆达尔布特二辉橄榄岩团块的成因类型及其地质特征[J].中国地质科学院西安地质矿产研究所所刊,1982,4:22–36.
    [251]师占义,李金铭,李振兴.新疆达拉布特超基性岩(带)中地幔尖晶石二辉橄榄岩的发现与研究[J].地质学报,1986,(4):339–351.
    [252] Gradstain FM, Ogg JG,Smith AG. A geological time scale[M]. Cambridge:Cambridge University Press,2004.
    [253]侯世军.新疆达尔布特蛇绿岩带研究报告[R].西安地质矿产研究所,1981.
    [254] Pearce JA. A use guider to basalt discrimination diagrams[C]. In: Wyman DA(ed.).Trace element geochemistry of volcanic rocks: application for massive sulphideexporation: Geochem. Short Course Notes-Geological Association Can,1996,12:79–113.
    [255] Irvine, T.N., Baragar, W.R.A. A guide to the chemical classification of commonvolcanic rocks. Canadian Journal of Earth Sciences,1971,8:523–548.
    [256] Cox KG, Bell JD, Pankhurst RJ. The interpretation of igneous rocks[M]. London:Allen and Unwin,262–287.
    [257] Greenough, J.D., Dostal, J., Mallory-Greenough, L.M. Igneous rock association5.Oceanic island volcanism II: mantle processes[J]. Geoscience Canada,2005,,32:77–90.
    [258] Thirlwall, M.F., Smith, T.E., Graham, A.M. High field strength element anomalies inarc lavas: source or process?[J] Journal of Petrology,1994,35:819–838.
    [259] Kusky, K.M., Ganley, R., Lytwyn, J. The resurrection peninsula ophiolite, mélangeand accreted flysch belts of southern Alaska as an analog for trench-forearc systems inprecambrian orogens[J]. Developments in Precambrian Geology,2004,13:627–674.
    [260] Dharma Rao, C.V., Santosh, M., Wu, Y.B. Mesoproterozoic ophiolite mélange fromthe SE periphery of Indian plate: U–Pb zircon ages and tectonic implications[J].Gondwana Research,2011,19:384–401.
    [261] Yellappa, T., Santosh, M., Chetty, T.R.K. A Neoarchean dismembered ophiolitecomplex from southern India: Geochemical and geochronological constraints on itssuprasubduction origin[J]. Gondwana Research,2012,21:246–265.
    [262]龙晓平,孙敏,袁超,等.东准噶尔石炭系火山岩的形成机制及其对准噶尔洋盆闭合时限的制约[J].岩石学报,2006,22(1):31–40.
    [263] Zhang, Z.C., Zhou, G., Kusky, T.M., et al. Late Paleozoic volcanic record of theEastern Junggar terrane, Xinjiang, Northwestern China: major and trace elementcharacteristics, Sr–Nd isotopic systematics and implications for tectonic evolution[J].Gondwana Research,2009,16:201–215.
    [264] Geng, H.Y., Sun, M., Yuan, C., et al. Geochemical and geochronological study ofearly Carboniferous volcanic rocks from the West Junggar: petrogenesis and tectonicimplications[J]. Journal of Asian Earth Sciences,2011,42:854–866.
    [265] Zheng, J.P., Sun, M., Zhao, G.C, et al. Elemental and Sr–Nd–Pb isotopicgeochemistry of Late Paleozoic volcanic rocks beneath the Junggar basin, NW China:implications for the formation and evolution of the basin basement[J]. Journal ofAsian Earth Sciences,2007,29:778–794.
    [266] Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., et al. Petrogenetic evolution of lateCenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal ofVolcanology Geothermal Research,2000,102:67–95.
    [267] Zhao, J.H., Zhou, M.F. Geochemistry of Neoproterozoic mafic intrusions in thePanzhihua district (Sichuan Province, SW China): implications for subduction-relatedmetasomatism in the upper mantle[J]. Precambrian Research,2007,152:27–47.
    [268] Pearce, J.A., Norry, M.J. Petrogenetic implication of Ti, Zr, Y, and Nb veriations involcanic rocks[J]. Contributions to Mineralogy and Petrology,1979,69:33–47.
    [269] Mullen ED. MnO–TiO2–P2O5: a minor element discriminant for basaltic rocks ofoceanic environments and its implications for petrogenesis[J]. Earth and PlanetaryScience Letters,1983,62:53–62.
    [270] Rollinson, H.R. Using Geochemical Data: Evaluation, Presentation,Interpretation[M]. Longman scientific technical, New York.1993.
    [271] Floyd, P.A., Winchester, J.A. Magma-type and tectonic setting discrimination usingimmobile elements [J]. Earth and Planetary Science Letters.1975,27:211–218.
    [272] Pearce, J.A. Trace element characteristics of lavas from destructive plate boundaries.In: Thorpe, R.S.(Ed.), Andesites [M]. Wiley, New York,1982,525–548.
    [273]孟繁聪,张建新,于胜尧,等.北阿尔金红柳泉早古生代枕状玄武岩及其大地构造意义[J].地质学报,2010,84(7):981–990.
    [274]支霞臣,陈道公,张宗清,等.山东蓬莱、临沂新生代碱性玄武岩的钕、锶同位素组成[J].地质论评,1994,,40(8):526–533.
    [275] Zindler A, Staudigel H, Batiza R. Isotope and trace element geochemistry of youngPacific seamounts: Implications for the scale of upper mantle heterogeneity[J]. Earthand Planetary Science Letters,1984,70:175–195.
    [276] Nohda S. Formation of the Japan Sea basin: Reassessment from Ar-Ar ages andNd–Sr isotopic data of basement basalts of the Japan Sea and adjacent regions[J].Journal of Asian Earth Sciences,2009,34:599–609.
    [277] Jahn BM, Wu FY, Lo CH, et al. Crust-mantle interaction induced by deep subductionof the continental crust: Geochemical and Sr–Nd isotopic evidence frompost-collisional mafic-ultramafic intrusions of the northern Dabie complex, centralChina[J]. Chemical Geology,1999,157:119–146.
    [278]李曙光.蛇绿岩生成构造环境的Ba–Th–Nb–La判别图[J].岩石学报,1993,9(2):146–157.
    [279]李曙光. εNd–La/Nb,Ba/Nb,Nb/Th图对地幔不均一性研究的意义──岛弧火山岩分类及EMII端员的分解[J].地球化学,1995,23(2):105–114.
    [280] Hardarson BS and Fitton JG. Increased mantle melting beneath Snaefellsjokullvolcano during Late Pleistocene glaciation[J]. Nature,1991,353:62–64.
    [281] Condie K C, Bobrow D J, Card K D. Geochemistry of Precambrian mafic dykesfrom the Southern Superior Province. In: Halls HC and Fahrig WF. Mafic DykeSwarms[J]. Geological Association of Canada Special Paper,1987,34:95–108.
    [282]刘志强,韩宝福,季建清,等.新疆阿拉套山东部后碰撞岩浆活动的时代、地球化学性质及其对陆壳垂向增长的意义[J].岩石学报,2005,21(3):623–639.
    [283]宋彪,李锦轶,张进,等.西准噶尔托里地区塔尔根二长花岗岩锆石U-Pb年龄——托里断裂左行走滑运动开始的时间约束[J].地质通报,2011,30(1):19–25.
    [284]魏荣珠.新疆西准噶尔拉巴花岗岩地球化学特征及年代学研究[J].岩石矿物学杂志,2010,29(6):663–674.
    [285]高山林,何治亮,周祖翼.西准噶尔克拉玛依花岗岩体地球化学特征及其意义[J].新疆地质,2006,24(2):125–130.
    [286]刘玉琳,郭丽爽,宋会侠,等.新疆西准噶尔包古图斑岩铜矿年代学研究[J].中国科学(D辑),2009,39(10):1466–1472.
    [287]申萍,沈远超,潘成泽,等.新疆哈图-包古图金铜矿集区锆石年龄及其成矿特点[J].岩石学报,2010,26(10):2875–2893.
    [288]张继恩.新疆西准噶尔东部晚古生代增生大地构造:来自蛇绿混杂带与增生楔的证据[D].博士论文,2009,1–205.
    [289]辜平阳,李永军,王晓刚,等.西准噶尔达尔布特SSZ型蛇绿杂岩的地球化学证据及构造意义[J].地质论评,2012,57(1):36–44.
    [290]李辛子,韩宝福,李宗怀.新疆克拉玛依中基性岩墙群形成力学机制及其构造意义[J].地质论评,2005,51(5):517–522.
    [291]李辛子,韩宝福,季建清.新疆克拉玛依中基性岩墙群的地质地球化学和K-Ar年代学[J].地球化学,2004,33(6):574–584.
    [292] Ma, C., Xiao, W.J., Windley, B.F., et al. Tracing a subducted ridge-transform systemin a late Carboniferous accretionary prism of the southern Altaids: Orthogonalsanukitoid dyke swarms in western Junggar, NW China[J]. Lithos (2012), doi:10.1016/j.lithos.2012.02.005.
    [293] Zhou, M. F., M. Sun, R. R. Keays, et al. Controls on platinum-group elementaldistributions of podiform chromitites: A case study of high-Cr and high-Al chromititesfrom Chinese orogenic belts[J]. Geochimica et Cosmochimica Acta,1998,62(4):677–688.
    [294] Zhou, M. F., P. T. Robinson, J. Malpas, et al. Melt/mantle Interaction and MeltEvolution in the Sartohay high-AI Chromite deposits of the Dalabute Ophiolite (NWChina)[J]. Journal of Asian Earth Sciences:2001,19:517–534.
    [295]安芳,朱永峰.新疆哈图金矿蚀变岩型矿体地质和地球化学研究[J].矿床地质,2007,26(6):621–633.
    [296]田陟贤,李永军,杨高学,等.西准噶尔巴尔雷克一带石炭系黑山头组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及构造环境[J].地质学报,2012,已录用.
    [297]杨高学,李永军,杨宝凯.西准噶尔巴尔雷克蛇绿混杂岩带中玄武岩地球化学特征及大地构造意义[J].地质学报,2012,86(1):188–197.
    [298]杨高学,李永军,刘振伟.西准噶尔玛依拉山组志留纪玄武岩的地球化学特征及构造意义[J].大地构造与成矿学,2012,36(1):127–136.
    [299] Choulet, F., Faure, M., Cluzel, D. et al. From oblique accretion to transpression inthe evolution of the Altaid collage: New insights from West Junggar, northwesternChina[J]. Gondwana Research,2012,21:530–547.
    [300] Choulet, F., Cluzel, D., Faure, M., et al. From oblique accretion to transpression inthe evolution of the Altaid collage: New insights from West Junggar, northwesternChina[J]. Terra Nova,2012,0:1–10.
    [301]童英,王涛,洪大卫,等.北疆及邻区石炭二叠纪花岗岩时空分布特征及其构造意义[J].岩石矿物学杂志,2010,29(6):619–641.
    [302]李华芹,谢才富,常海亮,等.新疆北部有色贵金属矿床成矿作用年代学[M].北京:地质出版社,1998,10–27.
    [303]晋慧娟,李育慈,李菊英.新疆准噶尔盆地西北缘石炭纪深水沉积的发现及其沉积特征[J].沉积学报,1987,5(3):125–134.
    [304]李锦轶,何国琦,徐新,等.新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J].地质学报,2006,80(l):148–168.
    [305]李锦轶,王克卓,孙桂华,等.东天山吐哈盆地南缘古生代活动陆缘残片:中亚地区古亚洲洋板块俯冲的地质计录[J].岩石学报,2006,22(5):1087–1101.
    [306]李锦轶.新疆东部新元古代晚期和古生代构造格局及其演变[J].地质论评,2004,50(3):304–322.
    [307] Volkova NI and Sklyarov EV. High–pressure complexes of Central Asian fold belt:Geologic setting, geochemistry, and geodynamic implications. Russian Geology andGeophysics,2007,48:83–90.
    [308] Iwata K, Obut OT and Buslov MM. Devonian and Lower Carboniferous radiolarianfrom the Chara ophiolite belt, East Kazakhstan. News of Osaka Micropaleontologist,1997,10:27–32.
    [309]肖文交, Windley BF,阎全人,等.北疆地区阿尔曼太蛇绿岩锆石SHRIMP年龄及其大地构造意义[J].地质学报,2006,80(1):32–37.
    [310]唐红峰,苏玉平,刘丛强,等.新疆北部卡拉麦里斜长花岗岩的锆石U–Pb年龄及其构造意义[J].大地构造与成矿学,2007,31(1):110–117.
    [311]徐学义,李向民,马中平,等.北天山巴音沟蛇绿岩形成于早石炭世:来自辉长岩LA–ICP–MS锆石U–Pb年龄的证据[J].地质学报,2006,80(8):1168–1176.
    [312]徐学义,马中平,夏林圻,等.北天山巴音沟蛇绿岩斜长花岗岩锆石SHRIMP测年及其意义[J].地质论评,2005,51(5):523–527.
    [313]周鼎武,苏犁,简平,等.南天山榆树沟蛇绿岩地体中高压麻粒岩SHRIMP锆石U–Pb年龄及构造意义[J].科学通报,2004,49(14):1411–1415.
    [314]刘斌,钱一雄.东天山三条高压变质带地质特征和流体作用[J].岩石学报,2003,19(2):283–296.
    [315]王作勋,邬继易,吕喜期,等.天山多旋回构造深化及成矿[M].北京:科学出版社,1990,1–217.
    [316]龙灵利,高俊,熊贤明,等.南天山库勒湖蛇绿岩地球化学特征及其年龄[J].岩石学报,2003,22(1):65–73.
    [317]马中平,夏林圻,徐学义,等.南天山库勒湖蛇绿岩锆石年龄及其地质意义[J].西北大学学报(自然科学版),37(1):107–110.
    [318]刘羽,王乃文,姚建新.新疆库车地区放射虫新资料及其意义[J].新疆地质,1994,12(4):340–350.
    [319]李玮,胡健民,高卫,等.新疆南天山库尔干一带泥盆纪–早石炭世放射虫组合的发现[J].中国地质,34(4):584–591.
    [320]舒良树,王博,朱文斌.南天山蛇绿混杂岩中放射虫化石的时代及其构造意义[J].地质学报,2007,81(9):1161–1168.
    [321]王超,刘良,车自成,等.西南天山阔克萨彦岭巴雷公镁铁质岩石的地球化学特征、LA–ICP–MS U–Pb年龄及其大地构造意义[J].地质论评,2007,53(6):743–754.
    [322]李曰俊,王招明,买光荣.塔里木盆地艾克提克群中放射虫化石及其意义[J].新疆石油地质,2002,23(6):496–500.
    [323]李曰俊,孙龙德,吴浩若.南天山西端乌帕塔尔坎群发现石炭–二叠纪放射虫化石[J].地质科学,2005,40(2):220–226,236.
    [324] Alekseev DV, Aristov VA and Degtyarev KE. The age and tectonic setting ofvolcanic and cherty sequences in the ophiolite complex of the Atbashe Ridge(Southern Tien Shan)[J]. Doklady Earth Sciences,2007,413A:380–383.
    [325]高俊,龙灵利,钱青,等.南天山:晚古生代还是三叠纪碰撞造山带?[J].岩石学报,2006,22(5):1049–1061.
    [326] Zhang LF, Ai YL, Li XP, et al. Triassic collision of western Tianshan orogenic belt,China: evidence from SHRIMP U–Pb dating of zircon from HP/UHP eclogiticrocks[J]. Lithos,2007,96:266–280.
    [327] Tagiri M, Yano T, Baikirov A, et al. Mineral parageneses and metamorphic P–T pathsof ultrahigh–pressure eclogites from Kyrghyzstan Tien Shan[J]. Island Arc,1995,4:280–292.
    [328] Simonov VA, Sakiev KS, Volkova NI, et al. Conditions of formation of the AtbashiRidge eclogites (South Tien Shan)[J]. Russian Geology and Geophysics,2008,49:803–815.
    [329] Han, B.F., Guo, Z.J., Zhang, Z.C., et al. Age, geochemistry, and tectonic implicationsof a late Paleozoic stitching pluton in the North Tian Shan suture zone, WesternChina[J]. Geological Society of America Bulletin,2010,122:627–640.
    [330] Choulet, F., Chen, Y., Wang, B., et al. Late Palaeozoic palegeographic reconstructionof western Central Asia based upon paleomagnetic data and its geodynamicimplications[J]. Journal of Asian Earth Sciences.2011,42:867–884.
    [331] Li, J.Y., Xiao, W.J., Wang, K.Z., et al. Neoproterozoic-Paleozoic tectonostratigraphicframework of Eastern Xinjiang, NW China, in Mao, J. W., Goldfarb, R., Seltmann, R.,et al., editors, Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan,International Association on the Genesis of Ore Deposits (IAGOD) Guidebook Ser.10,Urumqi: London, Natural History Museum, IAGDO/CERAMS,2003, p.31–74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700